
(D) Scalar Cascade and Spontaneous Stochasticity

See T&L, Section 8.6

A passive scalar contaminant in a ßuid, governed by the scalar advection-di!usion equation

! t " (x , t) + u(x, t) · rx " (x , t) = #4" (x , t)

has an inÞnite number of conservation laws in the ideal limit# ! 0, since, for any function

h : R ! R

! t h(" ) + r · [uh(" ) � #rh(" )] = �#h00(" )|r" |2.

Thus, all the integrals H (t) =
!

ddx h(" (x , t)) are (formally) conserved as# ! 0. The most

basic of these is the scalar intensityor scalar energywith h(" ) = 1

2

" 2 or

E! (t) = 1

2

!
ddx " 2(x , t).

This quantity for the case that " = T � øT , the temperature ßuctuation Þeld, was motivated by

A. M. Obukhov (1949) who noted that, when multiplied by �$cP / øT2, it represents the entropy

perturbation for a ßuid with an ideal gas equation of state. It has a turbulent cascade dynamics

of a type very similar to that of the kinetic energy of the velocity Þeld. Under spatial Þltering

the scalar equation becomes

! t ø" " + rx · [øu"
ø" " + J" ] = #4ø" "

with

J" = (u" )" � øu"
ø" " = spatial transport of scalar by subscale advection

From this coarse-grained e!ective equation, one obtains a balance equation for the scalar in-

tensity in large-scales:

! t ( 1

2

ø" 2

" ) + r · [1
2

ø" 2

" øu" + ø" " øJ" � #r( 1

2

ø" 2

" )] = �" !
" � #|rø" " |2

with

" !
" = �rø" " · J" ,

the scalar energy ßuxto small-scales. We see that the scalar ßuctuations are transferred to the

unresolved scales when

J" / �rø" " ,
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on average, that is, when the subscale transport is down-gradient. That is, the turbulent

cascade of the scalar is forwardto small scales when the space-transport is di!usiveand tends

to spread out and homogenize high concentrations of the scalar. As we shall see later, this

Eulerian view of the cascade has an exact Lagrangian counterpart.

It is quite easy to derive estimates

rø" " = O( #! (")
" ), J" = O(%u(&)%"(&))

in terms of scalar increments%"(&; x) = sup |r|<" |%"(r ; x)|, by means of techniques that are now

quite familiar. Thus, one Þnds that

" !
" = O( #u(")#! 2

(")
" ).

In terms of H¬older exponentshu, h! of the velocity and scalar, respectively, one Þnd that Ñ

pointwise Ñ

hu + 2h!  1

is necessary for non-vanishing scalar ßux. In terms of space-average ßux andpth-order scaling

exponents' u
p , ' !

p ,

( u
p + ( !

q + ( !
r  1

for any p, q, r � 1, satisfying 1

p + 1

q + 1

r = 1, with ( u
p = ' u

p /p and ( !
p = ' !

p /p . For example, with

p = q = r = 3, ( u
3

+ 2 ( !
3

 1.

The nonlinear transfer dominates only at su#ciently large scales where the scalar di!usivity#

can be ignored. Balancing

" !
" = O( #u(")#! 2

(")
" ), #|rø" " |2 = O(# #! 2

(")
"2 )

one can see that the crossover scale) ! is determined as the length-scale&such that

&%u(&) ⇠= #.

At a point where the velocity has H¬older exponenthu, this implies that

) !
h

⇠= L(Pe)
! 1

1+ hu

where

Pe = urmsL
$
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is the so-called P«eclet number. It is interesting that this length-scale depends only upon the

velocity scaling and not that of the scalar itself!

There are a number of possible scalar cascade regimes, depending upon the relative sizes of

) h = LRe�1/ (1+hu) and ) !
h = LPe�1/ (1+hu), or, equivalently, the value of the Prandtl number

P r = %
$

[so-called when# is thermal di!usivity, but called Schmidt number and denoted by Sc when

# is the mass di!usivity of a solute or airborne tracer]. There are conventional names for the

ranges:

inertial-convective: L � &� ) h, ) !
h (Re � 1, Pe � 1)

viscous-convective: ) h � &� ) !
h (Pe � 1, P r � 1)

inertial-di!usive: ) !
h � &� ) h (Re � 1, P r ⌧ 1)

viscous-di!usive: ) h, ) !
h � &

For more information on these, see T&L, Section 8.6. Here we shall focus mainly on the

Òinertial-convective rangeÓ or ÒObukhov-Corrsin rangeÓ. In this case, the velocity Þeld is in its

usual high-Reynolds-number turbulent state. For example, within K41 description, hu = 1 / 3.

Using the scaling relation " !
" ⇠ %u(&)%"2(&)/&, one sees that the condition for constant ßux of

the scalar energy is

%"(&) ⇠ " rms (&/L)1/ 3

with also h! = 1 / 3. This scaling was Þrst proposed by

A. M. Oboukhov, ÒStructure of the temperature Þeld in turbulent ßows,Ó Izv. Akad.

Nauk. SSSR, Geogr. and Geophys.13 58 (1949)

S. Corrsin, ÒOn the spectrum of isotropic temperature ßuctuations in isotropic tur-

bulence,Ó J. Appl. Phys.22 469 (1951)

In reality there is intermittency in the scalar cascade, leading to anomalous scaling

h%"p(r )i ⇠ " p
rms ( r

L )&✓
p .

In fact, it appears from experiment and simulation that intermittency is more severe for the
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scalar than for the (longitudinal) velocity! For some recent simulation data, see

T. Watanabe &T. Gotoh, ÒStatistics of a passive scalar in homogeneous turbulence,Ó

New J. Phys. 6 4 (2004)

We reproduce Figure 29 from that paper:
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Figure 29. Comparison of the scaling exponents for run 2. ICR is for the
inertial-convective range 200 < r/ ! < 400, and VCPR is for the viscous-
convective precursor range 30 < r/ ! < 60. C & C is the DNS data from Chen
and Cao [45].

Figure 30 compares the scaling exponents " L
q and " #L

q for run 2 which were obtained by averaging
the values over the range 100 < r/ ! < 300. Both curves pass through the point " L

3 = " #L
3 = 1;

again we see " L
q > " #L

q . Also plotted are the curves for the She–Lévêque model

$q = d0 + (1 − %)
q
3

− d0

!
1 − %

d0

" q/ 3

, (30)

with parameters %= 2
3 , d0 = 2 for the velocity; case 1: %= 2

3 , d0 = 1; case 2: %= 2
3 , d0 = 10

9
for the passive scalar. Agreement between the curves from the model for case 2 and from the
DNS data is satisfactory, as reported by Lévêque et al [55, 56]. The value d0 = 10

9 close to unity
suggests a sheet-like diffusive structure. The scaling exponents are listed in table 2.

5.5. Structure of the scalar and scalar dissipation fields

The energy and scalar dissipation rates &(x) and ' (x) fluctuate in space and time. These
fluctuations are considered to cause intermittency of the turbulence and scalar fields. It is
therefore very interesting to see their spatial structures. Figures 31–33 show two-dimensional
slices through the scalar field, the energy and scalar dissipation fields at the same time. The side
of the square is 2( . The colour scale is determined by the following formula:

) = sign(#)
! |#(x)|

#rms

" 1/ 2

,

* A = sign
!

ln
!

A(x)
⟨A⟩

"" !
ln

!
A(x)
⟨A⟩

"" 1/ 2

, (31)

New Journal of Physics 6 (2004) 40 (http://www.njp.org/)

One of the exciting developments of the 1990Õs is that the scaling exponents' !
p were calculated

analytically in a model of passive advection by a synthetic turbulent velocity Þeld that was

taken to be a Gaussian random Þeld with zero mean and covariance, forr ⌧ L, of the form

h%ui (r , t)%uj (r , t 0)i = DPij (r)r ' %(t � t 0)

with Pij (r) = %ij � ! i ! j 4�1 the projection onto solenoidal velocity Þeld and with an exponent

0 < ' < 2 for the spatial scaling of the velocity Þeld. This is called the Kraichnan modelor the

rapid-change velocity ensemble, which was Þrst introduced by

R. H. Kraichnan, ÒSmall-scale structure of a scalar Þeld convected by turbulence,Ó

Phys. Fluids 11 945-953 (1968)

who pointed out the key fact that there is no Òclosure problemÓ for this model and that scalar

corrections obey exact, closed equations. For an extensive review on the analysis of this model,
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by some of the principal researchers, see:

G. Falkovich, K, Gawüedzki & M. Vergassola, ÒParticles and Þelds in ßuid turbu-

lence,Ó Rev. Mod. Phys.73 913-975 (2001).

This work goes beyond the scope of this course, but students are encouraged to study the above

review! We shall later discuss some other important discoveries made within the Kraichnan

model that appear to be relevant to real turbulence.

Scalar cascade leads to the same type of Òdissipative anomalyÓ for the scalar energy as was

discussed earlier for the kinetic energy. An alternative approach to the large-scale balance of

scalar energy is to consider the smooth Òpoint-splitÓ regularization

e⇤!
" (x , t) = 1

2

" (x , t)ø" " (x , t)

which is easily shown to satisfy

! t (
1
2

" ø" " ) + r · [(
1
2

" ø" " )u +
1
4

[u(" 2)]" � 1
4

u(" 2)" � #r(
1
2

" ø" " )]

= � 1
4&

"
ddr (rG)"(r ) · %u(r )|%"(r )|2 � #r" · rø" " (14)

If one takes # ! 0 Þrst and &! 0 second, one derives in the same manner as for the velocity

Þeld that, in the distribution sense,

! t ( 1

2

" 2) + r · ( 1

2

" 2u) = �D! (u, " ) ( * )

with

D! (u, " ) = lim "!0

1

4"

!
ddr (rG)"(r ) · %u(r )|%"(r )|2,

as long asu, " 2 L 3 in spacetime. If one takes the opposite limit of&! 0 Þrst, at Þxed# > 0,

then one obtains

! t ( 1

2

" 2) + r · [1
2

" 2u � #r( 1

2

" 2)] = �#|r" |2.

If " $ ! " as # ! 0 in the strong L 3 sense, then one gets (* ) again, but now with

D! (u, " ) = lim $!0

#|r" $ |2 � 0.

It is interesting that, in this form, D! (u, " ) depends (explicitly) only on the scalar Þeld.
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Finally, it may also be inferred that

limr !0

h#uL(r)|#! (r)|2iang

r = �4

dD! (u, " )

which is a spacetime local form of the scalar 4/ 3-law or Yaglom relation Þrst derived by

A. M. Yaglom, ÒLocal structure of the temperature Þeld in a turbulent ßow,Ó Dokl.

Akad. Nauk. SSSR69 743-746 (1949)

For a current test of this relation, globally in spacetime, we can refer to Figure 8 of Watanabe

& Gotoh (2004):
13 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 10 100 1000

−〈
δu

r3 〉
/–

r,
−〈

δu
rδ

θ r2 〉/χ
– r

r/η

4/3

4/5
Rλ=258
Rλ=427
Pλ=258
Pλ=427

Figure 8. Approach of the curves to the 4
5- and 4

3-laws. Curves are plotted for
−⟨δu3

r ⟩/(ϵ̄r) and −⟨δθ2
r δur⟩/(χ̄r) for runs 1 and 2, respectively.

r/η = 300. Although it is not certain whether the flat portion in the ζθ
2(r) curve emerges

at the level of those local minimum and maximum values as Péclet number increases, the
local maximum value 0.66 is already within the 5% error bound of the velocity scaling
exponent 0.696. If the Kolmogorov theory does not apply to the second-order scaling exponents,
there seems no reason to expect ζθ

2 = ζL
2 = ζT

2 . The local maximum and minimum in ζθ
2(r)

imply the existence of two scaling ranges.

3.4. 4
3 -law for the scalar variance

Kolmogorov’s 4
5-law is an asymptotically exact result for turbulence, and the corresponding

formula for the passive scalar was derived by Yaglom [22]. When the Reynolds number and
Péclet number are very large, the scalar field in a steady state obeys the equation

⟨δurδθ
2
r ⟩ = −4

3
øχr + 2κ

d
dr

⟨δθ2
r ⟩ + Fθ(r), (22)

where Fθ(r) is the input term from the random scalar source acting at large scale. When the
separation distance r is much smaller than the macroscale Lθ and much larger than the diffusive
scale ηB, the second and third terms in (22) are negligible, thus the 4

3-law is obtained as

⟨δurδθ
2
r ⟩ = −4

3 øχr. (23)

It is important to notice that the lower end of the range for the 4
3 -law to hold is not at η but

at ηB. Since ηB = Sc−1/2η for Sc ! 1, the above 4
3 -law is valid for both inertial-convective and

viscous-convective ranges when Sc ≫ 1. Figure 8 presents curves of −⟨δu3
r ⟩/(øϵr) for the 4

5-law
and −⟨δθ2

r δur⟩/( øχr) for the 4
3-law [4, 10, 20, 48, 50, 51]. When Rλ and Pλ increase, the width

of the plateau of the curves becomes wider and their values approach 4
5 and 4

3 , respectively. The
plateau of the curves for the scalar extends to scales slightly smaller than those of the velocity

New Journal of Physics 6 (2004) 40 (http://www.njp.org/)

As one can see, Reynolds and P«eclet numbers presently achievable are still not large enough to

completely verify the relation.

The important conclusion of our discussion is that a passive scalar in a turbulent ßow should

also exhibit anomalous dissipation of scalar energy in the limit# ! 0, or Pe ! 1. Direct

evidence for non-vanishing scalar dissipation in simulations and experiment is reviewed here:

Donzis, D., Sreenivasan, K. R., and Yeung, P. K. Scalar dissipation rate and dissi-

pative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199Ð216 (2005)
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In this study, the authors non-dimensionalized the mean scalar dissipation rate+! = h#|r" |2i

as

D! =
+!

" 2

rms /T
,

where T = L 2/ 3/ h+i is the large-eddy turnover time deÞned by the velocity integral lengthL

and the mean kinetic-energy dissipation rateh+i. This scaling can be motivated by considering

the Yaglom law at r ' L, in which case%"(r ) ' " rms and r/%u(r ) ' T. With this scaling, the

dimensionless dissipation for di!erent Schmidt numbers appears as:

The empirical results show not only an apparent asymptote forRe � 1, Pe � 1, but also

decreasing dependence onSc in the limit.

We have seen that the physical origin of the scalar dissipative anomalyÑ in the Eulerian

description Ñ is the di!usive mixing by the velocity Þeld. As we shall now discuss, the scalar

anomaly has been rigorously demonstrated to occur in the Kraichnan model. Furthermore,

extremely interesting insights have been obtained there on the Lagrangian mechanism of the

anomaly.
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Spontaneous Stochasticity

We return to the consideration of Lagrangian particle evolution in a turbulent ßow in the limit

, ! 0, or Re ! 1. In that limit, the velocity Þeld becomes rough with H¬older exponent

0 < h < 1, say, and a pair of particles can separate to a distance $(2)(t) at time t bounded

above by

$ (2)(t)  [$ 1�h
0

+ (1 � h)A(t � t
0

)]
1

1! h (* )

if the initial separation is $
0

at time t
0

. We earlier considered the limit t ! 1 and showed

that, for h < 1, the initial particle separation $
0

is ÒforgottenÓ at long times. Another way

to consider the same problem is to take the limit $
0

! 0 with time t Þxed. In that case, one

obtains

$
0

! 0 : $ (2)(t)  [(1 � h)A(t � t
0

)]
1

1! h .

But, according to this estimate, it is possible that two particles started at the SAME point

may separate to a Þnite distance at timet > t
0

!!! This seems to contradict the expectation that

there should be a unique solution of the equation

d
dt x(t) = u(x(t), t), x(t

0

) = x
0

However, uniqueness need not hold ifh < 1. The inequality (* ) does imply uniqueness ifh = 1,

since in that case

$ (2)(t)  $
0

eA (t�t 0) ! 0, as $
0

! 0

But for h < 1, clearly, no such conclusion may be drawn.

Simple examples, furthermore, show that such non-uniqueness really occurs. A standard exam-

ple is, for x 2 R
+

,

dx
dt = Ax h, x(0) = 0

which has at least two distinct solutions:

x
1

(t) = [(1 � h)At ]
1

1! h

x
2

(t) ⌘ 0. (15)

As a matter of fact, this example has a continuumof solutions corresponding to a parameter
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- � 0

x(t; - ) = [(1 � h)A(t � - )
+

]
1

1! h

where (s)
+

= s for s � 0 and (s)
+

= 0 for s < 0. The quantity - corresponds to the duration

of time that the particle ÒwaitsÓ atx = 0 before moving to the right. Thus, x
1

(t) = x(t; 0) and

x
2

(t) = x(t, 1). For more on the phenomenon of non-uniqueness of solutions of ODEÕs with

non-smooth (non-Lipschitz) velocities, see, for example,

P. Hartman, Ordinary Di!erential Equations (Wiley, New York, 1964), Chapter II.

We have come to a very important Ñ and a bit distressing! Ñ point in our deliberations. We

know from OnsagerÕs work that the turbulent velocity Þeldu(x, t) cannot remain Lipschitz, or

even H¬older continuous with exponenth > 1

3

, in the limit , ! 0 or Re ! 1. At least this is true

if turbulent energy dissipation + does not vanish in the limit, as experiments and simulations

suggest. However, the most common explanation for the enhancement of energy dissipation in

turbulent ßow is G. I. TaylorÕs mechanism of vortex line-stretching. This mechanism assumes

that vortex lines move like material lines and, more importantly, that circulations on material

loops are conserved. But what is meant by a Òmaterial lineÓ or a Òmaterial loopÓ if there is

a non-uniqueness of Lagrangian trajectories? It is not even clear how to formulate the Kelvin

Theorem in this case, let alone to determine whether it is true or false. At this point, there

is no generally accepted answer these questions. We regard it as one of the most important

outstanding problems in theoretical turbulence today.

Some very important advances on this problem have been made in the last decade, however,

in the context of the Kraichnan white-noise advection model. Furthermore, it has been found

there that non-uniqueness of Lagrangian trajectories is intimately related to the anomalous

dissipation of passive scalar energy. We cannot give full details of these developments, which

go beyond the scope of the course, but we brießy review here the main Þndings.
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The most signiÞcant discovery in this context was the phenomenon of spontaneous stochasticity:

D. Bernard, K. Gawüedzki & A. Kupiainen, ÒSlow modes in passive advection,Ó J.

Stat. Phys. 90 519-569 (1998), Section 7; cond-mat/9706035

and also

K. Gawüedzki, ÒSoluble models of turbulent advection,Ó Lectures given at the work-

shop Random Media 2000, Madralin by Warsaw, June 19-26, 2000;nlin.CD/0207058

K. Gawüedzki & M. Vergassola, ÒPhase transition in the passive scalar advection,Ó

Physica D 138 63-90(2000);cond-mat/9811399

In the last two works the phenomenon was called Òintrinsic stochasticityÓ instead. However, in

a later work

M. Chaves et al.,ÒLagrangian dispersion in Gaussian self-similar velocity ensembles,Ó

J. Stat. Phys. 113 643-692 (2003);nlin/0303031

the term Òspontaneous stochasticityÓ has been suggested instead. We shall refer this latter

terminology. The heuristic picture is as follows:

Figure 1
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The term ÒspontaneousÓstochasticity is used, since the equation (* ) is deterministic and involves

no random element, for Þxedu. What is the origin of the randomness? One way to understand

this is to obtain the probability distribution by regularizing the velocity Þeld by Þltering, so

that particle trajectories of

d
dt

x " (t) = øu"(x " (t), t), t > t
0

x"(t0) = ↵ (16)

are unique, but then to average over an ensemble of random initial conditions↵0 = ↵ + $

centered on↵ and with variance $.

What is this Òspontaneous stochasticityÓ that has been demonstrated for the Kraichnan model?

The essential point is this: take a Þxedvelocity Þeld realization u(x, t) from the Gaussian

ensemble with exponent. in space and delta-correlated in time. These velocities are H¬older

continuous with exponent h = ./ 2, 0 < h < 1, with probability one. It is then found that the

equation #
$%

$&

d
dt x(t) = u(x(t), t), t > t

0

x(t
0

) = ↵
(⇤)

does not have a unique solution: there is a continuous inÞnity of Lagrangian trajectories.

However, remarkably there is a unique random ensemble of solutions of (⇤). In particular, there

is a nontrivial transition probability density

P
u

(x , t|↵, t
0

) = h%d(x � X t
t0

(↵))i
u

where the averageh·i
u

is over the ensemble of solutions of (⇤). Thus, P
u

(x , t|↵, t
0

) gives the

probability of observing the particle at x at time t which started at ↵ at time t
0

. We emphasize

that the velocity Þeld u is Þxedand there is no averaging overu. This transition probability

can be coarse-grained over initial particle locations with a kernelg( :

P ((," )

u

(x , t|↵, t
0

) =
!

d! g( (! ) %(x � X
t
",t 0

(↵ + ! )) .

This is the probability density for a particle to arrive to x at time t which was released at

location ↵ + ! at time 0 with density g( ($) .Thus, the picture becomes
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Figure 2.

It was been proved in the Kraichnan model that a limit exists if one takes Þrst&! 0 and then

$ ! 0

P
u

(x , t|↵, t
0

) = lim ( !0

lim"!0

P ((," )

u

(x , t|↵, t
0

)

Furthermore, the limit is independent of which Þlter kernel G" was used to regularizeu and

which distribution g( was sampled to obtain initial conditions! These transition probability

densities satisfy obvious conditions that
!

ddxP
u

(x , t|↵, t
0

) = 1 and P
u

(x , t
0

|↵, t
0

) = %d(x �↵),

as well as the condition
!

dd/ P
u

(x , t|↵, t
0

) = 1

which expresses incompressibilityof the ßuid. Another important property is that (in a suitable

sense)

(! t0 + u(↵, t
0

) · r) )P
u

(x , t|↵, t
0

) = 0

which can be seen formally by rewriting P
u

(x , t|↵, t
0

) = h%d(x � A t0
t (↵))i

u

and using the

equation Dt0 A t0
t (↵) = 0. This result is a consequence of the fact thatP

u

is supported on

Lagrangian particle trajectories of the velocity Þeldu.

We have focused so far on forwardevolution with t > t
0

, but the equation (⇤) can also be solved

backward in time for t < t
0

. The previous picture is then time-reversed:
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Figure 3.

The transition probabilities P
u

(x , t|↵, t
0

) make sense for anyt, either t > t
0

or t < t
0

. The

properties that we have discussed above hold for both the future and for the past.

The above properties allow one to introduce solutions of the initial-value problem(IVP) of the

scalar advection equation#
$%

$&

(! t + u(x, t) · rx )" (x , t) = 0 , t > t
0

" (x , t
0

) = "
0

(x)
by averaging over Lagrangian particle trajectories backward in time

" (x, t) =
"

dd/ "
0

(↵)P
u

(↵, t
0

|x, t), t > t
0

(⇤⇤)

It is remarkable that this set of solutions can be obtained by a number of physical limits. For

example, if the velocity Þeld is smoothed,u ! øu", then one can introduce" (") as the solution

of #
$%

$&

(! t + øu"(x , t) · rx )" (")(x , t) = 0 , t > t
0

" (")(x , t
0

) = "
0

(x)
and then it can be shown that

" (x , t) = lim "!0

" (")(x , t).

Another important regularization is to add di!usion, yielding solutions " $ to the equation
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#
$%

$&

(! t + u(x, t) · rx )" $(x , t) = #4" $(x , t)

" $(x , t
0

) = "
0

(x)
We recall that these can be represented by the formula

" $(x, t) =
!

dd/ "
0

(↵)P$
u

(↵, t
0

|x, t)

where P$
u

(↵, t
0

|x, t) is the transition probability for the stochastic ODE#
$%

$&

dX s
t (x) = u%(X s

t (x), s)ds +
p

2#dW (s), s < t

X t
t (x) = x

solved backwardin time. It can be shown that

P
u

(↵, t
0

|x, t) = lim %,$!0

P%,$
u

(↵, t
0

|x, t)

and thus also that

" (x , t) = lim %,$!0

" %,$(x , t),

recovering the solution given in (⇤⇤). In the Kraichnan model with an incompressible velocity

Þeld, it can be furthermore proved that limits are independent of the Prandtl numberP r = ,/#.

There is direct evidence of similar Òspontaneous stochasticityÓ in incompressible ßuid tur-

bulence. We have already seen from the numerical results of Bitane et al. (2013) for Richardson

dispersion that the mean-square distanceh[$ (2)(t)]2i between particle pairs ÒforgetsÓ the initial

separation $
0

at long times. For stochastic Lagrangian particles subject to di!usivity #, the

comparable result was already observed in

G. L. Eyink, ÒStochastic ßux freezing and magnetic dynamo,Ó Phys. Rev. E83

056405 (2011),

where stochastic Lagrangian particles were numerically calculated in the JHU database of ho-

mogeneous, isotropic turbulence:

http://turbulence.pha.jhu.edu/Forced_isotropic_turbulence.aspx

The mean-square separation backward in time was obtained at two di!erent values of#, # = ,

and # = 10, :
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As can be seen, the precise value of# is ÒforgottenÓ after a time of order (#/0)1/ 2 and the

mean-square dispersion at long times is in agreement with the Richardsont3 prediction.

More recently, the paper

T. D. Drivas and G. L. Eyink, ÒA Lagrangian ßuctuation-dissipation relation for

scalar turbulence. Part I. Flows with no bounding walls,Ó J. Fluid Mech. 829

153Ð189 (2017)

has made a similar study with the JHU database, but without averaging over initial points. The

results are shown on the following page for two particular release pointsx, the one shown on the

right near a strong vortex and the other on the left in ÒbackgroundÓ turbulence. It can be seen

that, even without averaging over release points, the mean-square dispersion exhibits an early-

time di!usive growth / 12#t and then a super-ballistic growth at longer times. Also shown are

the transition probability densities p(y0, 0|x, t f ) for one of the particle Cartesian coordinates

y0. Although one cannot take the limit , ! 0 using the database with a single value ofRe,

neverthelessRe � 1 and the transition probability densities are reasonably independent of

P r = ,/#, as predicted for incompressible ßuid turbulence in the Kraichnan model.
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FIGURE 1. (Colour online) (a,c,e) Plots for release atx = (4.9637, 3.1416, 3.8488) in the
background region; (b,d,f ) plots for release atx = (0.2610, 3.1416, 1.4617) near a strong
vortex. (a,b) Plots of 30 representative stochastic trajectories forPr = 0.1 (green, light), 1.0
(blue, medium) and 10 (red, heavy) together with isosurfaces of coarse-grained vorticity
| ø! |TL = 15 at times= (2/ 3)TL. (c,d) Plots of particle dispersions (heavy) and short-time
results 12ös (light) for eachPr, with Pr = 0.1 (green, dot,á á á á á á), 1.0 (blue, dashÐdot,
Ñ áÑ) and 10 (red, dash, Ð Ð Ð), and a plot in (solid, ÑÑ) ofg"ös3 with g= 0.7 (c) and
g= 4/ 3 (d). (e,f ) Plots of py(y!, 0|x, tf ) for the threePr values with the same line styles
as in (c,d).
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It might be expected that the scalar solutions given by" (x, t) =
!

dd/ "
0

(↵)P
u

(↵, t
0

|x, t)

shall be dissipative, when P
u

(↵, t
0

|x, t) is a non-deterministic distribution. This can be indeed

shown directly. Take any convex function h(" ), e.g. h(" ) = 1

2

" 2. Then, since Òthe average of the

values is greater than the value at the averageÓ (JensenÕs inequality) for any convex function

h(" (x , t)) = h(
!

dd/ "
0

(↵)P
u

(↵, t
0

|x, t)) 
!

dd/ h ("
0

(↵))P
u

(↵, t
0

|x, t)) , t > t
0

Integrating over x and using the volume-preserving property then gives that
!

ddx h(" (x , t)) 
!

dd/ h ("
0

(↵)) , t > t
0

.

Hence, the integrals H (t) =
!

dd/ h (" (↵, t)) are decreasing in time, or dissipated! Thus,

the formula (⇤⇤) provides the Lagrangian formulation of the scalar dissipation anomaly. The

physics is very closely related to that seen in the Eulerian description, which is di!usive mixing.

The formula (⇤⇤) shows that the solution " (x, t) is an average over the values of the initial data

"
0

(x), due to turbulent mixing produced by the stochastic Lagrangian trajectories.

For more discussions of these problems, see

W. E. and E. vanden-Eijnden, ÒGeneralized ßows, intrinsic stochasticity, and tur-

bulent transport,Ó Proc. Nat. Acad. Sci. 97 8200-8205 (2000)

W. E. and E. vanden-Eijnden,ÒTurbulent Prandtl number e!ect on passive scalar

advection,Ó Physica D152-153 636-645(2001)

W. E. and E. vanden-Eijnden,ÒA note on generalized ßows,Ó Physica D183 159-174

(2003)

and, at a rigorous mathematical level,

Y. LeJan & O. Raimond, ÒSolutions statistiques fortes des «equations di!«erentielles

stochastiques,Ó C. R. Acad. Sci. Paris S«er. I. Math.327 893-896 (1998)

Y. LeJan & O. Raimond, ÒIntegration of Brownian vector Þelds,Ó Ann. Probab.30

826-873(2002)

Y. LeJan & O. Raimond, ÒFlows, coalescence and noise,Ó Ann. Probab.32 1247-

1315 (2004).
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These papers give rigorous proofs for the Kraichnan model of the various results discussed

above. In fact, as emphasized in the paper of Eyink & Drivas (2017) cited above, the original

argument of Bernard et al. (1998) rigorously shows that spontaneous stochasticity is required

for anomalous dissipation of a freely-decaying scalar, for any advecting velocity Þeld whatsoever,

and whether the scalar is active or passive. The key mathematical point here is that JensenÕs

inequality for a strictly convex function can become an equality if and only if the particle

distribution function is deterministic (i.e. a delta function).

The paper of Eyink & Drivas (2017) has also proved mathematically for any advecting

velocity Þeld whatsoever and with possible time-dependent sources injecting the tracer, that

anomalous scalar dissipation can occur if and only if Lagrangian particle trajectories become

spontaneously stochastic. Even if the scalar is active (i.e. the velocity dynamics depends

upon " somehow), then spontaneous stochasticity is still necessary for anomalous dissipation.

The proofs exploit an exact ÒLagrangian ßuctuation-dissipation relationÓ that was previously

derived by

Celani, A., Cencini, M., Mazzino, A. & Vergassola, M. 2004 Active and passive Þelds

face to face. New J. Phys.6 72 (2004).

These statements about necessity of spontaneous stochasticity only hold away from solid walls,

as discussed here:

T. D. Drivas and G. L. Eyink, ÒA Lagrangian ßuctuation-dissipation relation for

scalar turbulence. Part I. wall-bounded ßows,Ó J. Fluid Mech.829 236Ð279 (2017)

In the presence of walls, thin scalar boundary layers are another possible mechanism of anoma-

lous scalar dissipation. However, it can still be shown even in the presence of walls that

spontaneous stochasticity is su#cient to produce anomalous for a passive scalar.
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