Printable Topics in Mathematics

Benjamin Grimmer

Johns Hopkins, AMS

An Orthonormal Basis for Functions

A needed tool, inner products, provide a notion of angles, measuring how similar two functions are. We define the inner product between functions $f, g:[-1,1] \rightarrow \mathbb{R}$ as

$$
\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) \mathrm{dt}
$$

Two functions are orthogonal if their inner product is zero. A famous family of orthogonal polynomials are Legendre's:
$P_{0}(t)=1$

$$
P_{3}(t)=\frac{1}{2}\left(5 t^{3}-3 t\right)
$$

$P_{1}(t)=t$

$$
P_{4}(t)=\frac{1}{8}\left(35 t^{4}-30 t^{2}+3\right)
$$

$P_{2}(t)=\frac{1}{2}\left(3 t^{2}-1\right) \quad P_{5}(t)=\frac{1}{8}\left(63 t^{5}-70 t^{3}+15 t\right)$

Figure 1 . The first six Legendre polynomials.

${ }_{3}$ D Model Viewer and Links

\square.stl files and 3D model viewer at printables.com/model/826063
This .pdf is available at ams.jhu.edu/~grimmer/FuncNorm.pdf

A Generalization of p-Norms to (Quadratic) Functions

Printable Topics in Mathematics Project \#12 - First Posted 3/30/2024 (()(i) Please freely adapt or share this work with attribution

Calculus and computational mathematics often quantify small changes of functions throughout numerical processes. Previously (ams.jhu.edu/~grimmer/pNorm .pdf), we considered the p-norm of a vector v for $p \geq 1$ as

$$
\|v\|_{p}=\left(\sum\left|v_{i}\right|^{p}\right)^{1 / p}
$$

Here we illustrate their natural extension to function norms: The functional p-norm of some $f:[-1,1] \rightarrow \mathbb{R}$ for $p \geq 1$ is

$$
\|f\|_{p}=\left(\int_{-1}^{1}|f(t)|^{p} \mathrm{dt}\right)^{1 / p}
$$

Embedding Functions in 3D for Printing

In general, it is tricky to visualize a space of functions as it is "infinite-dimensional". To do so in 3^{D}, we need a family of functions with exactly three degrees of freedom. Quadratics will do...

$$
(x, y, z) \mapsto Q_{x, y, z}(t)=x+y t+z t^{2} .
$$

Although the choice above of having x, y, z the coefficients is nice, it does not provide an "orthonormal basis". To get that, we instead add together Legendre polynomials...

$$
(x, y, z) \mapsto Q_{x, y, z}(t)=x P_{0}(t)+y P_{1}(t)+z P_{2}(t)
$$

which can also represent every degree two polynomial. The benefit of selecting such a basis is that $\left\|Q_{x, y, z}\right\|_{2} \leq 1$ if and only if $\|(x, y, z)\|_{2} \leq 1$. Hence the ball of unit size functions $\left\|Q_{x, y, z}\right\|_{2} \leq 1$ is just a ball in the regular sense. For $p \neq 2$, the shape of the unit ball goes a bit wild. See below :)

Figure 2. From left to right, Function p-norm balls of quadratic (in Legendre's basis) with $p=1,4 / 3,3 / 2,2,3,4, \infty$, defined as the set $\left\{(x, y, z) \mid\left\|Q_{x, y, z}\right\|_{p} \leq 1\right\}$. For $p<1$, these are no longer norms (Exercise: Geometrically, what changes in the shape?).

