Lecture 28: back to Poisson Arrival Processes.

- $\lambda > 0$ is the "ARRIVALS RATE".
- Interarrival ("Waiting") times W_i, $i = 1, 2, 3, \ldots$ are iid $\text{Exponential}(\lambda)$ r.v.'s; the density is
 \[f(x) = \begin{cases}
 \lambda e^{-\lambda x} & x > 0 \\
 0 & x < 0
 \end{cases} \]
 \[E(W_i) = \frac{1}{\lambda} \]
 \[\text{Var}(W_i) = \frac{1}{\lambda^2} \]

- Arrival times: t_1, t_2, t_3, \ldots

Counting Process: $N(0, t] = \# \text{ of arrivals up to time } t$

- Remark: W_i's are memoryless — if you have waited for a customer for t minutes already, the probability of waiting another Δt minutes is the same as the probability of having to wait Δt minutes to start with.

We saw (but did not prove yet):

\[N(0, t] \sim \text{Poisson}(\lambda t) \]

and in fact, if $N(s, t] = \# \text{ of arrivals in interval } (s, t]$,
\[N(s, t] \sim \text{Poisson}(\lambda(t-s)) \]

So:

\[E(N(s, t]) = \lambda(t-s) \]
\[\text{Var}(N(s, t]) = \lambda(t-s) \]
* Also: if \((s_1, t_1]\) and \((s_2, t_2]\) are disjoint time intervals, (i.e. \((s_1, t_1]\) \(\cap\) \((s_2, t_2]\) = \(\emptyset\)) then one can prove that the Poisson Random Variables \(N(s_1, t_1]\) and \(N(s_2, t_2]\) are independent. Intuitively, it follows from the fact that interarrival times in one interval (which determine the \# of arrivals in that interval) are independent from those in the other one:

\[
\text{(we will not give a rigorous proof of the independence of } N(s_1, t] \text{ and } N(s_2, t]).}
\]

* Example: Suppose that phone calls arrive at a company at a rate of \(\lambda = 3\) calls/minute, and that we model the waiting time for a call like an Exponential \((\lambda)\) random variable. Assuming that the waiting times are independent, we can model the calls as a Poisson Arrivals Process. So,

\[
P(N(s,t] = k) = e^{-\lambda(t-s)} \frac{[\lambda(t-s)]^k}{k!}, \quad k = 0, 1, 2, \ldots
\]

- \(P(\text{no calls in first 1.5 minutes}) = P(N(0,1.5] = 0) = e^{-3(1.5)}\)
- \(P(\text{1st call arrives after 2 minutes}) = P(N(0,2] \leq 4 = \sum_{i=0}^{4} e^{-6} \frac{(6)^i}{i!}\)

\(\frac{\text{Poisson(6)}}{\text{Poisson(6)}}\)
- \(P(\text{the time between the 3rd & 4th call is more than 2 minutes}) = P(W_4 > 2) = e^{-(3)(2)} = e^{-6}\) (since \(W_4 \sim \text{Exponential(3)}\)).
- \(P(\text{2 calls in first minute} \mid 5 \text{ calls in first 2 minutes}) = P(N(0,1] = 2 \mid N(0,2] = 5) = \frac{P(N(0,1] = 2, N(0,2] = 5)}{P(N(0,2] = 5)} \frac{e^{-3/2} \frac{3^2}{2!} e^{-3/3} \frac{3^3}{3!}}{e^{-6} \frac{6^5}{5!}} = \frac{10}{25} = 0.4\)
The Gamma (r, λ) probability density, (with ARRIVALS RATE λ)

Consider a Poisson arrivals process and the random variable

$$T_r = \text{time of the } i^{th} \text{ arrival.}$$

So \(T_r = W_1 + W_2 + W_3 + \ldots + W_r\):

it is the sum of \(r \) i.i.d \(\text{Exponential}(\lambda) \) r.v.'s.

So: \(\cdot \ E(T_r) = \frac{r}{\lambda}, \quad \text{Var}(T_r) = \frac{r}{\lambda^2}. \)

In fact, one may prove the following: the r.v. \(T_r\) has "Gamma \((r, \lambda)\)" probability density, given by

$$f(t) = \begin{cases} \lambda e^{-\lambda t} \frac{(\lambda t)^r}{(r-1)!} & t \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

\(\cdot \) for \(r = 1 \) we have the usual exponential

\(\cdot \) for \(r \geq 2 \) we get densities of the following type: