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Yogi Berra (purportedly):

“In theory there is no difference between theory and practice.
In practice, there is.”

(cf. “That’s all well and good in practice, but how does it work in theory?”)
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Clustering is concerned with coherently grouping observations
without any e

dustering—clustering the vertice:
spectral embedding—is commonly approached via K-means (or,
more generally, Gaussian mixture model) clustering composed
‘with either upu sn spectral embedding 0SE) o sclcancy spec

ecent theoretical results provide deeper

urd.nhning of the pmm.m and solutions and lead us to a
“two-truths” LSE vs. ectral graph clustering phenomenon
convincingly ilustrated here via a diffusion MRI connectome
dataset:

ing results, with LSE capturing left hemisphere/right hemisphere
affinity structure and ASE capturing gray matter/white matter
core-periphery structure.

spectral embedding | spectral dustering | graph | network | connectome.

he purpose of this paper is to cogently present a “two-truths’

phenomenon in spectral graph clustering, to understand this
phenomenon from a theoretical and methodological perspective,
and to demonstrate the phenomenon in a real-data case consist-
ing of multiple graphs cach with multiple categorical vertex
labels.

A graph or network consists of a collection of vertices or
nodes V' representing n entities together with edges or links
E representing the observed subset of the (7) possible pai

fi

associated with the concept of “community detection,” is con-
cerned with partitioning the vertices into coherent groups or
clusters. By its very nature, such a partitioning must be based
on connectivity patterns.

It i oten the cas that practiiones chuser the vertoes of
a graph—say, via K-means clustering composed with Laplacian
spectral embedding—and pronounce the method as having per-
formed either well or poorly based on whether the resulting
clusters correspond well or poorly with some known or precon-
ceived notion of “correct” clustering. Indeed, such a procedure
smay be wsed 0 compare two cusering methods and o pro-
nounce that one works better (on the particular data under
consideration). However, clustering is inherently ill-defined, as

may be multiple meaningful groupings, and two clus-

tering methods that perform differently with respect to one
notion of truth may in fact be identifying inherently differ-
ent, but perhaps complementary, underlying structure. With
respect to graph clustering, ref. 1 shows that there can be n
algorithm that is optimal for all possible community detection
tasks (Fig. 1).

We compare and contrast Laplacian and adjacency spectral
embedding as the fst siep in spectal graph clusering and
demonstrate that the

018)

spectral graph clustering should consider both Laplacian and
adjacency spectral embedding and the development of new
methodologies based on this awareness.

Spectral Graph Clustering

Given a simple graph G'=(V, ) on n vertices, consider the

associated n x n adjacency matrix A in which A, = 0 or 1

encoding whether vertices i and 7 in V share an edge (i,5) in
For our simple undirected, unweighted., loopless case, A is

bm.\rywnh A, €{0.1}, symmetricwith A = A", and hollow with

tiag (4) =0.
e fint sep of spectral gragh chstrivg (2, 3) ivolves

sition. We consldcr ™o ¢ npllulls Laplacian spectral cmbedding
(LSE), wherein we decompose the normalized Laplacian of
the adjacency malri, and ad ectral embedding (ASE)
Eiven by a deeomposiionof the ajaceney matrix self. With tar!
get dimension d, cither spectral embedding method produces
n points in R, denoted by the n x d matrix X. ASE employs
the elgenocomposilon 1 epresea the adjacency mati vi
" and chooses the top d eigenvalues by magnitude
i ther associsedvecto to ambed e graph via the scaled
cigenvectors Uali|'. Similaly, LSE embeds the raph via
the top saled cigemectorsof the normalized Laplacian Z(

2AD=/2, where D is the diagonal mnlnxofvulcxdcgncs.

Significance

SpecralomoR cisana=cemrng dhefterties cf lorach
based o

et e o s e the sdences. But as
with dustaring in geneal, what o partcdar methodology
identifies as “custers" is defined (explicity, or, more often,

and concise demonstration of @ “two-truths" phenomenon
for spectral graph clustering in which the first step—spectral
embedding—is either Laplacian spectral embedding, wherein
one decomposes the normalized Laplacian of the adjacency
matri, or adjacency spectral embedding given by a decom-
position of the adjacency matrix itself. The two resuiting

meaningful) structure.

b ntirs: CEP. L LML ond V. desed s CEP. UL M,
AA. ind LC. performed reearc CEP. P, and E8. analyzed data;and C EP. wre

the paper.

he authors dacare o conictof intrest.

his artic s 3 PUAS Diret Submision.

ings, identify different—but both mcamngml—gmph structure.
We trust that this simple, clear explication will contribute to
an awareness that connectivity-based structure. discove

o pnasorglegidoi10.1073/pnas. 1814462116
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“Two Truths” l

Fig. 1. A two-truths graph (connectome) depicting connectivity structure
such that one grouping of the vertices yields affinity structure (e.g., left
hemisphere/right hemisphere) and the other grouping yields core—periphery
structure (e.g., gray matter/white matter). (Top Center) The graph with four
vertex colors. (Top Left and Top Right) LSE groups one way and ASE groups
another way. (Bottom Left) The LSE truth is two densely connected groups,
with sparse interconnectivity between them (affinity structure). (Bottom
Right) The ASE truth is one densely connected group, with sparse inter-
connectivity between it and the other group and sparse interconnectivity
within the other group (core-periphery structure). This paper demonstrates
the two-truths phenomenon illustrated here—that LSE and ASE find funda-
mentally different but equally meaningful network structure—via theory,
simulation, and real data analysis.



We make significant conceptual use of the positive definite
two-block SBM (K = 2), with

p— |Bu Biz|_|a b
~ |B21 Ba22| |b ¢
which henceforth we abbreviate as B =[a, b; b, ¢|. In this sim-

ple setting, two general/generic cases present themselves: affinity
and core—periphery.

Affinity: a, c>> b. An SBM with B =|a, b; b, ] is said to exhibit
affinity structure if each of the two blocks has a relatively
high within-block connectivity probability compared with the
between-block connectivity probability.

Core-periphery: a > b, c. An SBM with B =a, b; b, c] is said to
exhibit core—periphery structure if one of the two blocks has
a relatively high within-block connectivity probability compared
with both the other block’s within-block connectivity probability
and the between-block connectivity probability.
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Fig. 2. Connectome data generation. (A) The pipeline. (B) Voxels and
regions in tractography map. (C) Voxels and edges. (D) Contraction yields
vertices and edges. The output is diffusion MRI graphs on =1 million ver-
tices. Spatial vertex contraction yields graphs on =70,000 vertices from
which we extract largest connected components of /40,000 vertices with
{Left,Right} and {Gray,White} labels for each vertex. Fig. 1 depicts (a
subsample from) one such graph.
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Fig. 2. Connectome data generation. (4) The pipeline. (B) Voxels and
regions in tractography map. (C) Voxels and edges. (D) Contraction yields
vertices and edges. The output is diffusion MRI graphs on ~1 million ver-
tices. Spatial vertex contraction yields graphs on =70,000 vertices from
which we extract largest connected components 0,000 vertices with
{LeftRight} and {GrayWhite} labels for each vertex. Fig. 1 depicts (a
subsample from) one such graph.

Connectome Data

We consider for illustration a diffusion MRI dataset consist-
ing of 114 connectomes (57 subjects, two scans each) with
72,783 vertices each and both left/right/other hemispheric and
gray/white/other tissue attributes for each vertex. Graphs were
estimated using the NeuroData’s MR Graphs pipeline (23), with
vertices representing subregions defined via spatial proximity
and edges defined by tensor-based fiber streamlines connecting
these regions (Fig. 2).

The actual graphs we consider are the largest connected com-
ponent (LCC) of the induced subgraph on the vertices labeled
as both left or right and gray or white. This yields m =114
connected graphs on n /40,000 vertices. Additionally, for each
graph every vertex has a {Left,Right} label and a {Gray,White}
label, which we sometimes find convenient to consider as a single
label in {LG,LW,RG,RW}.



Sparsity. The only notions of sparsity relevant here are linear
algebraic: whether there are enough edges in the graph to sup-
port spectral embedding and whether there are few enough to
allow for sparse matrix computations. We have a collection of
observed connectomes and we want to cluster the vertices in
these graphs, as opposed to in an unobserved sequence with the
number of vertices tending to infinity. Our connectomes have,
on average, n ~ 40, 000 vertices and e = 2, 000, 000 edges, for an
average degree 2e/n ~ 100 and a graph density e /(%) ~ 0.0025.
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Fig. 4. Block connectivity probability matrices for the a priori projection of
the composite connectome onto the two-block SBM for (Left) {Left, Right}
and (Right) {Gray, White}. {Left, Right} exhibits affinity structure, with
Chernoff ratio <1; {Gray, White} exhibits core—periphery structure, with
Chernoff ratio >1.
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Fig. 5. For each of our 114 connectomes, we plot the a priori two-block
SBM projections for {Left, Right} in red and {Gray, White} in blue. The
coordinates are given by x = min(a, ¢)/ max(a, ¢) and y = b/ max(a, c), where
B=[a, b; b, c] is the observed block connectivity probability matrix. The thin
black curve y = /x represents the rank 1 submodel separating positive defi-
nite (lower right) from indefinite (upper left). The background color shading
is Chernoff ratio p, and the thick black curves are p =1 separating the
region where ASE is preferred (between the curves) from where LSE is pre-
ferred. The point (1, 1) represents Erdés—Rényi (a = b = ). The large stars
are from the a priori composite connectome projections (Fig. 4). We see
that the red {Left, Right} projections are in the affinity region where p < 1
and LSE is preferred while the blue {Gray, White} projections are in the
core-periphery region where p > 1 and ASE is preferred. This analytical find-
ing based on projections onto the SBM carries over to empirical spectral
clustering results on the individual connectomes (Fig. 7).



Two Truths:
ASE — Gray/White ; LSE — Left/Right
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Fig. 6. Results of the (d, K) model selection for spectral graph clustering
for each of our 114 connectomes. For LSE we see d € {30, . .., 60} and K €
{2,...,20}; for ASE we see de {2,...,20} and Ke {10, ...,50}. The color
coding represents clustering performance in terms of ARI for each of LSE
and ASE against each of the two truths {Left, Right} and {Gray, White} and
shows that LSE clustering identifies {Left, Right} better than {Gray, White}
and ASE identifies {Gray, White} better than {Left, Right}. Our two-truths
phenomenon is conclusively demonstrated: LSE finds {Left, Right} (affinity)
while ASE finds {Gray, White} (core-periphery).
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Fig. 7. Spectral graph clustering assessment via ARI. For each of our 114
connectomes, we plot the difference in ARI for the {Left, Right} truth
against the difference in ARI for the {Gray, White} truth for the cluster-
ings produced by each of LSE and ASE: x = ARI(LSE,LR) — ARI(LSE,GW) vs.
y = ARI(ASE, LR) - ARI(ASE,GW). A point in the (+, —) quadrant indicates that
for that connectome the LSE clustering identified {Left, Right} better than
{Gray, White} and ASE identified {Gray, White} better than {Left, Right}.
Marginal histograms are provided. Our two-truths phenomenon is con-
clusively demonstrated: LSE identifies {Left, Right} (affinity) while ASE
identifies {Gray, White} (core-periphery).




On Spectral Graph Clustering



Minh Tang
Limit theorems for eigenvectors of the
normalized Laplacian for random graphs

Minh Tang, Carey E. Priebe
(Submitted on 28 jul 2016)

We prove a central limit theorem for the components of the eigenvectors
corresponding to the d largest eigenvalues of the normalized Laplacian matrix of
a finite dimensional random dot product graph. As a corollary, we show that for
stochastic blockmodel graphs, the rows of the spectral embedding of the
normalized Laplacian converge to multivariate normals and furthermore the mean
and the covariance matrix of each row are functions of the associated vertex's
block membership. Together with prior results for the eigenvectors of the
adjacency matrix, we then compare, via the Chernoff information between
multivariate normal distributions, how the choice of embedding method impacts
subsequent inference. We demonstrate that neither embedding method dominates
with respect to the inference task of recovering the latent block assignments.

http://arxiv.org/abs/1607.08601
Annals of Statistics, 2018
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Spectral Clustering

refers to a class of graph inference methodologies

in which the vertices of a graph G are partitioned via
e some clustering algorithm

composed with
e some spectral embedding of G.

spectral embedding:
e Laplacian Spectral Embedding (LSE)
e Adjacency Spectral Embedding (ASE)

clustering:
e K-means
e Gaussian Mixture Modeling (GMM)



It was shown in B&S that for two-block stochastic blockmodels,
for a large regime of parameters the normalized LSE reduces the
within-block variance while preserving the between-block variance,
as compared to that of the ASE.

This suggests that for a large region of the parameter space for
two-block stochastic blockmodels, the spectral embedding of the
Laplacian is to be preferred over that of the adjacency matrix for
subsequent inference.

However, the metric in B&S is intrinsically tied to the use of
K-means as the clustering procedure, i.e., a smaller value of the
metric for the LSE as compared to that for the ASE implies only
that clustering the LSE using K-means is possibly better than
clustering the ASE using K-means.



Athreya et al., Sankhya, 2016
provides an ASE CLT
suggesting that the top K eigenvectors from a K-SBM adjacency

matrix behave approximately as a random sample from a mixture
of K Gaussians in RXK.

Tang & P, Annals of Statistics, 2018

provides an LSE CLT

and demonstrates that the choice between ASE and LSE is a
sticky wicket

as neither dominates the other for subsequent inference ...
and that K-means is inferior to GMM for spectral clustering.



Definition (Adjacency Spectral Embedding)

Let A be a n x n adjacency matrix. Suppose the
eigendecomposition of A is given by A=31 ; ?\iuiuiT where

A1l = [Ao| > ... are the eigenvalues and uq,uy, ..., u, are the
corresponding orthonormal eigenvectors. Given a positive integer
d < n, denote by Sp = diag([A1], ..., [A4]) the diagonal matrix
whose diagonal entries are the [A],...,[Az], and denote by Uy the
n x d matrix whose columns are the corresponding eigenvectors
Uy, ..., uy. The adjacency spectral embedding (ASE) of A into RY

is then the 1 x d matrix X = Uga Sl/2



Definition (Graph Laplacian)

For a given matrix M with non-negative entries, denote by £(M)
the normalized Laplacian of M defined as

L£(M) = (diag(M1))~/?M(diag(M1)) /2

where, given z = (z1,...,2,) € R”, diag(z) is the n x n diagonal
matrix whose diagonal entries are the z;'s.

Our definition of the normalized Laplacian is slightly different from
that often found in the literature, wherein the normalized
Laplacian is I — £(M). For our purposes, namely the notion of the
Laplacian spectral embedding via the eigenvalues and eigenvectors
of the normalized Laplacian, these two definitions of the
normalized Laplacian are equivalent. We shall henceforth refer to
L(M) as the Laplacian of M, in contrast to the combinatorial
Laplacian diag(M1) —M of M.

22 /86



Definition (Laplacian Spectral Embedding)

Let A be a n x n adjacency matrix. Let £(A) denote the
normalized Laplacian of A and suppose the eigendecomposition of
L(A)is given by L(A) = Y " | Adtjit; where

Al =A== I)\nl 0 are the eigenvalues and i1y, iy, . .., i,
are the correspondmg orthonormal eigenvectors. Then given a
positive integer d < n, denote by Sa = diag(lill, .. IAz) the
diagonal matrix whose diagonal entries are the [A¢], ..., [A;| and
denote by U, the 11 x d matrix whose columns are the eigenvectors
iy,...,1, The Laplacian spectral embedding (LSE) of A into RY

is then the 1 x d matrix X = INJASU2

23 /86



Definition (Random Dot Product Graph (RDPG))

Let F be a distribution on a set X c R4 satisfying xTy € [0, 1] for
all x,y € X. We say (X, A) ~ RDPG(F) with sparsity factor p, <1
if the following hold. Let X3, ..., X, ~ F be independent and
identically distribtued random variables and define

X=[X{| X" €e R and P = p, XX € [0, 1]"*".

The X; are the /atent positions for the random graph, i.e., we do
not observe X, rather we observe only the matrix A. The matrix
A €{0,1}"*" is defined to be symmetric with all zeroes on the
diagonal such that for all i < j, conditioned on Xi,Xj the Aij are
independent and

Ay~ Bernoulli(PnXiT Xj);
that is,

PIA | X] = ] J(0aX;" X)) (1 — pn X[ X))

i<j



Theorem (ASE LLN)

Let (Xy, Ay) ~ RDPG(F) with sparsity factor p,. Then there exists
a d x d orthogonal matrix W, and a n x d matrix R, such that

Xa Wy, — 03/ X = pn 2 (An — P) X (X X)) + Ry,

Furthermore, |R,|| = Op((np,)~1/2).
Let ur = E[X7] and A = IE[XleT].

If p, =1 for all n, then there exists a sequence of orthogonal
matrices W,, such that

X Wi — X |2 255 tr A1 (]E[XleT(XlT WE — XlTAXl)])A_l.
If, however, p, — 0 and np, = w(log4n), then

1XaWa — 02Xl 25 tr A~ (B0 XT (X )] ) A7

25
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Theorem (ASE CLT)

Assume the setting and notation as above.

Denote by }A(i the i-th row of X,,.

Let ®(z, X) denote the cumulative distribution function for the
multivariate normal, with mean zero and covariance matrix X,
evaluated at z.

26 /86



Theorem (ASE CLT (p, =1))

If p, =1 for all n, then there exists a sequence of orthogonal
matrices Wy, such that for each fixed index i and any z € R,

]P{\/E(an(i ~X) < z} 4, Jd)(z, ¥ (x))dF(x)

where
I(x) = ATEX X (0T Xy —x T X X{ x)]a

That is, the sequence \/ﬁ(Wn)A(l- — X;) converges in distribution to
a mixture of multivariate normals. We denote this mixture by
N(0, 2(X5))-

27 /86



Theorem (ASE CLT (p, — 0))

If, however, p, — 0 and np, = w(log4n) then there exists a
sequence of orthogonal matrices W,, such that

P{VA(W,X; - o1/ "X) < 2} %5 | 0z, Ly () dF(0)

where Zo(l)(X) = Ail]E[XlxlTXTXl]Ai].

28 /86



Definition (SBM as RDPG)

Let

K
P:Zﬂkévkv 7'[1,---,7'[K>0,Z7Tk=1
k=1 k

be a mixture of K point masses in R? where b+, is the Dirac delta
measure at vy.

29 /86



Corollary (ASE for SBM)

If p, = 1, there exists a sequence of orthogonal matrices W, such
that for any fixed index i,

IP{\f(WX X)) < z|x_vk}i>N(o,zk)

where L, = L(vg).

If p, — 0 and np,; = w(log4(n)) as n — oo, then the sequence of
orthogonal matrices W, satisfies

P{ﬁ(wnfg- 0/ 2 Xi) <21 Xi = vi |~ N(0, Zoqa) )

where Z )k = zo(l)(vk)-

30

86



We now provide analogues of the aforementioned ASE limit results
for LSE.



Theorem (LSE LLN)

Let (A;,X;;) ~RDPG(F) forn > 1 be a sequence of random dot
product graphs with sparsity factors (py),>1. Denote by D;, and
T, the n x n diagonal matrices diag(A,1) and diag(annX; 1),
respectively, i.e., the diagonal entries of D,, are the vertex degrees

of A, and the diagonal entries of T,, are the expected vertex
degrees. Let X, = p,l/szl/ZXn = diag(X,, X, 1)71/2X,,.

Then for any n, there exists a d x d orthogonal matrix Wy, and a
n x d matrix R, such that (, := (X W, —X,,) satisfies

G =Ty (A —P) T, 2%, (X5 X) ™ + (1= D, T, )X, + Ry
(1)

Furthermore, ||Ry[|r = Op((1px) 1), i.e., [|Rull/||Gall == 0 as
n — oo.

32/86



Theorem (LSE LLN)

Define the following quantities

- Xi % X X]
u=EX;]; p=E|——|; A=E : and 2
1 [Xiru} [ Xirp, } (2)
A1X;, X \/ATIXy X \T
= — — 3
8(X1, Xa) ( X] 1 2X2Tu>< X] 1 2X2Tu> (3)

33 /86



Theorem (LSE LLN)

If py =1 then the sequence of orthogonal matrices (W ),>1
satisfies

X[ X, — X XoX] Xy }

1| Xy Wy — X ||2 23 tr E|¢(Xq, X5)
X W nllE {g 1, &2 XzTH

(4)

where the expectation in Eq. (4) is taken with respect to X, and
X, being drawn i.i.d. according to F.

Equivalently, with A = E[X; X ],

AP XT (XTR—XTAXy)  3XiX] }
(X] w)? 4(X] u)?
A1X0 X Xo X5 (X X) XXXy AXl)}
X7 (X, u)? 4(X] w3

1 Xy Wiy — Xl |2 255 tr 1E[

+trIE{

34
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Theorem (LSE LLN)

If p, — 0 and np, = w(log4 n) then the sequence (Wy,),>1 satisfies

(5)

A2X X[ (X[ i) 3% X( }

Y 2 as

35 /86



Theorem (LSE CLT)

Assume the setting and notation as above.

Denote by }V(i and X; the i-th row of X, and X, respectively.
We note that X; = X

VIiXTX;

36 /86



Theorem (LSE CLT)

If p, = 1 then there exists a sequence of orthogonal matrices W,
such that for each fixed index i and any z € RY,

]P{n(Wn)v(i — L) < z} o, J(D(z, ¥ (x))dE(x) (6)

V& XX

where £(x) is defined by

E [<A1X1 X )(Xirﬁl - sl ) (xTX; —xTXlXi'—x)}
X 2xTw/\ X[p 2xTp xTu '

o ™)

That is, the sequence n(W,X; — X;) converges in distribution to a

mixture of multivariate normals. We denote this mixture by
N(0, Z(X;)).

37
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Theorem (LSE CLT)

If p, — 0 and np, = w(log4 n) then there exists a sequence of
orthogonal matrices Wy, such that

H){np}/z(wn)“(i— Xi )gz} i>Jcp(z,)ﬁo(l)(x))dzf(x). (8)

VI X X

where io(l)(x) is defined by

£t =[S ) (i - )

] (9)

38 /86



Corollary (LSE for SBM)
Recall

K
P:Zﬂkévk, Ttl,-",7TK>0,Z7Tk:1.
k=1 k

If p, = 1, there exists a sequence of orthogonal matrices W, such
that for any fixed index i,

]P{I’I(Wn}v(i - \/#‘W) <zl|Xi= Vk} i> N(O, ik) (10)

where £, = £(vy) is as defined in Eq. (7).

If instead p;, — 0 and np,, = w(log4(n)) asn — oo then

v v d ~
P{np/*(WaX; — Tre—) <21 Xi= Vip 5 N(0, Eoa) )
(11)

where io(l),k = iom(vk) is as defined in Eq. (9).

39
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As a special case, let A be an Erd6s-Rényi graph on n vertices with
edge probability p? — which corresponds to a random dot product
graph where the latent positions are identically p.

Then for each fixed index i:

LSE yields
< N0, L,

n (}U(l - ' g2

7)
ASE vyields
V(X —p) <5 N(0,1-p?).

40 /86



As another example, if A is a stochastic blockmodel graph with
block probabilities matrix B = [Z; Zi’] and block assignment
probabilities (7, 1 —7t) — which corresponds to a random dot
product graph where the latent positions are either p with
probability 7t or g with probability 1 — 7t — then letting 17 and
1y, = n —ny denote the number of vertices of A with latent
positions p and g, we have that for each fixed i:

LSE yields
n(}? a ”lpf-H”lZPq) = N(O’ ﬂp(lgf;r)ﬂigigzgiipq)) if Xi =p.
nov(l B \/”1PZ+nzq2) i> N(O' ”P(12(P‘7;18:325§*’12)> LE At
ASE vyields
Vi) 3(o, U 3,
V(X —q) N N(O, np ﬁ(l(m;;ql({l nﬂ{;g‘)*z(l q2)> if X; =g



Section 3.1: sketch of (one key & fun part of) the proof
The LSE of RDPG A into R? is the 1 x d matrix X = U5 S}/%.
Davis-Kahan implies Uo U = UpUj + Op((1p,)/?) and ...
Minh's Proposition B.2: There exists an orthogonal matrix W* s.t.

Up Ua = W* + Op((npa) ).

Minh's Lemma B.3: Furthermore, W* satisfies

WS, 12— 8,1 2W* = Op((np,) ).

42 /86



By the Davis-Kahan theorem, the eigenspace spanned by the d
largest eigenvalues of £(A) is “close” to that spanned by the d
largest eigenvalues of L(P).

That is, UsU} = UpU; + Op((np,)~1/?) and

UaSY* —UpSY U Ua = £(A)UpU UAS, /% — £(P)UpS,, /207 Ua
+Op((npa) ™).

Consider the terms g;l/zﬁ;ﬁA and fIITfJAggl/Z.

Since Up and U, both have orthonormal columns,

UAU, = UpUj + Op((12p,)~/2) implies that there exists an
orthogonal matrix W* such that ItIP,—INJA =W*+Op((np,) 1)
(Proposition B.2).

Furthermore, W* satisfies an important property, namely that
WS, /2 — 8, 12W* = Op((np,)~!) (Lemma B.3).

1/2 .

We can thus juxtapose UTUA and S in the above expression

and replace UTUA by the orthogonal matrix W*, thereby yielding
UAS% — UpSy/*W* = (£(A) — £(P)TpS, />W* + Op((nps) 1. . o,



By the Davis-Kahan theorem, the eigenspace spanned by the d
largest eigenvalues of £(A) is “close” to that spanned by the d
largest eigenvalues of L(P).

That is, UsU} = UpU; + Op((np,)~1/?) and

UaS)? —UpSY?UF Ua = £(A)UpUR UAS, /% — £(P)UpS,, /207 Ua
+Op((npa) ™).

Consider the terms g;l/zﬁ;ﬁA and fIITfJAggl/Z.

Since Up and U, both have orthonormal columns,

UAU, = UpUj + Op((12p,)~/2) implies that there exists an
orthogonal matrix W* such that Ij;,'—fJA =W*+Op((np,) 1)
(Proposition B.2).

Furthermore, W* satisfies an important property, namely that
WS, /2 — 8, 12W* = Op((np,)~!) (Lemma B.3).

1/2 .

We can thus juxtapose UTUA and S in the above expression

and replace UTUA by the orthogonal matrix W*, thereby yielding
UAS% — UpSy*W* = (£(A) — £(P)TpS, >W* + Op((nps) 1. ., 4,



Chernoff Information

H. Chernoff, Ann. Math. Stat., 1952 & 1956.
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Consider

_[042 042 B -
SBM( B_{MZ 0.5} , m=1[0.6,0.4] )
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Figure 1. Clustering error rates (ordinate, on a log;, scale) vs. n

(abscissa) for K-means, oracle K-means, GMM, and oracle GMM. -

86



Section 4.1: within-block variances are insufficient

One metric for comparison is the notion of within-block variance
for each block of the stochastic blockmodel.

We partially extend the results of B&S 2015 for two-block SBMs to
K-block SBMs with positive semidefinite block probablity matrices.

However, while the collection of within-block variances is a
meaningful surrogate for the performance of our subsequent
inference task, we argue that it is not the “right” metric as it
captures only the trace of the block-conditional covariance
matrices.

That is to say, the use of the within-block variances as a surrogate
measure is similar to the oracle K-means lower bound in the figure.



Section 4.1: within-block variances are insufficient

A more appropriate surrogate is the collection of pairwise Chernoff
informations between the block-conditional multivariate normals,
which behave similarly to the oracle Bayes lower bound.

Roughly speaking, we want to compare, for a given SBM graph A,
the large-sample error rate of infr T o ASE versus the large-sample
error rate of infr T o LSE, where T ranges over all possible
transformations and clusterings procedure.

This comparison is facilitated by the ASE & LSE CLTs for SBMs.



Let Fy and F; be two absolutely continuous multivariate
distributions in Q = R? with density functions fy and f;,
respectively.

Suppose that Yq, Y, ..., Y, are independent and identically
distributed random variables, with Y; distributed either Fy or Fy.

We are interested in testing the simple null hypothesis Hy: F = Fy
against the simple alternative hypothesis H;: F = F;.

A test T can be viewed as a sequence of mappings

Tm: Q™ — {0, 1} such that given Y1 =1, Y2 =1, ..., Y = Ym,
the test rejects Hy in favor of Hy if Tru(y1,y2, ..., ym) =1,
similarly, the test favors Hy if T (y1, 2, ..., Ym) =0.
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The Neyman-Pearson lemma states that, given
Y1 =y1,Y2=v2, ..., Y =Ym and a threshold n,, € R, the
likelihood ratio test which rejects IHy in favor of IH; whenever

(3 togfoty) — Y- logfiy) <
i=1 i=1

is the most powerful test at significance level &, = a(n,), i.e., the
likelihood ratio test minimizes the type-ll error 3, subject to the
contrainst that the type-l error is at most oy,.

a
(%)
©
=N



Assume that 7t € (0, 1) is a prior probability that Hj is true.

Then, for a given o, € (0,1), let B}, = B}, () be the type-Il error
associated with the likelihood ratio test when the type-l error is at
most o;,.

The quantity inf: ¢ (0.1) oy, 4 (1 —71) B, is then the Bayes risk in
deciding between IHy and H; given the m independent random
variables Y7, Y5, ..., Y.

A classical result of Chernoff (1952,1956) states that the Bayes
risk is intrinsically linked to a quantity known as the Chernoff
information. More specifically, let C(Fy, F1) be the quantity

C(Fo,F1) =—log Lel%fl J fix dx}
(12)
= sup [— logJ' fo(x dx}

te(0,1)
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Then we have

lim L inf log(moeg, + (1 —m)B,,) = —C(Fo, F1). (13)

m—o0 M o, €(0,1)

Thus C(Fy, F1), the Chernoff information between Fy and Fj,
is the exponential rate at which the Bayes error

“;]ler}eyl)mmﬂ 7By

decreases as m — oo.

Note that the Chernoff information is independent of 7.
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We also define, for a given t € (0, 1) the Chernoff divergence
C¢(Fy, F1) between Fy and F; by

Ct(Fo,F1) = —log LRd ) (x)dx.

The Chernoff divergence is an example of an f-divergence.
C1/2(Fo, F1) is the Bhattacharyya distance between F( and F;.

Any f-divergence satisfies the information processing lemma
and is invariant with respect to invertible transformations.

Thus any f-divergence such as the Kullback-Liebler divergence
can also be used to compare ASE & LSE.

We choose the Chernoff information mainly because of its explicit
relationship with the Bayes risk.
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The result of Eq. (13) can be extended to K+ 1 > 2 hypotheses.
Let Fog,Fq,..., Fx be distributions on IR? and suppose that
Y1,Ys,...,Y,, are independent and identically distributed random
variables with Y; distributed F € {Fy, Fq, ..., Fx}. We are thus
interested in determining the distribution of the Y; among the
K+1 hypothesis Hy: F = Fy, ..., Hg: F = Fg. Suppose also that
hypothesis Hy has a priori probabibility 7i,. Then for any decision
rule 3, the risk of & is r(d) = Y, m ZZ# o (8) where o (d) is the
probability of accepting hypothesis IH; when hypothesis IH; is true.
Then we have

inf lim e _ —rkn;?C(Fk,Fl) (14)

S m—oo M

where the infimum is over all decision rules 5.

That is, 7(d) decreases to 0 as m — oo at a rate no faster than

exp(—mr}r{i?C(Fk,Fl)).

56 / 86



For our purposes, we require the Chernoff information C(Fy, F1)
when Fy and F; are multivariate normals.

Suppose Fo = N(no, L) and F1 = N(pq, I1);
then, with X = tXg+ (1 —1)X1, we have

H1—t)
2

1 I
C(Fo, F1) = sup ( (1 —12) "Iy (1 — o) + 5 log |zo|f||ztl|1f)

te(0,1)
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We now employ our ASE & LSE CLTs to compare the performance
of the two spectral embedding methods for subsequent inference.

Our subsequent inference task is the recovery of block assignments.

We are interested in deriving the large-sample optimal error rate
for recovering the underlying block assignments in stochastic
blockmodel graphs after the spectral embedding step is carried out.

An appropriate measure for the large-sample optimal error rate for
spectral clustering is in terms of the minimum of the pairwise
Chernoff informations between the multivariate normal
distributions as specified by the CLTs.



Let B € [0, 1]¥*K and 7 € RX be the matrix of block probabilities
and the vector of block assignment probablities for a K-block
stochastic blockmodel. Assume that B is positive semidefinite.
Then given an n vertex instantiation of the SBM graph with
parameters (7, B), for sufficiently large n, the large-sample optimal
error rate for recovering the block assignments ...



. when ASE is used as the initial embedding step can be
characterized by the quantity pp = pa(n) defined by

o =il g il el T =1
kA ey 2 1Tkl 2

(vi—v)) TZ () (ve—v))

(15)
where Xy(t) =tX + (1 -1 L.

. when LSE is used as the initial embedding step can be
characterized by the quantity p;, = pr.(n) defined by

1 2ol ) | el (=) T (B (=)

(16)
where Sy(t) =t + (1 —1)Z; and Y = v/ (g Mo v, Vi) 1/2.

pL =min sup ;log ==
#oeon 2 I5HE 2
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Recall that as the Chernoff information increases,
the large-sample optimal error rate decreases.

For ease of comparison between ps and pr, we have made the
simplifying assumption that n; = n7, in our expression for ¥ in
Eq. (16).
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As an illustration, we first consider the collection of 2-block
stochastic blockmodels where B = [i pq} for p,q € (0,1)
and 7 = (717, ) with 1y + 71 = 1.

Then for sufficiently large n we have

n(p —q)*(mp* + mq?)?

pa =~ ‘,
\/mp 1—p?) + mpg*(1—pq) +\/mp q(1 —pq) + mg*(1—g%))
and
n(yp — 3> (mp +mq)®
pL =~

(Vmpd— P)+szq(1 pq) +/mp(l—pg) + gL —g2)°
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X/
On spectral embedding performance and elucidating
network structure in stochastic block model graphs

Joshua Cape, Minh Tang, Carey E. Priebe
(Submitted on 14 Aug 2018)

Statistical inference on graphs often proceeds via spectral methods involving low-dimensional
embeddings of matrix-valued graph representations, such as the graph Laplacian or adjacency
matrix. In this paper, we analyze the asymptotic information-theoretic relative performance of
Laplacian spectral embedding and adjacency spectral embedding for block assignment recovery in
stochastic block model graphs by way of Chernoff information. We investigate the relationship
between spectral embedding performance and underlying network structure (e.g.~homogeneity,
affinity, core-periphery, (un)balancedness) via a comprehensive treatment of the two-block
stochastic block model and the class of K-block models exhibiting homogeneous balanced affinity
structure. Our findings support the claim that, for a particular notion of sparsity, loosely speaking,
“Laplacian spectral embedding favors relatively sparse graphs, whereas adjacency spectral
embedding favors not-too-sparse graphs." We also provide evidence in support of the claim that
"adjacency spectral embedding favors core-periphery network structure.”

https://arxiv.org/abs/1808.04855

Network Science, forthcoming e
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On spectral embedding performance and elucidating
network structure in stochastic block model graphs

Joshua Cape and Minh Tang and Carey E. Priebe

Department of Applied Mathematics and Statistics
The Johns Hopkins University, USA

January 27, 2018
Abstract

Statistical inference on graphs often proceeds via spectral methods involving low-dimensional em-
beddings of matrixcvalued graph representations,euch 4s the graph Laplacan o adjacency matrix. In
this paper, we relative of Laplacian spectral embed-
ding (LSE) and adjacency spmtra.l embedding (ASE) for block assignment recovery in stochastic block
model graphs via Chernoff information. We imvesigate the relationship between speciral embedd.mg
performance and underlying network structure (e.g
a comprehensive treatment of the two-block stochastic block model and the class of K-block odds
exhibiting homogeneous balanced affinity structure. Our findings support the claim that, for a particu-
lar notion of sparsity, loosely speaking, “Laplacian spectral embedding favors relatively sparse graphs,
whereas adjacency spectral embedding favors not-too-sparse graphs.” We also provide evidence in sup-
port of the claim that “adjacency spectral embedding favors core-periphery network structure.”

ords: Statistical network analysis; random graphs; stochastic block model; Laplacian spectral embed-
ding; adjacency spectral embedding, Chermoff informations vertex chistering and clacsiication

(a) The ratio p* for B [ h] -

(b) The ratio p* for B = [;; L‘],’r

Figure 1: Consider large n-vertex graphs from the K-block stochastic block model (SBM) with symmetric
block edge probability matrix B and block probability vector 7 exhibiting block sizes ngx = mn for each
k=1,..., K. Using the concept of Chernoff information together with recent advances in random graph limit
theory, we establish an information-theoretic summary statistic (mm) p = p*(B, m) with the interpretation
that the cases p* > 1, p* < 1, and p* o
summarized as ASE > LSE, ASE < LSE and ASE = LSE, respectively. For the cullectmn of two-block SBMs
exhibiting core-periphery structure with B = B(a, b) as specified in the above sub-captions, Figure 1(a) and
Figure 1(b) show p* evaluated over the parameter space a,b € (0, 1) in the balanced (block size) regime and
an unbalanced regime, respectively. The empty diagonal depicts the Erdés-Rényi model singularity when
a=b.
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(a) p* <1 for rank(B) = 2 when 7w = (%, %)
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Statistical inference on random dot product graphs:
a survey

Avanti Athreya, Donniell E. Fishkind, Keith Levin, Vince Lyzinski, Youngser Park,
Yichen Qin, Daniel L. Sussman, Minh Tang, Joshua T. Vogelstein, Carey E. Priebe

(Submitted on 16 Sep 2017)

The random dot product graph (RDPG) is an independent-edge random graph that is
analytically tractable and, simultaneously, either encompasses or can successfully
approximate a wide range of random graphs, from relatively simple stochastic block
models to complex latent position graphs. In this survey paper, we describe a
comprehensive paradigm for statistical inference on random dot product graphs, a
paradigm centered on spectral embeddings of adjacency and Laplacian matrices. We
examine the analogues, in graph inference, of several canonical tenets of classical
Euclidean inference: in particular, we summarize a body of existing results on the
consistency and asymptotic normality of the adjacency and Laplacian spectral
embeddings, and the role these spectral embeddings can play in the construction of
single- and multi-sample hypothesis tests for graph data. We investigate several
real-world applications, including community detection and classification in large
social networks and the determination of functional and biologically relevant network
properties from an exploratory data analysis of the Drosophila connectome. We
outline requisite background and current open problems in spectral graph inference.
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Asymptotically efficient estimators for stochastic blockmodels:
the naive MLE, the rank-constrained MLE, and the spectral

Minh Tang, Joshua Cape, Carey E. Priebe
(Submitted an 30 Oct 2017)

We establish asymptotic normality results for estimation of the block probability matrix B in stochastic
blockmodel graphs using spectral embedding when the average degrees grows at the rate of w{y/n) in n,
the number of vertices. As a corollary, we show that when B is of full-rank, estimates of B obtained from
spectral embedding are asymptotically efficient. When B is singular the estimates obtained from spectral
embedding can have smaller mean square error than those obtained from maximizing the log-likelihood
under no rank assumption, and furthermore, can be almost as efficient as the true MLE that assume
known rk(B). Our results indicate, in the context of stochastic blockmodel graphs, that spectral
embedding is not just computationally tractable, but that the resulting estimates are also admissible,
even when compared to the purportedly optimal but computationally intractable maximum likelihood
estimation under no rank assumption.
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) J

Patrick Rubin—DeIanéhy, niversity of Bristol

The generalised random dot product graph

Patrick Rubin-Delanchy, Carey E. Priebe, Minh Tang
(Submitted on 16 Sep 2017 (v1), last revised 21 Sep 2017 (this version, v2))

This paper introduces a latent position netwoerk model, called the generalised random dot product
graph, comprising as special cases the stochastic blockmodel, mixed membership stochastic
blockmodel, and random dot product graph. In this model, nodes are represented as random vectors
on R?, and the probability of an edge between nodes i and j is given by the bilinear form X71, /X;,
where I, , = diag(l,...,1,—1,...,—1) with p ones and g minus ones, where p + g = d. As we show,
this provides the only possible representation of nodes in R4 such that mixed membership is encoded
as the corresponding convex combination of latent positions. The positions are identifiable only up to
transformation in the indefinite orthogonal group O(p, g), and we discuss some consequences for
typical follow-on inference tasks, such as clustering and prediction.
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Our recent 2 — oo results precisely quantify spectral embedding
estimation error for a broad class of random graph models while
permitting heterogeneous, weakly dependent edge behavior.

Joshua Cape

Joshua Cape, Minh Tang, CEP,

“The two-to-infinity norm and singular subspace geometry [...],”
http://arxiv.org/abs/1705.10735

Annals of Statistics, forthcoming
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Yogi Berra (purportedly):

“In theory there is no difference between theory and practice.
In practice, there is.”

(cf. “That’s all well and good in practice, but how does it work in theory?”)



Two Truths: Gray/White vs. Left/Right

150
100
x
50
* Skull
o Left Gray
Left White
o Right Gray |,
Right White

72/86



Joshua Vogelstein and his team at Johns Hopkins University
(special mention: Eric Bridgeford (JHU) & Greg Kiar (McGill))

4N

have generated an exciting new connectome data set:
multiresolution connectomes via a sequence of spatial vertex
contractions with atlas annotation & tissue type.

www.biorxiv.org/content/early/2018/03/20/188706

The subset we consider here includes 57 subjects, 2 scans each,
dMRI with n &~ 70K and Left/Right/x hemispheric &
Gray/White/CSF /x tissue attributes for each vertex.
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Two diffusion MRI (dMRI) and two structural MRI (sMRI) scans
were done on an individual, collected over two sessions [59].
Graphs were estimated using the NDMG [59] pipeline. The dMRI
scans were pre-processed for eddy currents using FSLs eddy-correct
[3]. FSLs standard linear registration pipeline was used to register
the sMRI and dMRI images to the MNI152 atlas [42, 54, 21, 33].
A tensor model was fit using DiPy [16] to obtain an estimated
tensor at each voxel. A deterministic tractography algorithm was
applied using DiPys EuDX [16, 15] to obtain a fiber streamline
from each voxel. Graphs were formed by contracting fiber
streamlines into sub-regions depending on spatial [35] proximity or
neuro-anatomical [47, 9, 31, 26, 37, 19, 50, 43, 24] similarity.
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LGy 0.020 0.002 0.009

LW+ 0.010
RGA 0.002 0.010
RW+ 0.009
LG LW RG RW

m= [TZLG, npw, NRG, ”RW} =10.279,0.219, 0.282, 0.219]



L R G W

Left/Right ~ Affinity Gray/White ~ Core-Periphery



theory:

CLTs & Kullback-Leibler divergence shows that the
(d = 2)-dimensional embeddings of this (K = 4)-SBM,
when clustered via GMM into K = 2 clusters, will yield

{ {LG,LW} , {RG,RW} } for LSE
and
{ {LG,RG} , {LW,RW} } for ASE.

simulation:

i=K=2 —
PIARI(GMM(LSE),LR) =~ 1] ~ 1]
PIARI(GMM(LSE), GW) ~ 0] =~ 1]
and

PIARI(GMM(ASE),LR) ~ 0] ~ 1]

P[ARI(GMM(ASE): GW) ~ 1] = 1]
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back to our data ...
57 subjects, 2 scans each, dMRI with n ~ 70K and Left/Right/x

hemispheric & Gray/White/CSF /x tissue attributes for each vertex.
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Two Truths:
ASE — Gray/White ; LSE — Left/Right
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This illustrative example involves investigation of
connectivity-based parcellations of the brain.

My great friend & mentor, JHU's very own Michael | Miller

i

once told me that the great Hopkins neuroscientist
Vernon Mountcastle (the ‘father of neuroscience’)

once told him that “to understand a neuron in cortex we must
look to the neurons it is connected to.”
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We end our Two Truths paper with the claim that our results show
that the two methods (“LSE" & “ASE") capture different types of
brain structure, suggesting that a comprehensive
connectivity-based parcellation based on the powerful and popular
mathematical approach of spectral clustering should combine the
two competing approaches as these two spectral embedding
approaches facilitate the identification of different and
complementary connectivity-based clustering truths.
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Neither GMM o ASE nor GMM o LSE dominates the other
for subsequent inference ...
and K-means is inferior to GMM for spectral clustering.

e Long-sought LSE CLT — in particular, LSE(SBM) ~ GMM.
e LSE CLT, together with ASE CLT, allows Chernoff comparison.

e Two Truths: LSE likes Affinity ; ASE likes Core-Periphery.
e Two Truths: LSE likes Left-Right ; ASE likes Gray-White.

These results suggest that a connectivity-based parcellation based
on spectral clustering should consider both LSE & ASE.

e regularized?

oed <d?d >d?d, /N oo?
e omni?

o etc!

86 /86



Leopold Kronecker to Hermann von Helmholtz (1888):

“The wealth of your practical experience
with sane and interesting problems
will give to mathematics
a new direction and a new impetus.”

Geerece s

Kronecker Helmholtz





