Unit 1: Linear Programming

Outline 1. Definitions and Standard Forms
2. Extreme Points
3. Optimality and Strong Duality
4. The Simplex Method
5. Proof of Strong Duality
6. Comments on Computation

1. Definitions and Standard Form

A "Linear Program" (LP) is giver by minimizing/maximizing a linear function, denoted $c^{\top} x=\sum_{i=1}^{n} c_{i} x_{i}$ or $\langle c, x\rangle$, over a feasible region given by a finite collection of linear inequalities, denoted $a_{i}^{\top} x \leq b_{i}$ for $i=1 \ldots m$.
Written concisely, for $c \in \mathbb{R}^{n} . A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$,

$$
\left\{\begin{array}{cl}
\min / \max & c^{T} x \\
\text { s.t. } & A x \leq b \\
C_{\text {elementaise }}
\end{array}\right.
$$

Notationally, we will have a_{i}^{\top} denote a row of A and A_{i} denote a column of A as

$$
A=\left[\begin{array}{c}
-a_{1}^{7} \\
\vdots \\
-a_{m}^{\top}-
\end{array}\right]=\left[\begin{array}{ccc}
1 & & 1 \\
A_{1} & \cdots & A_{n} \\
1 & & 1
\end{array}\right]
$$

Notes (1) This model implicitly allows linear equality constraints as $a_{i}^{\top} x=b$ if and only if $a_{i}^{\top} x \leq b_{i}$ and $-a_{i}^{\top} x \leq-b_{i}$.
(2) This model implicitly allows nonnegativity constraints as $x_{i} \geq 0$ if and only if $e_{i}^{\top} x \geq 0$

$$
\hat{\tau}_{i^{\text {th }}} \text { basis vector }(0,0, \ldots, 0,1,0, \ldots, 0)
$$

(3) A set given by a single inequality $\left\{x\left\{a^{r} x \leq b\right\}\right.$ is called a "halfspace".

(4) A set given by finitely many halfspaces $\left\{x \mid a_{i}^{\top} x \leq b_{i}\right\}$ is called a "polyhedron".
(5) A bounded polyhedron is called a "polytppe"
$\left[\begin{array}{l}\text { The Geometry and Structure of polyhedrons: } \\ \text { is explored in detail in "Intro to Convexity". }\end{array}\right]$

We say on $L P$ is infeasible if no $x \in \mathbb{R}^{n}$ has $A x \leq b$, denoted by $\left\{\begin{array}{ll}\min & c^{\top} x \\ \text { si } & A_{x} \leqslant b\end{array}=+\infty\right.$ or $\left\{\begin{array}{cc}\max & c^{T_{x}} \\ \text { sit. } & A_{x}=b\end{array}=4 \infty\right.$.

We say an $L P$ is unbounded if there exists a sequence $x^{(1)} \in \mathbb{R}^{n}, A_{x}^{(1)} \leq b$ such that $\lim c^{T} x^{(i)}=-\infty$ (when minimizing) or $\lim c^{\top} x^{(i)}=+\infty$ (when maximizing) denoted by $\left\{\begin{array}{l}m i n \\ c^{7} x \\ s . t . A x \leq b\end{array}=00\right.$ or $\left\{\begin{array}{l}m a x c^{7} x \\ \text { sit, } A x \leq b\end{array}=00\right.$.

We say $x \in \mathbb{R}^{n}$ is a minimizer (maximizer) if $A x^{*} \leq b$ and $c^{\top} x^{x} \leq c^{\top} x$ for $a l l x$ with $A x \leq b$.
(\geq)

Common terminology: any point $x \in \mathbb{R}^{n}$ is a "solution", any x with $A x \leq b$ is a "feasible solution". any minimizing/maximizing x is an "optimal solution".

Theorem Every lineor program is either infeasible, unbounded, or has on optimal solution.

Note this does not hold for nonlinear optimization.
Consider minimizing e^{x} over all of \mathbb{R}.
This is feasible, bounded below, and has no minimizer.

We say an LP is in standard form if

$$
\left\{\begin{array}{ccl}
\min & c^{\top} x & \text { (always minimizing) } \\
\text { s.t. } & A x=b & \text { (all equality constraints involving A) } \\
& x \geqslant 0 & \text { (all entrywise nonnegative variables). }
\end{array}\right.
$$

For example, we con rewrite our grading lineor program as

$$
\left\{\begin{array}{lll}
\min -\left(\frac{\left(c_{H}-c_{P}\right)}{100} H+\frac{\left(c_{M}-c_{p}\right)}{100} M+\frac{\left(c_{F}-c_{P}\right)}{100} F+c_{p}\right) \\
\text { s.t. } H+M+F+s_{1} & =100 \\
H & -s_{2} & =15 \\
M & =15 \\
M+F & -s_{3} & =0 \\
M+F & -s_{4} & =50 \\
M+F & -s_{s} & =80 \\
H+M+F & +s_{6} & =80
\end{array}\right.
$$

Theorem (You wall prove in HW1) Every LP can be equivalently rewritten into stondord form.
$\left[\begin{array}{l}\text { Note equivalent here means if you had on optimal solution to } \\ \text { either linear program, you con immediately produce on option al } \\ \text { solution to the other. }\end{array}\right]$

Example Linear Programming Application
Two Constraint Knapsack

Suppose you have goods $i=1, \ldots, m$, (think you ore packing apples, each with three attributes: bananas, celery, etc.)

$$
\left\{\begin{array}{l}
\text { weight per unit } \omega_{i} \\
\text { volume per unit } v_{i} \\
\text { payoff per unit } p_{i}
\end{array}\right.
$$

Given weight and volume upper bounds W,V, (think the strength and maximizing your payoff is a linear program:

$$
\left\{\begin{aligned}
\max & p^{\top} x \quad\left(=\sum_{i=1}^{m} p_{i} x_{i}\right) \\
\text { s.t. } & w^{\top} x \leq W \\
& v^{\top} x \leq V \\
& \left(\sum \omega_{i} x_{i} \text { is at most } w\right) \\
& \left(\sum v_{i} x_{i} \text { is at most } v\right) \\
& (\text { no negative quantities })
\end{aligned}\right.
$$

where x_{i}. our decision variable, is the \#units of good i packed.

Notes Put in standard form, this is

$$
\left\{\begin{aligned}
\min & -\rho^{T} x \\
\text { s.t. } & \omega^{T} x+s_{1}=W \\
& v^{\top} x+s_{2}=V \\
& x_{1} s_{1}, s_{2} \geq 0 .
\end{aligned}\right.
$$

- Each extreme point has at most two goods packed. Why?
- The Dual of this standard form $L P$ is $\left\{\begin{array}{cc}\max & W y_{1}+V_{y_{2}} \\ \text { s.t. } & \omega_{i} y_{1}+v_{i} y_{2} s-P_{i} \quad V_{i \leq 1 . . . m} \\ & y_{1} y_{2} \leq 0 .\end{array}\right.$

Example Linear Programming Application
Transportation Problem

Suppose you ore shipping goods from Supply centers $i=1 \ldots \mathrm{~m}$ to demand centers $j=1 . . . n$.

Each supply center i has s_{i} goods. Each demand center j needs d_{j} goods.
Shipping one unit from i to j costs $c_{i j}$ dollars.

Minimizing your total costs while meeting all dernond (assume $\sum s_{i}=\sum_{d_{j}}$) is the following linear program:

$$
\left\{\begin{array}{rlll}
\min & \sum_{i j} c_{i j} x_{i j} & & \\
\text { s.t. } & \sum_{j} x_{i j}=s_{i} & \forall i=1 \ldots m & \text { (center i sends its stock) } \\
& \sum_{i} x_{i j}=d_{j} & \forall_{j}=1 \ldots n & \text { (center } j \text { resieves its demand) } \\
& x \geq 0 & & \text { (no negative shipping) }
\end{array}\right.
$$

where $x_{i j}$ denotes the amount shipped from i to j.
(no negative shipping)
Notes Already in standard form.

- Each extreme point just uses $m+n-1$ shipping links (despite their being $n m$) which form a spanning tree of the bipartite graph above.
Why?

2. Extreme Points

For the sake of visualizations, a general polyhedron looks like...

$$
P=\{x \mid A x \leq b\}, x \in \mathbb{R}^{2}
$$

A standord form polyhedron is more limited. They all look like...

If we want visualize stondord form $L P_{s}$ with dimension >3, we con restrict our view to the subspace $\{x \mid A x=b\}$...

Note: We con always reformulate/chonge variables to be in standard form.
This gives us a very nice property: Why?
" $P=\{x \mid A x=b, x \geq 0\}$ contains no lines $\left\{x \mid x_{0}+\lambda v=x\right.$ for some $\left.\lambda\right\}$ for my x_{0}, v. "
That is, no shapes like exist in standard form. 7

Three definitions for "corner points"
Let $P=\{x \mid A x \leq b\}$ be a generic polyhedron $\left(x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m} . A \in \mathbb{R}^{m \times n}\right)$.

Definition 1 We say $x \in P$ is on extreme point if no $y, z \in P \backslash\{x\}$ exist with $x=\lambda y+(1-\lambda) z, \lambda \in[0,1]$.

This has a geometric flavor: \bar{x} is not extreme as shown by \bar{y} and \bar{z}, x is extreme as any points y, z it is between have at least one infeasible.

Definition 2 We say $x \in P$ is a vertex if some $c \in \mathbb{R}^{n}$ has $c^{\top} x<c^{\top} y$ for all $y \in P \backslash\{x\}$.

This has an optimization flavor: x is the unique minimizer in some direction c.

Definition 3 We say $x \in P$ is a Basic Feasible Solution (BFS) if there exist n linearly independent a_{i} with $a_{i}^{T} x=b_{i}$. (if we drop the requirement $x \in P$, we say it is a Basic Solution.)
This has on algebraic flavor:
x is uniquely determined by a system of n equations.

$$
x \text { is a } B F S, y \text { is a } B S \text {. }
$$

Theorem For any polyhedron $P=\left\{x \mid A_{x} \leq b\right\}$, a point $x \in \mathbb{R}^{n}$ is on extreme point iff it is a vertex iff it is a BFS.

Proof. (Vertex \Rightarrow Extreme Point)
Suppose x is a vertex, uniquely minimizing in some direction c :

$$
c^{\top} x<c^{\top} y \quad \forall y \in P \backslash\{x\} .
$$

Consider any $y, z \in P \backslash\{x\}$, and any $\lambda \in[0,1]$.
Then

$$
\begin{aligned}
& \lambda \cdot\left(c^{\top} x<c^{\top} y\right) \\
&\left.+\frac{(1-\lambda) \cdot\left(c^{\top} x\right.}{}<c^{\top} z\right) \\
& c^{\top} x<\lambda c^{\top} y+(1-\lambda) c^{\top} z \\
&=c^{\top}(\lambda y+(1-\lambda) z) .
\end{aligned}
$$

Hence $x \neq \lambda y+(1-\lambda) z$.
(Extreme Point \Rightarrow BES)
Suppose x is not a BFS.
Let $I \leq\{1 \ldots m\}$ denote the set of "tight" constraints $a_{i}^{r} x=b_{i}$. $\left\{a_{i}\right\}_{i \in I}$ does not have n linearly independent vectors.
\Rightarrow Some $d \neq 0$ has $a_{i}^{\top} d=0$ for all $i \in I$.

$$
\begin{aligned}
\Rightarrow \quad a_{i}^{7}(x+\varepsilon d) & =a_{i}^{7} x=b_{i} \\
a_{i}^{7}(x-\varepsilon d) & =a_{i}^{\prime} x=b_{i}
\end{aligned} \quad \forall i \in I
$$

Moreover, $a_{j}^{\gamma}(x \pm \varepsilon d)=a_{j}^{\gamma} x \pm \varepsilon a_{j}^{\gamma} d<b_{j} \quad \forall_{j \neq I}$ if we select ε small enough since $a_{j}^{\gamma} x<b_{j}$.
$\Rightarrow x$ is the average of two feasible points, $x \pm \varepsilon d$.

$$
(B F S \Rightarrow \text { Vertex })
$$

Suppose x is a BFS.
Let $I=\left\{i \mid a_{i}^{\top} x=b_{i}\right\}$ be the same as above.
Consider minimizing over P in the direction $-c=\sum_{i \in I} a_{i}$.
All $y \in P$ have $a_{i}^{r} y \leq b_{i}$

$$
\begin{aligned}
\Rightarrow c^{\top} y=-\sum_{l \in I} a_{i}^{\top} y & \geqslant-\sum_{i \in I} b_{i}\left\{\begin{array}{l}
\text { Equality only holds } \\
\text { if } a_{i l}^{T} y=b_{i} \text { V } \quad \forall \in I
\end{array}\right. \\
& =-\sum_{i \in I} a_{i x}^{\top} x \\
& =c^{\top} x .
\end{aligned}
$$

Since any minimizer as equality above, and $a_{i}^{r} y=b_{i}$ uniquely is solved by x, x is the unique minimizer.

Corners of Standard Form Polyhedrons
It suffices to consider linear programs over polyhedrons

$$
P=\{x \mid A x=b, x \geq 0\} .
$$

Without loss of generality. A has independent rows.

A BFS comes from selecting n linearly ind constraints to hold tightly.
$A x=b$ gives us m linearly independent constraints
Some nonnegativity constraints $x_{i}=0$ must provide $n-m$ more.

Some notation for standard form BFS
We pick a Basis $B=\{B(1), \ldots, B(m)\} \leq\{1, \ldots, n\}$ and denote its complement by \bar{B}.
Let $x_{B}=\left(x_{B(1)}, \ldots, x_{B(m)}\right), c_{B}=\left(c_{B(1)}, \ldots, c_{B(m)}\right)$

$$
\left.\left.\left.\begin{array}{l}
x_{\tilde{B}}=\left(x_{\tilde{B}(1)}, \ldots, x_{\tilde{B}(n-m)}\right), c_{\tilde{B}}=\left(c_{\tilde{B}(1)}, \ldots, c_{\tilde{B}(n \cdot m)}\right) \\
A_{B}=\left[\begin{array}{cc}
1 & 1 \\
A_{B}(1) & \ldots
\end{array} A_{B(m)}\right. \\
1
\end{array}\right] .1\right] .\right] .
$$

Then the BFS corresponding to B is the unique solution to

$$
\begin{aligned}
\left\{\begin{aligned}
A_{x=b} \\
x_{B}=0
\end{aligned}\right. & \Leftrightarrow\left\{\begin{aligned}
& A_{B} x_{B}+A_{\bar{B}} x_{B}=b \\
& x_{B}=0
\end{aligned}\right. \\
& \Leftrightarrow\left\{\begin{array}{c}
A_{B} x_{B}=b \\
x_{B}=0 .
\end{array}\right.
\end{aligned}
$$

This has unique solution $x_{B}=A_{B}^{\prime \prime} b, x_{\bar{B}}=0$ when A_{B} is invertible and no unique solution otherwise.

Lemma (in HW1) Every nonempty standard form polyhedron has a BFS.

Natural
Question We have seen each standard form BFS corresponds to picking a Basis B and solving $\left\{\begin{array}{l}A_{B} x_{B}=b \\ x_{B}=0\end{array}\right.$.
Is this choice of a basis unique?

$$
\begin{aligned}
& \hat{t}_{\text {picking the }}=0 . \\
& \text { to be tight } x_{2}=0
\end{aligned}
$$

No!

Two basis B and B^{\prime} con have the same $B F S \times$ solve

$$
\left\{\begin{array} { r }
{ A _ { B } x _ { B } = b } \\
{ x _ { B } = 0 }
\end{array} \text { and } \left\{\begin{array}{r}
A_{B^{\prime}} x_{B^{\prime}}=b \\
x_{\bar{B}^{\prime}}=0 .
\end{array}\right.\right.
$$

In this case, all $i \in \bar{B} \cup \overline{B^{\prime}}$ must have $x_{i}=0$.
In particular sane $\in B \backslash B^{\prime}$ has $x_{i}=0$.
(we are getting zeros in the basis that we did not force to be zero.)
For example,

x is determined by any two of the three tight constraints.

x is determined by any three of the four tight constraints.

We say a basis B give a $\underline{D}_{\text {egenerate }} B F S$ if some $i \in B$ has $x_{i}=0$.
We say it is Nondegenerate otherwise (i.e, when $x_{B}=A_{B}^{-1} b>0$).
3. Optimality and Strong Duality

Consider a standard form LP $\left\{\begin{array}{cc}\min & c^{7} x \\ \text { s.t. } & A_{x=b} \\ & x \geqslant 0 .\end{array}\right.$
Recall x^{*} is a minimizer if $\left\{A_{x^{*}}=b, x^{*} \geq 0\right.$, and $c^{\top} x^{*} \leqslant c^{7} y \quad \forall y \in P=\{x \mid A x=b$ $x \geq 0\}$.
First we show BFS minimizers typically exist.
Theorem If (LP) has a minimizer, then some BFS is a minimizer.
Proof. Let x^{*} be a minimizer of $c^{\top} x$ over $P=\{x \mid A x=b, x \geq 0\}$.
Define the set of minimizes as $Q=\left\{x \mid A x=b, c^{\top} x=c^{\top} x^{*}, x \geqslant 0\right\}$.
Note Q is also in standard form.
By our previous lemma, Q must have some BFS $\overline{\mathrm{x}}$.

Our result will then follow if we con show \bar{x} is also a BFS of P. That is, we wont to show no $y, z \in P \backslash\{\bar{x}\}$ have $\bar{x}=\lambda y+(1-\lambda) z$, for ar de [0,1].

Since \bar{x} is a BFS of Q, no $y, z \in Q \mid\{\bar{x} \overline{3}$ have this.
However if either y or z is in $P \backslash Q$, then $c^{\top} y>c^{\top} \vec{x}$ or $c^{\top} z>c^{\top} \vec{x}$.

$$
\begin{aligned}
& \Rightarrow \lambda c^{\top} y+(1-\lambda) c^{\top} z>c^{\top} \vec{x} \\
& \Rightarrow c^{\top}(\lambda y+(1-\lambda) z)>c^{\top} \vec{x} \\
& \Rightarrow \vec{x} \neq \lambda y+(1-\lambda) z .
\end{aligned}
$$

Thus no $y, z \in P \backslash\{\bar{x}\}$ have weighted average \bar{x}.

Now we show how to check if a BFS is optimal

Consider any BFS \bar{x} with a corresponding basis B
(that is, \bar{x} uniquely solves $\left\{\begin{array}{r}A x=b \\ x_{\bar{B}}=0\end{array}\right)$.
For any $j \in \bar{B}$, Lets consider slightly relaxing the requirement $x_{j}=0$ to $x_{j}=\varepsilon$, for small $\varepsilon>0$.

$$
\text { Let } \tilde{x} \text { uniquely solve }\left\{\begin{array}{c}
A x=b \\
x_{j}=\varepsilon \\
x_{\bar{B} V_{i j}=}=0 .
\end{array}\right.
$$

We con solve this system directly:

$$
\begin{aligned}
& x_{B i j}=0 \\
& \Leftrightarrow\left\{\begin{array}{c}
A_{B} x_{B}=b-A_{j} \varepsilon \\
x_{j}=\varepsilon \\
x_{B j}=0
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
x_{B}=A_{B}^{\prime \prime}\left(b-A_{j} \varepsilon\right) \\
x_{j}=\varepsilon \\
x_{B j}=0 .
\end{array}\right.
\end{aligned}
$$

As we move ε amount, going from \bar{x} to \tilde{x}, our objective value changes linearly...

$$
\begin{aligned}
& C^{\top} \tilde{x}=\left[\begin{array}{c}
c_{B} \\
c_{j} \\
c_{\delta j}
\end{array}\right]^{\top}\left[\begin{array}{c}
A_{B}^{-1}\left(b-A_{j} \varepsilon\right) \\
\varepsilon \\
0
\end{array}\right]_{=c_{B}^{\top} A_{B}^{-1} b+\left(c_{j}-c_{B}^{\top} A_{B}^{-1} A_{j}\right) \varepsilon}^{=A_{B}^{-1}\left(b-A_{j} \varepsilon\right)+c_{j} \varepsilon} \\
& =c^{\top} x^{*}+\left(c_{j}-c_{B}^{\top} A_{B}^{-1} A_{j}\right) \varepsilon \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } c_{j}-C_{B}^{\top} A_{B}^{-1} A_{j}<0 \text {, we ore improving on } \bar{x} \text {. }
\end{aligned}
$$

This rate of objective change is important enough to have its own name. The Reduced Cost of j in basis B is $\bar{c}_{j}=c_{j}-c_{B}^{\tau} A_{B}^{-1} A_{j}$

Note every $i \in B$ has $\bar{c}_{i}^{\bullet}=c_{i}^{\bullet}-c_{B}^{\top} A_{B}^{-1} A_{i}=c_{i}^{\bullet}-c_{B}^{\top} e_{i}=c_{i} \cdot c_{i}=0$.
We let $\bar{c}^{\boldsymbol{c}}$ denote the vector of all reduced costs.

$$
C^{T}-C_{B}^{\top} A_{B}^{-1} A
$$

A Picture Recapping the process of relaxing $x_{j}=0$ to generate \tilde{x}
Suppose $x \in \mathbb{R}^{7}, A \in \mathbb{R}^{5 \times 7}, b \in \mathbb{R}^{5}$, and the paper shows the 20 affine subspace $\{x \mid A x=b\}$. Suppose c points up I, so we minimize down.

Theorem Consider any BFS x " with a basis B and reduced costs $\overline{\mathrm{c}}$.
(i) If $\bar{c} \geq 0, x^{n}$ is a minimizer.
(ii) If x^{*} is a minimizer and nondegenerate, $\bar{c} \geq 0$.

Proof. Suppose $\bar{c} \geq 0$. Consider any feasible point $x \in P=\left\{x \left\lvert\, \begin{array}{c}A x=b \\ x \geq 0\}\end{array}\right.\right.$ $x=0\}$.
Let $d=x-x^{n}$.
Since $A x=b, A x^{\circ}=b, A d=0$.

$$
\begin{aligned}
& \Rightarrow A_{B} d_{B}+A_{\bar{B}} d_{\bar{B}}=0 \\
& \Rightarrow A_{B} d_{B}=-\sum_{j \in \mathbb{B}} A_{j} d_{j} \\
& \Rightarrow d_{B}=-\sum_{j \in \bar{B}} A_{B}^{-1} A_{j} d_{j} .
\end{aligned}
$$

Then x must be a minimizer since

$$
\begin{aligned}
& c^{\top}\left(x-x^{\top}\right)=c^{\top} d=c_{B}^{\top} d_{B}+c_{\bar{B}}^{\top} d_{\bar{B}} \quad \text { by the above calculation } \\
&\left.=-\sum_{j \in \bar{B}}\left(c_{B}^{\top} A_{B}^{-1} A_{j} d_{j}-c_{j} d_{j}\right)\right) \text { by definition } \\
&\left.=\sum_{j \in \dot{B}} \bar{c}_{j} d_{j}\right) \text { using that } d_{j}=x_{j}-x_{j}^{\top} \geq 0 \text { as } x_{j} \geq 0 \\
& x_{j}=0 \\
& \geq 0 .
\end{aligned}
$$

Suppose some $\bar{c}_{j}<0$.
For some $\varepsilon>0$, consider the \tilde{x} uniquely solving $\left\{\begin{array}{c}A x=b \\ x_{j}=\varepsilon \\ x_{B j}=0\end{array}\right.$ which we previously calculated as

$$
\left[\begin{array}{l}
\tilde{x}_{B} \\
\tilde{x}_{j} \\
\tilde{x}_{B \backslash\{j\}}
\end{array}\right]=x^{m}+\left[\begin{array}{c}
-A_{B}^{-1} A_{j} \\
1 \\
0
\end{array}\right] \varepsilon .
$$

Since x^{*} is assumed to be nondegenerate, $x_{B}^{*}>0$ (strictly!).
\Rightarrow For small enough $\varepsilon>0, \tilde{x}_{B}>0$.
\Rightarrow Since $\tilde{x}_{j}=\varepsilon>0$ and $\tilde{x}_{\bar{B} \backslash q_{j} 3}=0, \tilde{x} \geq 0$.
$\Rightarrow \tilde{x}$ is feasible for small enough $\varepsilon>0$.
However, $c^{\top} \tilde{x}=c^{\top} x^{\wedge}+\bar{c}_{j} \varepsilon<c^{\top} x^{\bullet}$ for all $\varepsilon>0$. $\Rightarrow x^{*}$ is not optimal.

Note the requirement of nondegeneracy in (ii) is needed.
Designing a simple example with this property failing at a degenerate BFS is a good exercise.

Back in lecture 1, we understood optimality by picking multipliers (magically) for each constraint, giving a dual optimization problem. These reduced costs are actually getting at the same quantities.

Let's retrace our multiplier approach from the grading LP on a generic standard form linear program.

Consider the primal problem $\left\{\begin{aligned} \min & c^{\top} x \\ \text { s.t. } & A x=b \\ & x \geqslant 0 .\end{aligned} \quad \begin{array}{l}\left.\text { (recall } \begin{array}{l}A \in \mathbb{R}^{m=n} \\ b \in \mathbb{R}^{m} \\ \left.c \in \mathbb{R}^{n}\right)\end{array}\right) .\end{array}\right.$

Pick any multipliers $y \in \mathbb{R}^{m}$ for each equality constraint.
Summing these up weighted gives $\sum_{i=1}^{m} y_{i}\left(a_{i}^{\top} x=b_{i}\right)$

$$
\begin{equation*}
\Rightarrow y^{\top} A_{x}=b^{\top} y \tag{1}
\end{equation*}
$$

If we pick multipliers with $y^{\top} A \subseteq c^{\top}$ elementwise,
then $x \geq 0$ ensures $y^{\top} A_{x} \leq c^{r} x$.
(1) + (2) implies any multipliers $A^{r} y \leq c$ bound the primal minimization as having $c^{r} x \geq b^{r} y \quad \forall$ feasible x.

Computing the largest lower bound is the dual problem $\left\{\begin{array}{l}\max b^{\top} y \\ \text { s.t. } A^{\top} y \leq c .\end{array}\right.$

Theorem (Weak Duality) For any (A, b, c)

$$
\left\{\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. } A x=b \\
& x \geq 0
\end{array} \geqslant\left\{\begin{aligned}
\max b^{\top} y \\
\text { s.t. } A^{\top} y \leq c
\end{aligned}\right.\right.
$$

Proof. Immediate from our proceeding construction.

Theorem (Strong Duality) For my (A,b,c), if at least one of the primal or the dual LP is feasible, then

$$
\left\{\begin{array}{cc}
\min & c^{\top} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}=\left\{\begin{array}{cc}
\max & b^{\top} y \\
\text { s.t. } & A^{\top} y \leq c .
\end{array}\right.\right.
$$

Proof. Coming $u p$ in the next lecture or two by onalyzing the "Simplex Method".
It will suffice to find a BFS with $\bar{c} \geq 0$.

Connect Reduced Costs of a Basis to Dual Solutions
Recall the reduced costs of a basis B are $\bar{c}=c-c_{B}^{\top} A_{B}^{-1} A$, and optimality holds if $\bar{c}^{F} c^{-} c^{r} c_{8}^{r} A_{B}^{-1} A \geq 0$.
Dual feasibility of some $y \in \mathbb{R}^{n}$ is $c-A^{\top} y \geq 0$
Picking $y=A_{B}^{-r} C_{B}$ makes these two equivalent.
Hence a basis B gives primal solutions $\left\{\begin{array}{l}x_{B}=A_{B}^{3} b \\ x_{B}=0\end{array}\right.$ and dial solution $y=A_{B}^{-7} c_{B}$.
These hare equal objective: $c^{\top} x=c_{B}^{\top} A_{B}^{-1} b+c_{B}^{\top} 0=b^{\top} A_{B}^{-\top} c_{B}=b^{\top} y$.
\Rightarrow Strong duality holds if we con find B with x, y both feasible.

An aside. Duality con be defined more generally then the previously calculated standard form.

Consider a linear program

$$
\begin{cases}\min & c^{r} x+d^{\top} u \\ \text { sit. } & A x+B u=b \\ & C_{x}+D_{u} \geq e \\ & x \geq 0, u \text { free } .\end{cases}
$$

Define multipliers y for the equality constraints and $v \geq 0$ for the inequality constraints.
Summing up the weighted constraints, we find

$$
\begin{aligned}
& y^{\top} A x+y^{\top} B_{u}+v^{\top} C_{x}+v^{\top} D_{u} \geq b^{\top} y+e^{\top} v \\
& \left(A^{\top} y+C^{\top} v\right)^{\top} x+\left(B^{\top} y+D^{\top} v\right)^{\top} u
\end{aligned}
$$

If we select multipliers with $A^{\top} y+C^{\top} v \leqslant c$, then $\left(A^{\top} y+C^{\top} v\right)_{x}^{\tau} \leqslant C^{\top} x$. If we select multipliers with $B^{\top} y+D^{\top} v=d$, then $\left(B^{\top} y+D^{\top} v\right)^{\top} u=d^{\top} u$.
So any y, v satisfying these gives a lowerbound $c^{\top} x+d^{\top} U \geq b^{\top} y+e^{\top} v$.
Thus the largest lower bound is given by the dual linear program...

$$
\left\{\begin{aligned}
\max & b^{r} y+e^{r} v \\
\text { sit. } & A^{\top} y+c^{\top} v \leq c \\
& B^{\top} y+D^{\top} v=d \\
& \text { free, } v \geq 0 .
\end{aligned}\right.
$$

4. The Simplex Method

Before proving strong duality, we introduce an iterative algorithm for solving LP S. Showing the correctness of this method will incidentally prove strong duality.

For all of our development here, as a simplification, we assume all BFS ore nondegenerate.

First we define "pivoting" a way to move from one BFS to another.
Consider a (nondegenerate) BFS \bar{x} with basis. B.
Recall by relaxing $x_{j}=0$ to $x_{j}=\varepsilon$ for $j \in \bar{B}$ defined points

$$
\tilde{x}(\varepsilon) \quad \text { uniquely solving }\left\{\begin{array} { r }
{ A x = b } \\
{ x _ { j } = \varepsilon } \\
{ x _ { \overline { B } } x _ { j } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x_{8}=\bar{x}-A_{B}^{-1} A_{j} \varepsilon \\
x_{j}=\varepsilon \\
x_{\bar{B}}=0 .
\end{array}\right.\right.
$$

Note $\tilde{x}(\varepsilon)=\bar{x}+d \varepsilon$ for $d=\left[\begin{array}{c}-A_{B}^{-1} A_{j} \\ 1 \\ 0\end{array}\right]$.
On the right we sketch three broadly interesting cases for what this might look like.

Unbounded Case] If $d \geq 0$, then $\tilde{x}(t) \geq 0 \quad \forall z r o$.
So we have on oi unbounded ray of feasible solutions.
If $\overline{\mathbf{c}}_{j}<0$, these have $c^{\top} \tilde{x}(\varepsilon) \rightarrow-\infty$ as $\varepsilon \rightarrow \infty$. So the LP is unbounded.

Bounded Cases (Nondegenerate and Degenerate)

Suppose $d \neq 0$. So at least one $i \in B$ has $d_{i}<0$.
$\Rightarrow \tilde{x}(\varepsilon)$ violates $\tilde{x}_{i}(\varepsilon) \geq 0$ for each such i if and only if $\bar{x}_{l}+\varepsilon d_{i}<0\left(\Leftrightarrow \varepsilon>\frac{\bar{x}_{i}}{-d_{i}}\right)$.

Let $\left\{\begin{array}{lr}\varepsilon^{*}=\min \left\{\left.\frac{\bar{x}_{i}}{-d_{L}} \right\rvert\, d_{i}<0\right\} & \text { denote the maximum } \varepsilon \text { with } \tilde{x}(e) \\ i^{*} \in \operatorname{argmin}\left\{\left.\frac{\bar{x}_{i}}{-d_{i}} \right\rvert\, d_{i}<0\right\} & \text { feasible and the } a \text { limiting this } .\end{array}\right.$
[Note if \bar{x} is degenerate, $\varepsilon^{*}=0$ may occur and so no movement occurr3.]
Lemma $B^{\prime}=B \cup\{j\} \backslash\left\{i^{*}\right\}$ is a basis for $\tilde{x}\left(\varepsilon^{*}\right)$.
Proof. Clearly $\tilde{x}\left(\varepsilon^{*}\right)$ solves $\left\{\begin{array}{c}A x=b \\ x_{B^{\prime}}=0\end{array}\right.$
We need to show it uniquely solves this system.
That is, since $\left\{\begin{array}{l}A_{x}=b \\ x_{B^{\prime}}=0\end{array} \Leftrightarrow\left\{\begin{array}{r}A_{B^{\prime}} x_{B^{\prime}}=b \\ x_{B^{\prime}}=0,\end{array}\right.\right.$
we need to show $A_{B^{\prime}}$ is invertible.
Note $A_{B^{\prime}}=\left[A_{B(c)} \cdots A_{j} \cdots A_{B(m)}\right]=" A_{B}$ with $A_{i} \cdot$ replaced by $A_{j} "$

$$
\begin{aligned}
& t_{k^{\text {th }} \text { column }}=A_{B}+\left(A_{j}-A_{i}\right) e_{k}^{\sigma} \\
& A_{B^{\prime} \text { is invertible }}^{(0, \cdots, 1, \cdots o)} .
\end{aligned}
$$

Sherman Morrison says $A_{B^{\prime}}^{+}$is invertible
iff A_{B} is invertible and $1+e_{k}^{r} A_{B}^{-1}\left(A_{j}-A_{i}\right) \neq 0$.
This holds since $1+e_{k}^{\prime} A_{B}^{-1}\left(A_{j}-A_{i}\right)=1+e_{k}^{\gamma}\left(-d_{B}-e_{k}\right)=1-d_{i}-1=-d_{i}>0$.

Iteratively pivoting to BFS with lower objective values gives a famous algorithm.

The Simplex Method
Given a basis B_{0} with primal solution $\times\left(B_{0}\right)$

$$
\text { solving }\left\{\begin{array}{l}
A_{x}=b \\
x_{B_{0}}=0
\end{array}\right. \text { primal feasible, }
$$

Iterate for $k=0,1,2, \ldots$
Compute the dual solution $y\left(B_{k}\right)=A_{B_{k}}^{-T} c_{B_{k}}$.
If $y\left(B_{k}\right)$ is dual feasible (i.e. $\bar{c} \geq 0$), STOP and retum primal, dual optimal $x\left(B_{k}\right), y\left(B_{k}\right)$.
Else
Pick any j with $\bar{c}_{j}<0$, and compute $d=\left[\begin{array}{c}-A_{B_{x}^{-1}} A_{j} \\ 1 \\ 0\end{array}\right]$.
If $d \geq 0$,
STOP and return LP is unbounded.
Else
$B_{k+1}=B_{k} \cup\{j\} \backslash\{i\}$ for my i picked from $\operatorname{argmin}\left\{\left.\frac{x_{i}\left(B_{k}\right)}{-d_{i}} \right\rvert\, d_{i}<0\right\}$.

Example Simplex Steps

$$
\begin{cases}\min & -x_{1} \\ \text { s.t. } & -x_{1}+x_{2}+x_{3}=1 \\ & -x_{1}+x_{2}-x_{4}=-1 \\ & x \geq 0\end{cases}
$$

The origin is a $B F S$ with basis $B=\{3,4\}$.

$$
x=(0,0,1,1)
$$

This has reduced cost $\bar{c}=c=A^{\top} A_{B}^{-T} c_{B}$

$$
\begin{aligned}
& =\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{cc}
-1 & -1 \\
1 & 1 \\
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]^{-7}\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
-1 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Pick $j=1$, "pivot" moving along $(0,0,1,1)+\frac{\varepsilon(1,0,1,-1)}{{ }^{\prime} d}$. $\varepsilon^{*}=1$ attained by $i=4 . \Rightarrow B^{\prime}:\{1,3\}$.

$$
x=(1,0,2,0) .
$$

B^{\prime} has reduced cost $\bar{c}=c-A_{1}^{\top} A_{B^{\prime}}^{-\top} c_{B^{\prime}}$

$$
=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right]
$$

Pick $1=$?
So moving along $(1,62,0)+\frac{\varepsilon(1,1,0,0)}{d}$

$$
d \geq 0
$$

\Rightarrow Unbounded.

Proof of (Linear Programming) Strong Duality

Recall our theorem statement from page 26:
Theorem (Strong Duality) For any (A, b, c), if at least one of the primal or dual $L P_{s}$ is feasible, then

If either LP is unbounded, the equality is immediate from weak duality's inequality.

So it suffices to show when one LP is feasible, both ore feasible with x^{*}, y^{*} existing with (i) primal feasibility $\left\{\begin{array}{l}A x^{*}=b \\ x^{*} \geq 0\end{array}\right.$ (2)dual feasibility $\left\{A^{\top} y^{\prime} \leqslant c\right.$ (3) optimality $\quad\left\{c^{7} x^{4}=b^{7} y^{*}\right.$.

In particular, it suffices to show some basis B has associated $x(B)$ primal feasible and $y(B)$ dual feasible as (3) alwapp ho 1 ,

$$
c^{\top} x(B)=c_{B}^{\top} A_{B}^{-1} b=b^{\top} A_{B}^{-\top} c_{B}=b^{\top} y(B)
$$

This is exactly what the Simplex Method constructs!!
Thus it suffices to show the Simplex Method terminates.
Hence we will just argue the Simplex Method never resits a basis as there we at most $\binom{m}{n}$ of them.

Easy Case: Suppose every extreme point x is nondegenerate (that is , $x_{B}>0$).
Then every pivot of the simplex method has

$$
\begin{aligned}
\varepsilon^{*} & =\min \left\{\left.\frac{x_{i}\left(B_{k}\right)}{-d_{i}} \right\rvert\, d_{i}<0\right\}>0 \quad \text { (strictly). } \\
\Rightarrow c^{\top} x\left(B_{k+1}\right) & =c^{\top}\left(x\left(B_{k}\right)+\varepsilon^{*} d\right) \\
& =c^{\top} x\left(B_{k}\right)+\varepsilon^{*} c^{\top} d \\
& =c^{\top} x\left(B_{k}\right)+\varepsilon^{*} c_{j} \\
& <c^{\top} \times\left(B_{k}\right) \quad \text { (strictly!). }
\end{aligned}
$$

Thus the objective strictly decreases each step.
\Rightarrow We connot revisit a BFS.
\Rightarrow Simplex must terminate with a primal, dual pair proving strong duality holds.

Hard Case: If $x\left(B_{k}\right)$ is degenerate, we may have $\varepsilon^{*}=0$.
Then the strict decrease above does not hold.
Under generic pivoting rules for selecting j and i, Simplex may cycle forever.
(all the gorey details here ore beyond our scope.
An example de tailing this problem will be emailed out for those interested in more LP theory.)

To handle degeneracy, we need to make more structured choices of j and i then arbitrary selection:

Bland's Rule for Simplex
(Lexigraphical
Pick $j \in \bar{B}$ with $\bar{c}_{j}<0$ and the smallest Pivoting) such index j.
Pick $i \in B$ attaining $\min \left\{\left.\frac{x_{i}\left(B_{x}\right)}{-d_{i}}\right|_{i}<0\right\}$ with the smallest such index i.

Under this rule, one can show eventually $\varepsilon^{*}>0$ and So progress is made.
(again full details are beyond our scope but will be emailed out.) Then the easy case argument can be applied to guarantee primal, dual optimal pairs will eventually be found.

Note: Better than $x(B), y(B)$ just being optimal, we know that they have "Complementary Slackness": Each $i \in B$ may have $x_{i}(B)>0$ but must have $\bar{c}_{i}=c_{i}-A_{i}^{*} y(B)=0$.
Each $j \in \bar{B}$ must have $x_{j}(B)=0$ but may have $\bar{c}_{j}=c_{j}-A_{j}^{T} y(B)>0$.

$$
\Rightarrow \underbrace{x(B)^{\top}}_{\geq 0} \underbrace{\left(c-A^{\top} y(B)\right)}_{\geq 0}=0
$$

6. Comments on Computation

The Simplex Method may take exponentially many steps (as far as we know) under every pivoting rule we have tried.

Usually show with a "Minty Cube" type example, perturbing a hypercube.

$$
\approx 2^{n} \text { steps }
$$

In $80 \mathrm{~s}+90 \mathrm{~s}$, folks showed simplex on average Cover a distribution of all LP) only needs $O(n)$ pivots.
In 2000s. Smoothed analysis shows simplex only needs a polynomial number of pivots on $A x=b+\sigma$ with Gaussian noise σ. "Most problems near any problem are polynomial".

To practically apply simplex, we need an initial BFS.
One common solution: First solve on LP seeking feasibility
Given on $\operatorname{LP}(A, b, c)$, we have $b \geq 0$ FLOG (negate equality constraint, with $b_{i}<0$ to have $b_{i}>0$).
Consider the auxiliary LP

$$
\text { (*) }\left\{\begin{array}{c}
\min \\
\text { sst } \\
\sum_{A_{2}} s_{i} \\
x, s=b \\
x, s \geqslant 0 .
\end{array}\right.
$$

Claims: $(0,6)$ is a BFS of (x).
(m) has optimal value 0 iff the original $L P$ is feasible.
Proof. Left as exercise.

Some Programming Tools for LP

CVX is a general structured optimization tool in many languages...
(in python cuxpy
in matlab cur
in Julia Convex.j1)

For example, in Julia given matrix A and vectors b, c, Solving the $L P$ is one line:

$$
\left[\begin{array}{l}
\text { using Convex } \\
x=\text { Variable }() \\
\text { erminimize }(\operatorname{dot}(c, x), A x x=b, x>=0) .
\end{array}\right.
$$

Dual multipliers certifying the returned solution are also provided
[p.dual.

Classic Simplex solvers are CPLEX and gurobi, which both offer free academic licenses, but cost for industry.

We will deal with other solvers as needed for more general nonlinear optimization problems.

An aside On the complexity of representing polyhedra.

$\frac{5}{0}$ This set has 2^{n} faces, each given by an inequality

$$
\begin{aligned}
& a_{i}^{\top} x \leq 1 \quad \text { for each } a_{i} \in\{\{ \pm 1, \pm 1, \ldots, \pm 1)\} \\
& \Rightarrow\{1\}^{n} .
\end{aligned}
$$

(this description of S has exponential size in n)

Takeaway: Some polyhedrons are better represented for computation as convexhull ($\left\{p_{i}\right\}$) vs $\{x \mid A x \leq b\}$.

Solving the ie L_{s} ore easy: min $c^{7 x}$ sst. $x \in$ conveshull $(2 P(3)$ $=\min _{i} \mathrm{E}^{\top} \mathrm{p}_{\mathrm{i}}$.

An aside on representations, continued

Consider the following NP-Hord problem

$$
\left\{\begin{array}{cc}
\min & x^{\top} A x \\
\text { s.t. } & x \in\{ \pm 1\}^{n} .
\end{array}\right.
$$

Combinatorial problems like max-cut, knapsack, traveling salesman, con all be described in this form.

We con rewrite this with a linear objective over a matrix problem $(\langle A, X\rangle$ is the trace inner product $\operatorname{tr}(A x))$:

$$
\left.\begin{array}{rl}
& \left\{\begin{aligned}
& \min \left.\left\langle A, x x^{\top}\right\rangle\right\} \text { using cyclic property of trace } \\
& \text { tr }\left(x^{\top} A x\right)=\operatorname{tr}\left(A x x^{+}\right)=\left\langle A \cdot x x^{*}\right\rangle
\end{aligned}\right. \\
\text { s.t. } & x \in\{ \pm \mid\}^{n}
\end{array}\right\}=\left\{\begin{aligned}
\min & \langle A, x\rangle \\
\text { sit. } & \underbrace{x \in \text { convexhull }\left(\left|x x^{\top}\right| x \in\{ \pm 1\}^{n}\right)}_{\begin{array}{c}
\text { polyhedron in matrix space } \\
\text { (some } 30
\end{array}}
\end{aligned}\right.
$$

This LP is equivalent to an NP -Hard problem.
In this case, we con view this as the polyhedron needing (as for as we know) exponential sized description in terms of either BFS or faces.

In [53]:

```
using LinearAlgebra
#The default package for matrices and such oeprations
#A solver interface for convex optimization (including linear pro
#A solver using ADMM (an algorithm we will discuss later in Nonli
near II)
function gradeStudent(scoreH, scoreM, scoreF, scoreP)
#Given a student's indivudual scores, ranging 0 to 100, in the four course components
#Returns their approximate maximum course grade over all allowable rubircs
#
#Warning the returned solution is only approximately optimal since ADMM only approximate
ly solves
    #Define variable for the LP. The coordinates are the weights (H, M, F, P)
    x = Variable(4)
    #Define the objective for the LP
    c = [scoreH; scoreM; scoreF; scoreP]/100.0
    p = maximize(dot(c, x))
    #Define the problems constraints
    p.constraints += [x[1] + x[2] + x[3] + x[4] == 100;
    x[1] + x[2] + x[3] <= 100;
        x[1] >= 15;
                            x[2] >= 15;
            -1*x[2] + x[3] >= 0;
                    x[2] + x[3] >= 50;
                    x[2] + x[3] <= 80;
        x[1] + x[2] + x[3] >= 90]
    #Run the SCS solver on our newly constructed LP
    solve!(p, SCS.Optimizer; silent_solver = true)
    return p.optval
end
```

Out[53]: gradeStudent (generic function with 1 method)
In [57]: gradeStudent(89, 91, 82, 100)
Out[57]: 88.84915267081558

