Printable Topics in Mathematics

Benjamin Grimmer

Johns Hopkins, AMS

Classic Schatten Norms $p \in\{1,2, \infty\}$

The Frobenius Norm of a matrix A is the sum of its entries squared: $\|A\|_{F}^{2}=\sum A_{i j}^{2}$. This aligns with the classic Euclidean norm for vectors. Consequently, the Schatten 2norm below is a sphere. In terms of singular values, this is exactly their sum squared. Hence $\|A\|_{F}=\|A\|_{2}$.
The Operator Norm of a matrix A measures how large $A v$ can be: $\|A\|_{o p}=\sup _{\|v\|_{2}=1}\|A v\|_{2}$, utilizing the vector two-norm. In terms of singular values of A, the largest one captures this largest distortion. Hence $\|A\|_{o p}=\|A\|_{\infty}$.
The Nuclear Norm adds up the singular values of A directly: $\|A\|_{\text {nuclear }}=\|A\|_{1}$. This norm has found widespread usage in optimization over low-rank matrices.

Figure 1. The low-rank matrices can be seen in the Schatten 1 -norm ball in the two rings of the extreme points, bounding the barrel-like shape. The far ring is all the rank one, positive semidefinite matrices $x x^{\top}$ whereas the near ring is all rank one, negative semidefinite matrices $-x x^{\top}$.

${ }_{3} D$ Model Viewer and Links

. stl files and 3D model viewer at printables.com/model/244711

- This .pdf is available at ams.jhu.edu/~grimmer/Schatten.pdf

Schatten Matrix p-Norm Balls

A Generalization of p-Norms to Matrices and a View of Low Rank Matrices

Printable Topics in Mathematics Project \#5 - First Posted 7/21/2022 ©(1) Please freely adapt or share this work with attribution

Norms are critical to calculus quantifying small changes and linear algebra measuring sizes of matrices/operators. Previously (ams.jhu.edu/~ grimmer/pNorm.pdf), we considered the p-norm of a vector v for $p \geq 1$ defined as

$$
\|v\|_{p}=\left(\sum\left|v_{i}\right|^{p}\right)^{1 / p}
$$

Here we illustrate and print the natural extension of this to matrix norms: The Schatten p-norm of a matrix A for $p \geq 1$ is

$$
\|A\|_{p}=\left(\sum \sigma_{i}(A)^{p}\right)^{1 / p}
$$

where $\sigma_{i}(A)$ is the i th smallest singular value of A. Mirroring the vector p-norm, we say $\|A\|_{\infty}=\max \left\{\sigma_{i}(A)\right\}$.

Dual Norms and Mapping Between Corners and Faces

The dual matrix norm of a given matrix norm $\|\cdot\|$ is defined as $\|W\|_{*}=\max _{\|V\|=1}$ trace $(W V)$, using the trace inner product. Like vector norms, the Schatten p-norm is dual to the Schatten q-norm with $1 / p+1 / q=1$ (A good exercise: Why?). Four pairs of dual norms $(1, \infty),(4 / 3,4),(3 / 2,3),(2,2)$ are below. For example, the barrel-shaped 1-norm ball is dual to the topshaped ∞-norm ball (their points and faces map to each other).

Embedding Matrices in 3D for Printing

In general, it is tricky to visualize a space of matrices. To do so in 3 D , we need matrices with exactly three degrees of freedom. Symmetric 2×2 matrices give us exactly this, parameterized by (x, y, z) below (rescaling y to balance it appearing twice)

$$
(x, y, z) \mapsto\left[\begin{array}{cc}
x & y / \sqrt{2} \\
y / \sqrt{2} & z
\end{array}\right]
$$

Figure 2. From left to right, Schatten p-norm balls of symmetric 2×2 matrices with $p=1,4 / 3,3 / 2,2,3,4, \infty$. Each ball has the $y=0$ plane marked, cutting through its middle. This cross section is exactly the 2 D vector p-norm ball (A good exercise: Why?).

