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A Motivating Example: Teambulding

Suppose you are organizing a teambuilding exercise among
your company/class/dorm/etc. You need to split everyone
into two groups with the goal of separating existing friends,
so new connections can form. You can represent the ex-
isting friendships as a graph, each node (i.e., vertex) repre-
sents a person and an edge is between two people if they
are friends. Then the proposed goal is to separate them
into two groups, cutting up as many edges as possible.

Below are two example social networks with the maxi-
mum cut shown, dividing it into two groups, red and blue.

Although these can be computed manually for small graphs,
Karp showed this task is NP-Complete in general. So there
is little hope for designing scalable, exact algorithms. One
famous approximation (based on the spectral approxima-
tion ideas illustrated herein) of Goemans and Williamson
always solves the problem within 12.215% of optimal.

Applications in Statistical Physics

Another problem of splitting up a complex network arises
when modeling crystal/metal lattices. Each atom possesses
a spin/magnetic orientation that interacts (aligning or re-
pulsing from its nearby neighbors). The Ising model de-
scribes a classic version of this. Computing the lowest
energy state or configuration (and hence most stable, in
some entropic sense), corresponds to finding a partition of
the lattice into two groups (up and down alignment). For
example, below are two 2D lattices simulated with regions
of up and down magnetic orientation colored red and blue.

M
aximally cutting a graph into two halves serves both as
a useful application model (see left column) and as a
fundamental task in graph theory and optimization.

Formally, given n elements to cut up, denote a division into
two groups by a vector x ∈ {±1}n assigning xi = 1 if the ith
element is in the first group and xi = −1 if it is in the second
group. Suppose placing elements i and j together has reward
Aij (potentially negative) and separating them has reward −Aij .
Then maximizing the total reward over all cuts corresponds to{

max
∑

ij Aijxixj (= x⊤Ax)

s.t. x ∈ {±1}n .

As an aside, this problem is NP-hard (as it models the NP-Hard
graph theory problem described to the left). So efficiently com-
puting a maximizing assignment is likely impossible at scale.

Two Equivalent Problem Statements

The above quadratic optimization optimizes over the corners of
a hypercube (below is an n = 3 hypercube, known as a cube).
This quadratic problem can be rewritten as linear matrix opti-
mization, using the trace inner product ⟨A,X⟩ = trace(AX):{

max x⊤Ax

s.t. x ∈ {±1}n
=


max ⟨A,X⟩
s.t. X = xx⊤

x ∈ {±1}n .

Figure 1. The convex hull of x ∈ {±1}3 and the points (a, b, c)

with

1 a b
a 1 c
b c 1

 in the convex hull of {X = xx⊤ | x ∈ {±1}3}.



3D Model Viewer and Source File Details
Disclaimer before you dive into these files: I am a mathe-
matician professionally with only a self-taught/amateur
background in three-dimensional printing and modeling.

k .stl files and 3D model viewer are available at

printables.com/model/239579

k .nb Mathematica file is available at

github.com/profgrimmer/MaxCut

k This .pdf is available at

ams.jhu.edu/~grimmer/MaxCut.pdf

Inner and Outer Approximations

The problem of computing a max cut amounts to maximizing
the linear function ⟨A,X⟩ over the convex hull from Figure 1:

MC = convexHull{X = xx⊤ | x ∈ {±1}n} .

Note this set is a polyhedron (it is constructed from a finite col-
lection of flat faces). Alas, this polyhedron blows up in complexity
as n grows, having exponentially many corner points.

Since every matrix in MC is positive semidefinite with diag-
onal entries equal to one, an outer approximation is given by

SR = {X | diagX = 1, X ⪰ 0} ⊇ MC .

This set is a spectrahedron, a useful generalization of polyhe-
drons. Consequently optimizing over SR is a semidefinite pro-
gram problem which can be efficiently solved using interior point
methods, avoiding the exponential blowup inherent to MC .

The following clever inner approximation of MC (studied by
Nesterov and Hirschfeld) shrinks SR by an arcsin function:

TA = {f(X) | diag X = 1, X ⪰ 0} ⊆ MC

where f(X) entry-wise applies xij 7→ 2
π arcsin(xij). Note this

mapping does not change ±1 entries, and so the target matrices
X = xxT with x ∈ {±1}n remain unchanged. This shrinkage
TA of SR exactly recovers MC when n = 3 (below) and gives
a strict inner approximation when n ≥ 4 (to the right).

Figure 2. For n = 3, from left to right are the inner, true, and
outer approximations TA ⊆ MC ⊆ SR, plotting possible values
of (a, b, c), matching Figure 1’s embedding.

Viewing Slices of Higher Dimensional Shapes

More interesting differences between the max-cut polytope, MC ,
and its inner/outer approximations, TA and SR, can be seen
when n > 3. Lets do n = 4. There are six degrees of freedom in
symmetric 4× 4 matrices with all ones on the diagonal,


1 a b d
a 1 c e
b c 1 f
d e f 1

 | (a, b, c, d, e, f) ∈ R6

 .

To plot/print these, we need to restrict down to just three de-
grees of freedom. Below we give three different slices of this six
dimensional space, requiring three different entries be zero.

These approximations take on a greater variety of shapes and
structures than those with n = 3 had. For example, in Figure 3,
the three-dimensional slice of MC shown is a rhombic dodeca-
hedron whose outer approximation is a sphere and in Figure 4,
the inner approximation fails to be convex.

Figure 3. For n = 4, the sets TA ⊆ MC ⊆ SR shown when
restricted to c = e = f = 0, plotting possible values of (a, b, d).

Figure 4. For n = 4, the sets TA ⊆ MC ⊆ SR shown when
restricted to b = d = e = 0, plotting possible values of (a, c, f).

One final slice of the 4 × 4 setting. The last interesting slice
in this setting is given by restricting TA ⊆ MC ⊆ SR to have
d = e = f = 0, which gives exactly the same sets shown in
Figure 2 (A good exercise: Why?). All other selections of three
entries to zero out in the 4 × 4 matrix yield rotations of the
examples in Figures 2, 3, and 4 (Another good exercise: Why?).


