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Yogi Berra (purportedly):

“In theory there is no difference between theory and practice.
In practice, there is.”

(cf. “That’s all well and good in practice, but how does it work in theory?”)























Two Truths:
ASE =⇒ Gray/White ; LSE =⇒ Left/Right
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Spectral Clustering

Spectral Clustering
refers to a class of graph inference methodologies
in which the vertices of a graph G are partitioned via
• some clustering algorithm

composed with
• some spectral embedding of G.

spectral embedding:
• Laplacian Spectral Embedding (LSE)
• Adjacency Spectral Embedding (ASE)

clustering:
• K-means
• Gaussian Mixture Modeling (GMM)



Bickel & Sarkar, AoS, 2015

It was shown in B&S that for two-block stochastic blockmodels,
for a large regime of parameters the normalized LSE reduces the
within-block variance while preserving the between-block variance,
as compared to that of the ASE.

This suggests that for a large region of the parameter space for
two-block stochastic blockmodels, the spectral embedding of the
Laplacian is to be preferred over that of the adjacency matrix for
subsequent inference.

However, the metric in B&S is intrinsically tied to the use of
K-means as the clustering procedure, i.e., a smaller value of the
metric for the LSE as compared to that for the ASE implies only
that clustering the LSE using K-means is possibly better than
clustering the ASE using K-means.



GMM ◦ASE

Athreya et al., Sankhya, 2016
provides an ASE CLT
suggesting that the top K eigenvectors from a K-SBM adjacency
matrix behave approximately as a random sample from a mixture
of K Gaussians in RK.

Tang & P, Annals of Statistics, 2018
provides an LSE CLT
and demonstrates that the choice between ASE and LSE is a
sticky wicket
as neither dominates the other for subsequent inference . . .
and that K-means is inferior to GMM for spectral clustering.



Definition (Adjacency Spectral Embedding)

Let A be a n× n adjacency matrix. Suppose the
eigendecomposition of A is given by A =

∑n
i=1 λiuiu>i where

|λ1| > |λ2| > . . . are the eigenvalues and u1, u2, . . . , un are the
corresponding orthonormal eigenvectors. Given a positive integer
d 6 n, denote by SA = diag(|λ1|, . . . , |λd|) the diagonal matrix
whose diagonal entries are the |λ1|, . . . , |λd|, and denote by UA the
n× d matrix whose columns are the corresponding eigenvectors
u1, . . . , ud. The adjacency spectral embedding (ASE) of A into Rd

is then the n× d matrix X̂ = UAS1/2
A .
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Definition (Graph Laplacian)

For a given matrix M with non-negative entries, denote by L(M)

the normalized Laplacian of M defined as

L(M) = (diag(M1))−1/2M(diag(M1))−1/2

where, given z = (z1, . . . , zn) ∈ Rn, diag(z) is the n× n diagonal
matrix whose diagonal entries are the zi’s.

Our definition of the normalized Laplacian is slightly different from
that often found in the literature, wherein the normalized
Laplacian is I −L(M). For our purposes, namely the notion of the
Laplacian spectral embedding via the eigenvalues and eigenvectors
of the normalized Laplacian, these two definitions of the
normalized Laplacian are equivalent. We shall henceforth refer to
L(M) as the Laplacian of M, in contrast to the combinatorial
Laplacian diag(M1) − M of M.
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Definition (Laplacian Spectral Embedding)

Let A be a n× n adjacency matrix. Let L(A) denote the
normalized Laplacian of A and suppose the eigendecomposition of
L(A) is given by L(A) =

∑n
i=1 λ̃iũiũ

>
i where

|̃λ1| > |̃λ2| > · · · > |̃λn| > 0 are the eigenvalues and ũ1, ũ2, . . . , ũn
are the corresponding orthonormal eigenvectors. Then given a
positive integer d 6 n, denote by S̃A = diag(|̃λ1|, . . . , |̃λd|) the
diagonal matrix whose diagonal entries are the |̃λ1|, . . . , |̃λd| and
denote by ŨA the n× d matrix whose columns are the eigenvectors
ũ1, . . . , ũd. The Laplacian spectral embedding (LSE) of A into Rd

is then the n× d matrix X̆ = ŨAS̃1/2
A .
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Definition (Random Dot Product Graph (RDPG))

Let F be a distribution on a set X ⊂ Rd satisfying x>y ∈ [0, 1] for
all x, y ∈ X. We say (X, A) ∼ RDPG(F) with sparsity factor ρn 6 1
if the following hold. Let X1, . . . , Xn ∼iid F be independent and
identically distribtued random variables and define

X = [X1 | · · · | Xn]
> ∈ Rn×d and P = ρnXX> ∈ [0, 1]n×n.

The Xi are the latent positions for the random graph, i.e., we do
not observe X, rather we observe only the matrix A. The matrix
A ∈ {0, 1}n×n is defined to be symmetric with all zeroes on the
diagonal such that for all i < j, conditioned on Xi, Xj the Aij are
independent and

Aij ∼ Bernoulli(ρnX>i Xj);

that is,

P[A | X] =
∏
i<j

(ρnX>i Xj)
Aij(1 − ρnX>i Xj)

(1−Aij).



Theorem (ASE LLN)

Let (Xn, An) ∼ RDPG(F) with sparsity factor ρn. Then there exists
a d× d orthogonal matrix Wn and a n× d matrix Rn such that

X̂nWn − ρ
1/2
n Xn = ρ

−1/2
n (An − Pn)Xn(X>n Xn)

−1 + Rn.

Furthermore, ‖Rn‖ = OP((nρn)
−1/2).

Let µF = E[X1] and ∆ = E[X1X>1 ].

If ρn = 1 for all n, then there exists a sequence of orthogonal
matrices Wn such that

‖X̂nWn − Xn‖2
F

a.s.−→ tr ∆−1
(

E[X1X>1 (X>1 µF − X>1 ∆X1)]
)
∆−1.

If, however, ρn → 0 and nρn = ω(log4 n), then

‖X̂nWn − ρ
1/2
n Xn‖2

F
a.s.−→ tr ∆−1

(
E[X1X>1 (X>1 µF)]

)
∆−1.

25 / 86



Theorem (ASE CLT)

Assume the setting and notation as above.
Denote by X̂i the i-th row of X̂n.
Let Φ(z,Σ) denote the cumulative distribution function for the
multivariate normal, with mean zero and covariance matrix Σ,
evaluated at z.
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Theorem (ASE CLT (ρn = 1))

If ρn = 1 for all n, then there exists a sequence of orthogonal
matrices Wn such that for each fixed index i and any z ∈ Rd,

P
{√

n(WnX̂i − Xi) 6 z
}

d−→
∫
Φ(z,Σ(x))dF(x)

where
Σ(x) = ∆−1E[X1X>1 (x>X1 − x>X1X>1 x)]∆−1.

That is, the sequence
√

n(WnX̂i − Xi) converges in distribution to
a mixture of multivariate normals. We denote this mixture by
N(0, Σ̃(Xi)).
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Theorem (ASE CLT (ρn → 0))

If, however, ρn → 0 and nρn = ω(log4 n) then there exists a
sequence of orthogonal matrices Wn such that

P
{√

n(WnX̂i − ρ
1/2
n Xi) 6 z

}
d−→
∫
Φ(z,Σo(1)(x))dF(x)

where Σo(1)(x) = ∆−1E[X1X>1 x>X1]∆
−1.
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Definition (SBM as RDPG)

Let

F =

K∑
k=1

πkδνk , π1, · · · ,πK > 0,
∑

k

πk = 1

be a mixture of K point masses in Rd where δνk is the Dirac delta
measure at νk.
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Corollary (ASE for SBM)

If ρn ≡ 1, there exists a sequence of orthogonal matrices Wn such
that for any fixed index i,

P
{√

n(WnX̂i − Xi) 6 z | Xi = νk

}
d−→ N(0,Σk)

where Σk = Σ(νk).

If ρn → 0 and nρn = ω(log4(n)) as n→∞, then the sequence of
orthogonal matrices Wn satisfies

P
{√

n(WnX̂i − ρ
1/2
n Xi) 6 z | Xi = νk

}
d−→ N(0,Σo(1),k)

where Σo(1),k = Σo(1)(νk).
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We now provide analogues of the aforementioned ASE limit results
for LSE.
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Theorem (LSE LLN)

Let (An, Xn) ∼ RDPG(F) for n > 1 be a sequence of random dot
product graphs with sparsity factors (ρn)n>1. Denote by Dn and
Tn the n× n diagonal matrices diag(An1) and diag(ρnXnX>n 1),
respectively, i.e., the diagonal entries of Dn are the vertex degrees
of An and the diagonal entries of Tn are the expected vertex
degrees. Let X̃n = ρ

1/2
n T−1/2

n Xn = diag(XnX>n 1)−1/2Xn.

Then for any n, there exists a d× d orthogonal matrix Wn and a
n× d matrix Rn such that ζn := (X̆nWn − X̃n) satisfies

ζn = T−1/2
n (An − Pn)T

−1/2
n X̃n(X̃>n X̃n)

−1 + 1
2(I − DnT−1

n )X̃n + Rn.
(1)

Furthermore, ‖Rn‖F = OP((nρn)
−1), i.e., ‖Rn‖/‖ζn‖

a.s.−→ 0 as
n→∞.

32 / 86



Theorem (LSE LLN)

Define the following quantities

µ = E[X1]; µ̃ = E
[ X1

X>1 µ

]
; ∆̃ = E

[X1X>1
X>1 µ

]
; and (2)

g(X1, X2) =
( ∆̃−1X1

X>1 µ
−

X2

2X>2 µ

)( ∆̃−1X1

X>1 µ
−

X2

2X>2 µ

)>
. (3)
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Theorem (LSE LLN)

If ρn ≡ 1 then the sequence of orthogonal matrices (Wn)n>1
satisfies

n‖X̆nWn − X̃n‖2
F

a.s.→ tr E
[
g(X1, X2)

X>1 X2 − X>1 X2X>2 X1

X>2 µ

]
(4)

where the expectation in Eq. (4) is taken with respect to X1 and
X2 being drawn i.i.d. according to F.

Equivalently, with ∆ = E[X1X>1 ],

n‖X̆nWn − X̃n‖2
F

a.s.−→ tr E
[ ∆̃−2X1X>1 (X>1 µ̃− X>1 ∆̃X1)

(X>1 µ)2 −
3X1X>1

4(X>1 µ)2

]
+ tr E

[ ∆̃−1X1X>1 X2X>2 (X>1 X2)

X>1 µ(X
>
2 µ)

2 −
X1X>1 (X>1 ∆X1)

4(X>1 µ)3

]
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Theorem (LSE LLN)

If ρn → 0 and nρn = ω(log4 n) then the sequence (Wn)n>1 satisfies

nρn‖X̆Wn − X̃n‖2
F

a.s.−→ tr E
[ ∆̃−2X1X>1 (X>1 µ̃)

(X>1 µ)2 −
3X1X>1

4(X>1 µ)2

]
. (5)
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Theorem (LSE CLT)

Assume the setting and notation as above.
Denote by X̆i and X̃i the i-th row of X̆n and X̃n, respectively.
We note that X̃i =

Xi√∑
j X>i Xj

.

36 / 86



Theorem (LSE CLT)

If ρn ≡ 1 then there exists a sequence of orthogonal matrices Wn
such that for each fixed index i and any z ∈ Rd,

P
{

n
(
WnX̆i −

Xi√∑
j X>i Xj

)
6 z
}

d−→
∫
Φ(z, Σ̃(x))dF(x) (6)

where Σ̃(x) is defined by

E
[( ∆̃−1X1

X>1 µ
−

x
2x>µ

)(X>1 ∆̃
−1

X>1 µ
−

x>

2x>µ

)(x>X1 − x>X1X>1 x)
x>µ

]
.

(7)
That is, the sequence n(WnX̆i − X̃i) converges in distribution to a
mixture of multivariate normals. We denote this mixture by
N(0, Σ̃(Xi)).
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Theorem (LSE CLT)

If ρn → 0 and nρn = ω(log4 n) then there exists a sequence of
orthogonal matrices Wn such that

P
{

nρ1/2
n
(
WnX̆i −

Xi√∑
j X>i Xj

)
6 z
}

d−→
∫
Φ(z, Σ̃o(1)(x))dF(x). (8)

where Σ̃o(1)(x) is defined by

Σ̃o(1)(x) = E
[( ∆̃−1X1

X>1 µ
−

x
2x>µ

)(X>1 ∆̃
−1

X>1 µ
−

x>

2x>µ

)x>X1
x>µ

]
. (9)
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Corollary (LSE for SBM)

Recall

F =

K∑
k=1

πkδνk , π1, · · · ,πK > 0,
∑

k

πk = 1.

If ρn ≡ 1, there exists a sequence of orthogonal matrices Wn such
that for any fixed index i,

P
{

n
(
WnX̆i −

νk√∑
l nlν

>
k νl

)
6 z | Xi = νk

}
d−→ N(0, Σ̃k) (10)

where Σ̃k = Σ̃(νk) is as defined in Eq. (7).

If instead ρn → 0 and nρn = ω(log4(n)) as n→∞ then

P
{

nρ1/2
n
(
WnX̆i −

νk√∑
l nlν

>
k νl

)
6 z | Xi = νk

}
d−→ N(0, Σ̃o(1),k)

(11)
where Σ̃o(1),k = Σ̃o(1)(νk) is as defined in Eq. (9).
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As a special case, let A be an Erdős-Rényi graph on n vertices with
edge probability p2 – which corresponds to a random dot product
graph where the latent positions are identically p.

Then for each fixed index i:

LSE yields

n
(
X̆i −

1√
n

) d−→ N
(
0, 1−p2

4p2

)
;

ASE yields
√

n(X̂i − p) d−→ N(0, 1 − p2).
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As another example, if A is a stochastic blockmodel graph with

block probabilities matrix B =
[ p2 pq

pq q2

]
and block assignment

probabilities (π, 1 − π) – which corresponds to a random dot
product graph where the latent positions are either p with
probability π or q with probability 1 − π – then letting n1 and
n2 = n − n1 denote the number of vertices of A with latent
positions p and q, we have that for each fixed i:

LSE yields

n
(
X̆i −

p√
n1p2+n2pq

) d−→ N
(

0, πp(1−p2)+(1−π)q(1−pq)
4(πp+(1−π)q)3

)
if Xi = p,

n
(
X̆i −

q√
n1pq+n2q2

) d−→ N
(

0, πp(1−pq)+(1−π)q(1−q2)

4(πp+(1−π)q)3

)
if Xi = q;

ASE yields
√

n(X̂i − p) d−→ N
(

0, πp4(1−p2)+(1−π)pq3(1−pq)
(πp2+(1−π)q2)2

)
if Xi = p,

√
n(X̂i − q) d−→ N

(
0, πp3q(1−pq)+(1−π)q4(1−q2)

(πp2+(1−π)q2)2

)
if Xi = q.
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Section 3.1: sketch of (one key & fun part of) the proof

The LSE of RDPG A into Rd is the n× d matrix X̆ = ŨAS̃1/2
A .

Davis-Kahan implies ŨAŨ>A = ŨPŨ>P + OP((nρn)
−1/2) and . . .

Minh’s Proposition B.2: There exists an orthogonal matrix W∗ s.t.

Ũ>P ŨA = W∗ + OP((nρn)
−1).

Minh’s Lemma B.3: Furthermore, W∗ satisfies

W∗S̃−1/2
A − S̃−1/2

P W∗ = OP((nρn)
−1).
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By the Davis-Kahan theorem, the eigenspace spanned by the d
largest eigenvalues of L(A) is “close” to that spanned by the d
largest eigenvalues of L(P).
That is, ŨAŨ>A = ŨPŨ>P + OP((nρn)

−1/2) and

ŨAS̃1/2
A − ŨPS̃1/2

P Ũ>P ŨA = L(A)ŨPŨ>P ŨAS̃−1/2
A −L(P)ŨPS̃−1/2

P Ũ>P ŨA

+ OP((nρn)
−1).

Consider the terms S̃−1/2
P Ũ>P ŨA and Ũ>P ŨAS̃−1/2

A .

Since ŨP and ŨA both have orthonormal columns,
ŨAŨ>A = ŨPŨ>P + OP((nρn)

−1/2) implies that there exists an
orthogonal matrix W∗ such that Ũ>P ŨA = W∗ + OP((nρn)

−1)

(Proposition B.2).

Furthermore, W∗ satisfies an important property, namely that
W∗S̃−1/2

A − S̃−1/2
P W∗ = OP((nρn)

−1) (Lemma B.3).

We can thus juxtapose Ũ>P ŨA and S̃−1/2
A in the above expression

and replace Ũ>P ŨA by the orthogonal matrix W∗, thereby yielding

ŨAS̃1/2
A − ŨPS̃1/2

P W∗ = (L(A) −L(P))ŨPS̃−1/2
P W∗ + OP((nρn)

−1). 43 / 86
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P W∗ + OP((nρn)

−1). 44 / 86



Chernoff Information

H. Chernoff, Ann. Math. Stat., 1952 & 1956.
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Consider

SBM
(

B =

[
0.42 0.42
0.42 0.5

]
, π = [0.6, 0.4]>

)
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LSE(SBM)
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Figure 1: Clustering error rates (ordinate, on a log10 scale) vs. n
(abscissa) for K-means, oracle K-means, GMM, and oracle GMM.
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ASE vs LSE for subsequent inference

Section 4.1: within-block variances are insufficient

One metric for comparison is the notion of within-block variance
for each block of the stochastic blockmodel.

We partially extend the results of B&S 2015 for two-block SBMs to
K-block SBMs with positive semidefinite block probablity matrices.

However, while the collection of within-block variances is a
meaningful surrogate for the performance of our subsequent
inference task, we argue that it is not the “right” metric as it
captures only the trace of the block-conditional covariance
matrices.

That is to say, the use of the within-block variances as a surrogate
measure is similar to the oracle K-means lower bound in the figure.
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ASE vs LSE for subsequent inference

Section 4.1: within-block variances are insufficient

A more appropriate surrogate is the collection of pairwise Chernoff
informations between the block-conditional multivariate normals,
which behave similarly to the oracle Bayes lower bound.

Roughly speaking, we want to compare, for a given SBM graph A,
the large-sample error rate of infT T ◦ASE versus the large-sample
error rate of infT T ◦ LSE, where T ranges over all possible
transformations and clusterings procedure.

This comparison is facilitated by the ASE & LSE CLTs for SBMs.
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Let F0 and F1 be two absolutely continuous multivariate
distributions in Ω = Rd with density functions f0 and f1,
respectively.

Suppose that Y1, Y2, . . . , Ym are independent and identically
distributed random variables, with Yi distributed either F0 or F1.

We are interested in testing the simple null hypothesis H0 : F = F0
against the simple alternative hypothesis H1 : F = F1.

A test T can be viewed as a sequence of mappings
Tm : Ωm 7→ {0, 1} such that given Y1 = y1, Y2 = y2, . . . , Ym = ym,
the test rejects H0 in favor of H1 if Tm(y1, y2, . . . , ym) = 1;
similarly, the test favors H0 if Tm(y1, y2, . . . , ym) = 0.
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The Neyman-Pearson lemma states that, given
Y1 = y1, Y2 = y2, . . . , Ym = ym and a threshold ηm ∈ R, the
likelihood ratio test which rejects H0 in favor of H1 whenever

( m∑
i=1

log f0(yi) −

m∑
i=1

log f1(yi)
)
6 ηm

is the most powerful test at significance level αm = α(ηm), i.e., the
likelihood ratio test minimizes the type-II error βm subject to the
contrainst that the type-I error is at most αm.
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Assume that π ∈ (0, 1) is a prior probability that H0 is true.
Then, for a given α∗m ∈ (0, 1), let β∗m = β∗m(α

∗
m) be the type-II error

associated with the likelihood ratio test when the type-I error is at
most α∗m.

The quantity infα∗m∈(0,1) πα
∗
m + (1 − π)β∗m is then the Bayes risk in

deciding between H0 and H1 given the m independent random
variables Y1, Y2, . . . , Ym.

A classical result of Chernoff (1952,1956) states that the Bayes
risk is intrinsically linked to a quantity known as the Chernoff
information. More specifically, let C(F0, F1) be the quantity

C(F0, F1) = − log
[

inf
t∈(0,1)

∫
Rd

f t
0(x)f

1−t
1 (x)dx

]
= sup

t∈(0,1)

[
− log

∫
Rd

f t
0(x)f

1−t
1 (x)dx

]
.

(12)
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Then we have

lim
m→∞ 1

m
inf

α∗m∈(0,1)
log(πα∗m + (1 − π)β∗m) = −C(F0, F1). (13)

Thus C(F0, F1), the Chernoff information between F0 and F1,
is the exponential rate at which the Bayes error

inf
α∗m∈(0,1)

πα∗m + (1 − π)β∗m

decreases as m→∞.

Note that the Chernoff information is independent of π.
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We also define, for a given t ∈ (0, 1) the Chernoff divergence
Ct(F0, F1) between F0 and F1 by

Ct(F0, F1) = − log
∫

Rd
f t
0(x)f

1−t
1 (x)dx.

The Chernoff divergence is an example of an f -divergence.

C1/2(F0, F1) is the Bhattacharyya distance between F0 and F1.

Any f -divergence satisfies the information processing lemma
and is invariant with respect to invertible transformations.

Thus any f -divergence such as the Kullback-Liebler divergence
can also be used to compare ASE & LSE.

We choose the Chernoff information mainly because of its explicit
relationship with the Bayes risk.
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The result of Eq. (13) can be extended to K + 1 > 2 hypotheses.
Let F0, F1, . . . , FK be distributions on Rd and suppose that
Y1, Y2, . . . , Ym are independent and identically distributed random
variables with Yi distributed F ∈ {F0, F1, . . . , FK}. We are thus
interested in determining the distribution of the Yi among the
K + 1 hypothesis H0 : F = F0, . . . , HK : F = FK. Suppose also that
hypothesis Hk has a priori probabibility πk. Then for any decision
rule δ, the risk of δ is r(δ) =

∑
k πk
∑

l 6=k αlk(δ) where αlk(δ) is the
probability of accepting hypothesis Hl when hypothesis Hk is true.
Then we have

inf
δ

lim
m→∞ r(δ)

m
= −min

k 6=l
C(Fk, Fl) (14)

where the infimum is over all decision rules δ.

That is, r(δ) decreases to 0 as m→∞ at a rate no faster than

exp(−m min
k 6=l

C(Fk, Fl)).
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For our purposes, we require the Chernoff information C(F0, F1)

when F0 and F1 are multivariate normals.

Suppose F0 = N(µ0,Σ0) and F1 = N(µ1,Σ1);
then, with Σt = tΣ0 + (1 − t)Σ1, we have

C(F0, F1) = sup
t∈(0,1)

( t(1 − t)
2

(µ1 −µ2)
>Σ−1

t (µ1 −µ2)+
1
2

log
|Σt|

|Σ0|t|Σ1|
1−t

)
.
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We now employ our ASE & LSE CLTs to compare the performance
of the two spectral embedding methods for subsequent inference.

Our subsequent inference task is the recovery of block assignments.

We are interested in deriving the large-sample optimal error rate
for recovering the underlying block assignments in stochastic
blockmodel graphs after the spectral embedding step is carried out.

An appropriate measure for the large-sample optimal error rate for
spectral clustering is in terms of the minimum of the pairwise
Chernoff informations between the multivariate normal
distributions as specified by the CLTs.
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Let B ∈ [0, 1]K×K and π ∈ RK be the matrix of block probabilities
and the vector of block assignment probablities for a K-block
stochastic blockmodel. Assume that B is positive semidefinite.
Then given an n vertex instantiation of the SBM graph with
parameters (π, B), for sufficiently large n, the large-sample optimal
error rate for recovering the block assignments . . .
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. . . when ASE is used as the initial embedding step can be
characterized by the quantity ρA = ρA(n) defined by

ρA = min
k 6=l

sup
t∈(0,1)

1
2

log
|Σkl(t)|

|Σk|
t|Σl|

1−t +
nt(1 − t)

2
(νk −νl)

>Σ−1
kl (t)(νk −νl)

(15)
where Σkl(t) = tΣk + (1 − t)Σl.

. . . when LSE is used as the initial embedding step can be
characterized by the quantity ρL = ρL(n) defined by

ρL = min
k 6=l

sup
t∈(0,1)

1
2

log
|Σ̃kl(t)|

|Σ̃k|
t|Σ̃l|

1−t
+

nt(1 − t)
2

(ν̃k − ν̃l)
>Σ̃−1

kl (t)(ν̃k − ν̃l)

(16)
where Σ̃kl(t) = tΣ̃k + (1 − t)Σ̃l and ν̃k = νk/(

∑
k ′ πk ′ν

>
k νk ′)

1/2.
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Recall that as the Chernoff information increases,
the large-sample optimal error rate decreases.

For ease of comparison between ρA and ρL, we have made the
simplifying assumption that nk = nπk in our expression for ν̃k in
Eq. (16).
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As an illustration, we first consider the collection of 2-block

stochastic blockmodels where B =
[

p2 pq
pq q2

]
for p, q ∈ (0, 1)

and π = (π1,π2) with π1 + π2 = 1.

Then for sufficiently large n we have

ρA ≈
n(p − q)2(π1p2 + π2q2)2

2
(√
π1p4(1 − p2) + π2pq3(1 − pq) +

√
π1p3q(1 − pq) + π2q4(1 − q2)

)2

and

ρL ≈
2n(√p −

√q)2(π1p + π2q)2(√
π1p(1 − p2) + π2q(1 − pq) +

√
π1p(1 − pq) + π2q(1 − q2)

)2 .
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Minh Tang Joshua Cape

https://arxiv.org/abs/1808.04855

Network Science, forthcoming
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JMLR
Journal of Machine Learning Research, 2018

67 / 86



Asymptotic Efficiency
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Generalized RDPG

Patrick Rubin-Delanchy, University of Bristol
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2→∞
Our recent 2→∞ results precisely quantify spectral embedding
estimation error for a broad class of random graph models while
permitting heterogeneous, weakly dependent edge behavior.

Joshua Cape

Joshua Cape, Minh Tang, CEP,
“The two-to-infinity norm and singular subspace geometry [...],”
http://arxiv.org/abs/1705.10735

Annals of Statistics, forthcoming
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Yogi Berra (purportedly):

“In theory there is no difference between theory and practice.
In practice, there is.”

(cf. “That’s all well and good in practice, but how does it work in theory?”)



Two Truths: Gray/White vs. Left/Right
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Our Connectomes I

Joshua Vogelstein and his team at Johns Hopkins University
(special mention: Eric Bridgeford (JHU) & Greg Kiar (McGill))

have generated an exciting new connectome data set:
multiresolution connectomes via a sequence of spatial vertex
contractions with atlas annotation & tissue type.

www.biorxiv.org/content/early/2018/03/20/188706

The subset we consider here includes 57 subjects, 2 scans each,
dMRI with n ≈ 70K and Left/Right/x hemispheric &
Gray/White/CSF/x tissue attributes for each vertex.
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Our Connectomes II

Two diffusion MRI (dMRI) and two structural MRI (sMRI) scans
were done on an individual, collected over two sessions [59].
Graphs were estimated using the NDMG [59] pipeline. The dMRI
scans were pre-processed for eddy currents using FSLs eddy-correct
[3]. FSLs standard linear registration pipeline was used to register
the sMRI and dMRI images to the MNI152 atlas [42, 54, 21, 33].
A tensor model was fit using DiPy [16] to obtain an estimated
tensor at each voxel. A deterministic tractography algorithm was
applied using DiPys EuDX [16, 15] to obtain a fiber streamline
from each voxel. Graphs were formed by contracting fiber
streamlines into sub-regions depending on spatial [35] proximity or
neuro-anatomical [47, 9, 31, 26, 37, 19, 50, 43, 24] similarity.
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Our Connectomes III
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Two Truths: Gray/White vs. Left/Right
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π = [nLG, nLW, nRG, nRW] = [0.279, 0.219, 0.282, 0.219]
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Two Truths: Gray/White vs. Left/Right
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Left/Right ≈ Affinity Gray/White ≈ Core-Periphery
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Two Truths:
ASE =⇒ Gray/White ; LSE =⇒ Left/Right

(synthetic)
theory:
CLTs & Kullback-Leibler divergence shows that the
(d̂ = 2)-dimensional embeddings of this (K = 4)-SBM,
when clustered via GMM into K̂ = 2 clusters, will yield
{ {LG,LW} , {RG,RW} } for LSE
and
{ {LG,RG} , {LW,RW} } for ASE.

simulation:
d̂ = K̂ = 2 =⇒
P[ARI(GMM(LSE), LR) ≈ 1] ≈ 1]
P[ARI(GMM(LSE), GW) ≈ 0] ≈ 1]

and
P[ARI(GMM(ASE), LR) ≈ 0] ≈ 1]
P[ARI(GMM(ASE), GW) ≈ 1] ≈ 1] 78 / 86



back to our data ...
57 subjects, 2 scans each, dMRI with n ≈ 70K and Left/Right/x
hemispheric & Gray/White/CSF/x tissue attributes for each vertex.
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Two Truths:
G/W ≈ Core-Periphery ; L/R ≈ Affinity
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Two Truths:
ASE =⇒ Gray/White ; LSE =⇒ Left/Right
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Two Truths:
ASE =⇒ Gray/White ; LSE =⇒ Left/Right
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Conclusions & Discussion
This illustrative example involves investigation of
connectivity-based parcellations of the brain.

My great friend & mentor, JHU’s very own Michael I Miller

once told me that the great Hopkins neuroscientist
Vernon Mountcastle (the ‘father of neuroscience’)

once told him that “to understand a neuron in cortex we must
look to the neurons it is connected to.”
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Conclusions & Discussion

We end our Two Truths paper with the claim that our results show
that the two methods (“LSE” & “ASE”) capture different types of
brain structure, suggesting that a comprehensive
connectivity-based parcellation based on the powerful and popular
mathematical approach of spectral clustering should combine the
two competing approaches as these two spectral embedding
approaches facilitate the identification of different and
complementary connectivity-based clustering truths.
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Conclusions & Discussion
Neither GMM ◦ASE nor GMM ◦ LSE dominates the other
for subsequent inference . . .
and K-means is inferior to GMM for spectral clustering.

• Long-sought LSE CLT – in particular, LSE(SBM) ∼ GMM.
• LSE CLT, together with ASE CLT, allows Chernoff comparison.

• Two Truths: LSE likes Affinity ; ASE likes Core-Periphery.
• Two Truths: LSE likes Left-Right ; ASE likes Gray-White.

These results suggest that a connectivity-based parcellation based
on spectral clustering should consider both LSE & ASE.

• regularized?
• d ′ < d? d ′ > d? dn ↗∞?
• omni?
• etc!
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Leopold Kronecker to Hermann von Helmholtz (1888):

“The wealth of your practical experience
with sane and interesting problems

will give to mathematics
a new direction and a new impetus.”

Kronecker Helmholtz




