LIMIT THEOREMS FOR RENEWAL PROCESSES

PROP. 3.3.1 (SLLN for renewal processes)

Let $\mu = \text{EX}_1$. Then

$$\frac{N(t)}{t} \xrightarrow{\text{w.p.1}} \frac{1}{\mu}$$

as $t \to \infty$.

The diagram shows the points 0, $S_{N(t)}$, and $S_{N(t)+1}$.
Proof.

\[
\frac{S_N(t)}{N(t)} \leq \frac{t}{N(t)} \leq \frac{N(t) + 1}{N(t)} \leq \frac{N(t)}{N(t)} \leq \frac{S_{N(t)+1}}{N(t)+1}
\]

\[\text{SLLN for } S_t \text{ as } t \to \infty\]

\[\mu \quad \text{wp}\]

Therefore

\[
\frac{t}{N(t)} \to \mu \quad \text{wp}
\]

i.e.

\[
\frac{N(t)}{t} \to \frac{1}{\mu} \quad \text{wp}
\]

\[N(t) \to \infty \quad \text{wp}\]

because

\[P(\bigcap_{n=1}^{\infty} \{X_n = \infty\}) \leq \sum_{n=1}^{\infty} P(X_n = \infty) = 0.\]
CLT for N:

Thm. 3.3.5

Derivation.

If we're to have a CLT for N, we need to find how n should relate to t, so that

$$P\{N(t) < n\} \approx \Phi(z)$$

Indeed,

$$P\{N(t) < n\} = P\{S_n > t\}$$

will be

$$= 1 - \Phi(z) = \Phi(-z)$$

Switching Relation
if and only if

$$t = \mu n + z \sigma \sqrt{n}$$

where \(\mu := \mathbb{E}X \),
\(\sigma^2 := \mathbb{V}X \),

So \(P\{N(t) < n\} \) will be \(\equiv \chi(2) \)

iff

$$t = \mu n - z \sigma \sqrt{n}$$

iff

$$\mu (\sigma^2 - z \sigma \sqrt{n}) - t = 0$$

iff

$$n = \frac{2 \sigma \pm \sqrt{2 \sigma^2 + 4 \mu t}}{2 \mu}$$

$$= \frac{2 \sigma}{2 \mu} \pm \sqrt{\frac{2 \sigma^2}{2 \mu} + \frac{4 \mu t}{2 \mu}}$$
iff

\[n = \frac{2\sigma}{2\mu^2} + \frac{t}{\mu} \pm \frac{20}{\mu} \sqrt{\frac{t}{\mu} + \frac{\sigma^2 \rho^2}{4\mu^2}} \]

\[= \frac{t}{\mu} \pm \frac{20}{\mu} \sqrt{\frac{t}{\mu}} \]

\[= \frac{t}{\mu} + 20 \sqrt{\frac{t}{\mu}}. \]

This suggests

\[\Phi(z) = \Pr \{ N(t) < \frac{t}{\mu} + 20 \sqrt{\frac{t}{\mu}} \} \]

\[= \Pr \left\{ \frac{N(t) - \frac{t}{\mu}}{\sigma \sqrt{\mu}} < z \right\}. \]

This is correct!
NEXT:
THM. 3.3.4

Elementary Renewal Thm:

\[
\frac{m(t)}{t} \to \frac{1}{\mu} \quad \text{as} \quad t \to \infty
\]

\[
\text{with} \quad \frac{1}{\mu} \quad \text{if} \quad \mu < \infty
\]

\[
\frac{N(t)}{t} \to \frac{1}{\mu}
\]

does not immediately give

\[\text{E} \cdot \frac{1}{\mu} \]
DEFN. [not most general]

An integer-valued r.v. \(N \) is said to be a stopping time for an independent sequence of r.v.'s \(X_1, X_2, \ldots \) if

\[A_n: \{ N = n \} \text{ and } (X_{n+1}, X_{n+2}, \ldots) \]

are independent.
EXAMPLE. Consider a renewal process. Let

\[X_n^i = n^{th} \text{ interarrival time} \]

and consider (for fixed \(t \))

\[N(t) + 1 \]

CLAIM. \(N(t)^+ \) is a stopping time.

Proof. \(\{ N(t)^+ = n \} \)

\[= \{ N(t) = n-1 \} \]

\[= \{ S_{n-1} \leq t < S_n \} \]

is independent of \((X_{n+1}, X_{n+2}, \ldots) \).
EXAMPLE. Same set-up.

CLAIM. \(N(t) \) is \(\textbf{NOT} \) a stopping time.

Why not? \[\{ N(t) = n \} = \{ S_n \leq t < S_{n+1} \}. \]

WALD'S EQN. (THM. 3.3.2)

If \(X_1, X_2, \ldots \) are i.i.d. r.v.'s having finite expectation \(\mu \),
and if \(N \) is a stopping time for \(X_1, X_2, \ldots \), and if \(E[N] < \infty \),
\[z \approx \sum_{n=1}^{\infty} \frac{\mu \cdot \beta \cdot \mathbb{P}(N \geq n)}{n^2 \mathbb{P}(N \geq n)} \]

\[\approx \mu \cdot \beta \cdot \mathbb{E}N \cdot \mathbb{E}_n \]

X has a i.i.d. with mean

\[= \mu \cdot \mathbb{E}N, \]
ERT,

\[
\frac{m(t)}{t} \xrightarrow{t \to \infty} \frac{1}{\mu} \quad \text{(where } \frac{1}{\infty} = 0).\]

Proof. First suppose \(\mu < \infty \).

Then \(S_{N(t)+1} > t \)

\(\Rightarrow E[S_{N(t)+1}] = \mathbb{E}[m(t)+1] \)

\(> t \)

\(\Rightarrow \frac{m(t)}{t} > \frac{1}{\mu} - \frac{1}{t} \)

\(\Rightarrow \liminf_{t \to \infty} \frac{m(t)}{t} \geq \frac{1}{\mu} , \)
For an upper bound, we would like to have an inequality of the form $S \leq t$.

Fix M. Define a new renewal process \mathcal{N} in terms of

$$X_n := \begin{cases} X_n & \text{if } X_n \leq M \\ M & \text{if } X_n > M \end{cases}$$

$$S_n := \frac{\mathcal{N}}{\mathcal{N}} X_i, \quad \overline{N}(t) = \sup \{ n : S_n \leq t \}$$

Note that $S_n \leq S_n$

$$\Rightarrow \overline{N}(t) \geq N(t)$$

$$\Rightarrow \frac{\overline{N}(t)}{m(t)} \geq m(t).$$
Observe
\[\overline{S}_{N(t)+1} = \overline{S}_{N(t)} + X_{N(t)+1} \]
\[\leq t + M \]
\[\Rightarrow [\overline{m}(t)+1] \mu_m \leq t + M \]

where \(\mu_m := E X \)
\[\Rightarrow \limsup_{t \to \infty} \frac{\overline{m}(t)}{t} \leq \limsup_{t \to \infty} \left[\frac{t + M}{t} \right] \]
\[= \frac{1}{\mu_m} \]
$$\limsup_{t \to \infty} \frac{m(t)}{t} \leq \frac{1}{\mu} \forall \mu$$

As $M \uparrow \infty$, MCT implies that $\mu_M \uparrow \mu$,

so

$$\limsup_{t \to \infty} \frac{m(t)}{t} \leq \frac{1}{\mu}.$$

If $\mu = \infty$, then still holds

because Wald was applied only

to truncated X's to get μ_M, and

MCT still works to get

$$\lim_{t \to \infty} \frac{m(t)}{t} \leq 0.$$
DEFN. A r.v. $X \in \mathbb{R}$ is said to have an arithmetic distribution if there exists $d > 0$ s.t.

$$\forall n \in \mathbb{Z}, \quad \mathbb{P}(X = nd) = 1.$$
Fact. The span of an integer-valued r.v. having a geometric distribution equals non-degenerate.

\[\gcd \{ n \in \mathbb{Z} : P[X = n] > 0 \} . \]

Example.

\[2 = \gcd(4, 6) = \text{span of dist'phenomenon} \]
Suppose
\[P[X = e] = \frac{1}{2} \]
\[P[X = \pi] = \frac{1}{2} \].

Q: arithmetic or not?

A: If arithmetic, let \(d \) be span of dist'

Then
\[e = nd \] for some \(n \)
\[\pi = md \] for some \(m \)

\[d = \frac{e}{n} = \frac{\pi}{m} \Rightarrow \frac{e}{\pi} = \frac{n}{m} \]
\(d \) is rational.