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What are Convex Cones?
Shapes like Icecream Cones.

Formalizing Definitions for Convex Cones

We capture the idea of being like an icecream cone with
the following two notions: cones and convexity. To make
our definitions rigorous, we will talk about points (typically
with names like p and q) inside a bigger space E . You can
safely think of this as being the three-dimensional world we
live in, where each point p or q is really just three numbers
giving the x, y, z coordinates of a point in space. We are
concerned with describing shapes in this space, not just
points, so we will consider some collection of these points,
denoted by a set K ⊆ E .

What makes K a cone? Cones (colloquially) all have a
tip that they extend outward from: the bottom of your
icecream cone or the top of a traffic cone. Mathematically
let’s restrict to this point being the origin (the coordinates
(0, 0, 0)). Then we say K is a “cone” if it is closed under
positive rescalings. Written formally, we require for every
p ∈ K, the set contains the ray passing through it:

λp ∈ K ∀λ > 0 .

What makes K a convex? Convex shapes (colloquially)
have no divots or dimples: a convex lens is rounded as
opposed to concave lenses that bend inward. Icecream
filling the whole interior of our cone. We say a set K is a
“convex” if for every pair of points in K, the line segment
connecting them is also in the set (preventing any divots).
Mathematically we examine all the points between p and
q via a weighted averages of them λp + (1 − λ)q, taking
λ ∈ [0, 1] fraction of p and filling the remainder with 1−λ
fraction with q. Algebraically then, convexity amounts to
requiring for every p, q ∈ K,

λp+ (1− λ)q ∈ K ∀λ ∈ [0, 1] .

Shapes with both of these properties are convex cones,
extending radially outward with no holes or dimples.

C
onvex cones occur widely in mathematical modeling as a
tool describing common problem structures. This cap-
tures problems dealing with nonnegative numbers (see

Figure 1), with distances and norms (see Figure 2), and rather
surprisingly, with spectral matrix properties (see Figures 3-4).

Numerous planning problems in operations research are for-
mulated over convex cones: Minimizing costs while shipping
nonnegative amounts of goods, maximizing profit constrained
to only small changes in a system’s design. For several of the
cones described and illustrated below, the resulting optimization
problems have grown their own areas of research: “Linear Pro-
gramming” for nonnegative cones, “Second-Order Cone Program-
ming” for Euclidean distances, and “Semidefinite Programming”
for various problems concerning eigenvalues of matrices.

The Nonnegative Orthant

Perhaps the simplest convex cone is the set of nonnegative num-
bers living on the real line. It is immediate to check that this
set is a cone (multiplying a nonnegative number by any positive
λ is certainly still nonnegative) and is convex (the average of
two nonnegative numbers always remains nonnegative). A mild
generalization of this to vectors gives our first 3D convex cone:
the set of vectors with all nonnegative entries.

The nonnegative orthant plays a fundamental role in linear pro-
gramming. There one seeks a nonnegative vector x minimizing
a linear function and satisfying a system of equations (for related
algorithms, see the simplex and interior-point methods).

Figure 1. In three dimensions, this gives the nonnegative
orthant, containing one-eighth of the whole space with three
boundary planes where x = 0, where y = 0, and where z = 0.



3D Model Viewer and Source File Details
Disclaimer before you dive into these files: I am a mathe-
matician professionally with only a self-taught/amateur
background in three-dimensional printing and modeling.

k .stl files and 3D model viewer are available at

printables.com/model/239642

k .nb Mathematica file is available at

github.com/profgrimmer/Cones

k This .pdf is available at

ams.jhu.edu/~grimmer/Cones.pdf

The Second-Order Cone

Norms provide a natural way to measure the size of a point ∥p∥
and the distance between two points as ∥p − q∥. The graph of
any norm is always a cone (the proof amounts to noting every
norm assigns the positive rescaling λp norm λ∥p∥). To make this
cone convex, we include everything above the graph, giving the
following set (called the epigraph)

{(x, u) ∈ E × R | u ≥ ∥x∥} .

Considering the Euclidean norm ∥x∥2 =
√∑n

i=1 x
2
i gives the

Second-Order Cone, capturing our typical idea of distance.
Optimization over this cone arises in stochastic linear pro-

grams, modeling Gaussian noise, and in control theory, bounding
the magnitude of adjustments and deviations from targets.

Figure 2. Taking the Second-Order Cone for two-dimensional
vectors gives a graph/epigraph living in three dimensions. The
model slices the cone, showing only the cone’s back-half.

The Positive Semidefinite Matrix Cone

Beyond considering vectors, matrices give rise to very interesting
and useful convex cones. One natural generalization of nonneg-
ative vectors to n × n symmetric matrices is given by positive
semidefiniteness (“psd” for short). A psd matrix P is one with

x⊤Px :=
∑

Pijxixj ≥ 0 for every vector x.

The set of psd matrices form a cone as x⊤(λP )x = λx⊤Px ≥ 0.
Surprisingly, the psd cone strictly generalizes both the Non-

negative Orthant and Second-Order Cone. A diagonal matrix is
psd if and only if its diagonal entries form a nonnegative vec-
tor. Only slightly more involved, considering Schur complements
gives a reduction for the above Second-Order Cone.

Figure 3. All 2× 2 symmetric matrices P are given by some

(x, y, z) 7→
[
x y
y z

]
.

The printed cone is all (x, y, z) mapping to a psd matrix. The
model slices the cone, showing only the cone’s right-half.

The Copositive Matrix Cone

A slightly enlarged family of matrices is given by relaxing the
psd definition to only require nonnegativity when nonnegative
vectors x are applied. A matrix P is copositive if

x⊤Px ≥ 0 for every nonnegative vector x.

Although this change seems mild, it fundamentally changes
the nature of the resulting cone. To date, no efficient algorithms
for checking if a matrix is copositive are known (in fact, this is an
NP-Complete task whereas checking psd-ness is relatively easy).

Figure 4. The enlarged set of 2 × 2 copositive matrices with the
same embedding as the positive semidefinite matrices in Figure 3.

Finally, a Trivial Example: Every Subspace

Lastly, note that every subspace is a cone since subspaces are
closed under scalar multiplication (not just positive scalings as
cones require) and are closed under addition (not just weighted
averages as convexity requires).

Figure 5. The z = 0 two-dimensional plane lying inside three
dimensions gives an admittedly rather degenerate convex cone.


