(C) Inertial-Range Lagrangian Dynamics & Lagrangian Intermittency

We have earlier discussed the Lagrangian dynamics associated to the coarse-grained/large-scale
velocity field uy, defined via the flow maps Xz’to that satisfy
<t — it
X)) = WXy (a)t)

<t
X‘Z,to (a) = «

For example, these appeared (implicitly) in our discussion of the inertial-range validity of the
Kelvin Theorem, where the loop Cy(t) was defined as Kz’to (C). The flows tho correspond to
advection by all the turbulent eddies at length-scales > ¢. They satisfy all the usual properties
of Lagrangian flow maps, such as the semi-group property, volume-preserving, etc. One may

thereby define the large-scale Lagrangian velocity

_ <t _ o~
v?,to (a> - %X&to (a) = ue(Xf,to (a)7t)

and large-scale Lagrangian acceleration

_ &2 <t = _ =t
ap 1, (@) = G Xegy (@) = Depte(Xy (@), 1)

For simplicity hereafter we take t9 = 0 and write v/(a,t) and as(a,t) for the large-scale
Lagrangian velocity &acceleration, respectively. By invoking the Navier-Stokes equation, one
obtains

as(a,t) = —Vupe(x,t) + £5(x,t) + vAu(x, t) + £ (x,t)| _
x:XZ(a’t)
We know from previous estimations that

— ou(l I
v = 0w i), 1 = o(|I?|)

whereas

Vi, f7 =025}
and the latter dominate at inertial-range scales. Thus, we conclude that
(v 1) = O(29)
with du(¢;x,t) evaluated at x = Xy(a,t). This gives a simple estimate of the large-scale

Lagrangian velocity increment in time, using

Note that for the pressure gradient this scaling is not established locally, but only in the sense of space-average

of pth-powers. A useful local estimate is Vp, = O(dp(¢)/£).
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ove(tsat) := Vy(o,t +7) — Vo(a, t) = [ ag(a, t + o)do
Hence,
594(7; e, t) = O(imasO) )
where §umax(€) = sup,cp ) du(l; Xo(a,t+0),t+ o).
Since the natural time-scale of the Lagrangian velocity at length-scale ¢ is 7, = £/du(¥), the

local eddy turnover time, we may guess that the order of magnitude is the same for all o € [0, 7¢],

i.e. dumax(f) = ou(f) and thus, heuristically,
6vi(r) = 0* (2 0r), 7 <7
In particular,
6vy(1e) = O*(bu(())

or, to good approximation,

0vy(1e) = ou(l).

This result gives an important bridging relation between space-increments of the Eulerian ve-

locity and the time-increments of the large-scale Lagrangian velocity.

It has furthermore been argued by

G. Boffetta, F. De Lillo &S. Musacchio, “Lagrangian statistics and temporal inter-
mittency in a shell model of turbulence,” Phys. Rev. E. 66 066307(2002)
L. Biferale et. al.,“Multifractal statistics of Lagrangian velocity and acceleration in

turbulence,” Phys. Rev. Lett. 93 064502 (2004)

that it should be true that

ov(7e) = 6ve(Te)
where v(a,t) is the full Lagrangian velocity from all scales of motion. We shall give a fairly
careful argument for this which leads to a somewhat stronger conclusion that, pointwise and

not just for increments,
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via,t) = ve(a,t) + O(6u(f))

for |t| < 7y, where it is assumed that labeling is done at time ¢y = 0.

In the first place, we recall the result for the Eulerian velocity that

u(x,t) —u(x,t) = uy(x,t) = O(6u(?)),
which is the counterpart to the above Lagrangian result. We next compare the Lagrangian
flows, Xy(a,t) and X (e, t), generated by the two velocity fields?. These satisfy

X(a,t) = a+ [y uX(a,t'),t')dt,
Xy(a,t) = a+ [ia(Xo(a,t'),t')dt’
so that, taking the difference,
X(a,t) — Xy(a,t) fo{ug A, ) + [0 (X (e, ), ) — (X (e, t), t)] }dt!

and thus

X (a,t) — Xy(a,t)| < O(5u(f)t)

X (e, t) — Xo(a, t')|dt!

using uy, = O(du(f)), Vu, = O(éug(é)). If we only consider times t < 7y = #2@’ then

We can then appeal to a standard mathematical result, the Gronwall inequality which states,

in one simple form, that if
x(t) §a+bfgx s)ds
for all ¢ € [0,77], then
z(t) < aexp(bt)
for t € [0, T]. Applying this inequality we get
X (e, t) — Xo(a, t)] < (const.)lexplO(2484)] = O(¢)

for times t < 7 = O(¢/ou(?)).

2Tt is important to stress that we are here considering u(x,t) to be the solution of the Navier-Stokes equation
with v > 0. Even Leray singular solutions of NS are known to have sufficient regularity to define unique, volume-
preserving flow maps, by a theorem of R. J. DiPerna & P. L. Lions, “Ordinary differential equations, transport
theory and Sobolev spaces,” Invent. Math. 98 511-547 (1989). This was one of the works cited in the award to

Lions of the Fields Medal in 1994.
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Heuristically, since the difference in velocity of the two trajectories X(a,t),X,(ax,t) is uj =
O(du(?)), they can differ over times t < 7y by distances at most O(du(¥) - 7¢) = O(¢). The flow
map X,(a,t) is a “smoothed” version of X (e, t):
X%
Qe )

7 X (o7 )

The maximum distance up to time 74 is O(¥).

Finally, we compare the Lagrangian velocities, v(a,t) = u(X(e, t),t) and vo(a, t) = 0(Xy(ex, t), t).

Applying the previous result that X(e,t) — Xy(ax, t)

O(0), we get for t < 7 that
u(X(a, t),t) — u(Xe(a, t),t) = O(du(f)).
Next we use again the Eulerian result that
u(Xe(ot),t) — e(Xy(er, 1), ) = uy(Xe(er, 1), 1) = O(5u(l))
Putting this altogether, we conclude that
v(a,t) = ve(a,t) + O(6u(l))

for t < 7y, as claimed.
Since we may label particles at any arbitrary time ¢, we can conclude that
ov(tpat) = via,t+1) —via,t)

= [Vile,t 4+ 70) — ve(a, t)] + O(ou(¥))

= 5\74(7’4;0,@ +O((5U(£)) (11)

However, we have argued earlier that
(5\_/'@(7'@) = 5u(€)

We thus conclude that
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ov(ty) = du(f)

This is the bridging relation between Lagrangian time-increments and Eulerian space-increments

proposed by Boffetta et al. (2002) and further analyzed by Biferale et al. (2004).

We now examine some simple consequence of this relation, first within the perspective of K41
theory. Since in K41 7y ~ ()~1/3¢2/3 one has that
()0 ~ ({e)m) /2.
The standard K41 scaling ((6u(£))?) ~ ({)£)P/3 thus translates into
Kal: ((0u(r)P) ~ Cypl(e)T)?/?

Such results go back, essentially, to the original paper of Kolmogorov in 1941. He proposed
there that his similarity hypotheses could be applied to a general velocity increment of the form
dw(l,T;x,t) =u(x+ L +u(x,t)r,t +7) —u(x,t)

[with a slight change in notations]. For 7 = 0,dw(¢,7 = 0) is the usual space-increment of
velocity ou(f). On the other hand, one gets for £ = 0 a “quasi-Lagrangian time-increment”

following the fluid particle moving with the initial fluid velocity u(x,t). However, Kolmogorov

did not work out the concrete predictions for Lagrangian velocity correlations. This seems to

have been done first by Obukhov and by Landau, independently, just after the appearance of

Kolmogorov’s first paper in 1941. They both observed the p = 2 case of the above relation:
((6v(7))?) ~ Cafe)T

This result was first published, apparently, in the 1944 edition of the Landau &Lifshitz text on

fluid mechanics. It was subsequently rediscovered by a number of people, in particular

E. Inoue, “On the turbulent diffusion in the atmosphere,” J. Met. Soc. Japan 29
246-252(1951)

E. Inoue, “On the Lagrangian correlation coefficient for turbulent diffusion and its
application to atmospheric diffusion phenomena,” Geophys. Research Papers 19

397-412 (1951), Air Force Cambridge Research Laboratory
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It is noteworthy that the linear scaling ((dv(7))?) o 7 is identical to that for the time-increments
of a Brownian motion/Wiener process, although the physics is quite different. One important
consequence, however, is the same: just like the Wiener process, the Lagrangian velocity in
turbulence in the limit Re — oo is not differentiable in time! Instead, in K41 theory v(ea,t) is

Holder continuous with (maximal) exponent 1/2 in the time variable t.

Another interesting historical sideline is that Richardson (1926) already raised similar issues.

The title of his section 1.2 was “Does the wind possess a velocity?” He went on to explain:

This question, at first sight foolish, improves on acquaintance. A velocity is de-
fined, for example, in Lamb’s “Dynamics” to this effect: Let Ax be the distance
in the z direction passed over in a time At, then the xz-component of velocity
is the limit of Az/At as At — 0. But for an air particle it is not obvious
that Axz/At attains a limit as At — 0. We may really have to describe the
position z of an air particle by something rather like Weierstrass’s [continuous,

nowhere-differentiable] function.”

According to our modern understanding the Lagrangian velocity v(e,t) = dX (e, t)/dt does
exist in the infinite Reynolds number limit Re — oo, but the Lagrangian acceleration a(a,t) =

dv(a,t)/dt does not exist (at least in the classical sense) as Re — oo.

The previous results are all K41 style and ignore the possible effects of fluctuations. The first

consideration of intermittency in Lagrangian statistics seems to have been given by

M. S. Borgas, “The multifractal Lagrangian nature of turbulence,” Phil. Trans. R.

Soc. Lond. A 342 379-411 (1993)

Borgas considered a description of intermittency based on energy dissipation. In that frame-
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work, he proposed an analogue of the “bridging relation” dv(ry) = du(f) with 7o = ¢/6u(?).
We shall here follow instead the discussion of Boffetta et al. (2002) and Biferale et al. (2004),
which is instead in the spirit of the Parisi-Frisch theory for spatial intermittency of velocity

increments. See also

L. Chevillard et al.,“Lagrangian velocity statistics in turbulent flows: effects of

dissipation,” Phys. Rev. Lett. 91 214502 (2003)

Following Boffetta et al. (2002), Biferale et al. (2004) let us then assume that

1

ov(re) = ou(l), 5

and also that
du(l) ~ uo(z)"
at a given spacetime point with probability
Prob(6u ~ ") ~ (£)x
for a codimension spectrum x(h). From 7y = £/Ju(f) one then easily obtains that

. T =L =large-eddy turnover time

{\1—
T ()lh -

T ~\T

It then follows that

and

Therefore,

h+~k(h)
(6(r)P) ~ [ dp() (5) T
This yields by the usual steepest descent argument that
(Gu(n))) ~ub(F)F, T<T

with
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€L = infy, [PREEMY ()

This relation has a number of remarkable implications.

First, we note that x(h) can be recovered from the usual scaling exponents ¢, of the space-
increments of velocity by the inverse Legendre transform D(h) = inf,[ph+ (d — ()] and x(h) =
d — D(h). This in turn, by (x), yields the exponents 515 . Thus, according to the multifractal
theory, the exponents ¢, and 55 are not independent but, in fact, are each uniquely derminable

from the other! This is testable, parameter-free prediction.

Another interesting consequence of (x) is that

=1
Thus, according to (x), there is no intermittency correction to the Kolmogorov-Obukhov-
Landau-Inoue relation ((§v(7))?) oc 7. This relation is analogous to the 4/5-law result that
(3 = 1 for the exponents of space-increments. Not only are these analogous, but, in fact, they

are equivalent within the multifractal model! One can see this as follows:

According to (, = infy,[ph + k(h)]

1= G = inf[3h + (k)]

<= Vh,1 <3h+r(h) and Fhs, 1 = 3hs + K(hs) (12)
Now, 1 <3h+k(h) <= 1< thf,gh) assuming that h < 1. Similarly,
1 = 3h, + w(hy) <= 1 = Letelle)
Hence,
2h + k(h) 2hy + k(hy)
= < 22T MY L 1= 2
=1 > Vh1< =T and 3,1 —
. 2h + k(h)

Thus, within the multifractal theory,
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(3=1 <= 55’:1.

This result is due to Boffetta, De Lillo & Musacchio (2002). It is noteworthy that lack of
intermittency is found in the relations ((dur(r))3) o (e)r and ((6v(7))?) o ()7 in which the
mean energy dissipation (¢) appears linearly. There is a general argument suggesting this should
be so, due to R. H. Kraichnan, “On Kolmogorov’s inertial-range theories,” J. Fluid Mech. 62

305-330(1974). See also UF, Section 6.4.2.

We now review some of the recent experimental and numerical evidence. DNS results have been

presented by Biferale et al. (2004) and, also, by

L. Biferale et al.,“Particle trapping in three-dimensional fully developed turbulence,”

Phys. Fluids 17 021701 (2005)

We reproduce Fig.2 from the latter paper, which shows structure functions of Lagrangian time-
increments of velocity obtained from a 10243 DNS of forced, steady-state turbulence at Rey =
284. For exponents p = 2,4, 6 it can be seen that the local slopes vary considerably and have
no range where they are approximately constant. Thus, Biferale et al. (2005) employ the

“extended self-similarity” (ESS) procedure of plotting

d(logSy (1))

d(log SE(r)) V% T

rather than the local slope d(log SX(7))/d(log ). For more discussion of the ESS procedure,
see UF, Section 8.3. We just note here that if the K-O-L-I relation S¥(7) oc (¢)7 holds, then
these two plots will not differ in the inertial-range. The inset in Fig.2 shows that the ESS plot
does show a narrow plateau for p = 4, 6 in the internal [107,, 507;,]. Furthermore, the exponents
fit from this range agree very well with the multifractal model prediction from formula (*):

ek =1.740.05, ¢&/ek =2.240.07.
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021701-3 Particle trapping in 3D turbulence Phys. Fluids 17, 021701 (2005)

FIG. 2. Log-log plot of Lagrangian structure functions
of orders p=2, 4, 6 (bottom to top) vs 7. Bottom right:
logarithmic local slopes dlog S,(7)/d log 7 (same line
styles). Top left: ESS local slopes with respect to the
second order structure function d log S,(7)/d log S,(7),
for p=4, 6 bottom and top, respectively. Straight lines
correspond to the Lagrangian multifractal prediction
with the same set of fractal dimensions used to fit the
Eulerian statistics (Refs. 7 and 25). Data refer to the v,
component. The two other velocity components exhibit
slightly worse scaling due to anisotropy effects. Rela-
tive scaling exponents and error bars are estimated from
the mean and standard deviations of local slopes in the
interval [107,,507,]. Data refer to R,=284.

021701-4 Biferale et al.
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FIG. 3. ESS plots. Sixth-order structure functions vs the second-order one,
with and without filtering of trapping events. Symbols refer to: X structure
functions without any filtering, S,,(r); # structure function with filtering,
S}f’(r), defined on a A,=27, window; [] with filtering on A,=47,. Inset: ESS
local slopes of the curve in the body of the figure vs log(7/7,). Upon
filtering (two upper curves in the inset), the “bottleneck™ effect on structure
functions, i.e., the shallower slope observed in the neighborhood of T is
suppressed. The behavior for time lags longer than 107, is unchanged. Data
refer to R, =284. Similar results are obtained for structure function of order
p=4 (not shown).

On the other hand, in the range from [7;,, 107,] the exponents taken on rather smaller values
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with local slopes implying a value

5{; =2 for all p.
Biferale et al. (2005) explain this a consequence of “trapping” of Lagrangian particle trajec-
tories, for times of that order, in the interior of intense, coherent vortices. By assuming that
these events have h, = 0, D(h.) = 1, k(hs) = 2, they get 515 = 2 for all p. By “filtering out”
the trapping events from the statistics, Biferale et al. (2005) in their Fig.3 find that the “dip”
in the ESS plots is much reduced. For more details and discussion, see Biferale et al. (2005).

Results from laboratory experiment are also available:

N. Mordant et al., “Measurement of Lagrangian velocity in fully developed turbu-
lence,” Phys. Rev. Lett. 87 214501 (2001); H. Xu et al.,“High-order Lagrangian

velocity statistics,” Phys. Rev. Lett. 96 024503 (2006)

1x1035
1x1030
1x1025 |
1x1020 F

1x1015 |

D" (x) (mmP/sP)

1x1010 F
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1000 10000 100000
DY () (mm?/s?)

FIG. 2. ESS plot of the high-order Lagrangian structure func-
tions at R, = 815. From top to bottom, the symbols correspond
to our measurements of the tenth order through first order
structure function, with second order omitted. The straight lines
are fits to the data to extract the relative scaling exponents. The
lines were fit only to values of D4(7) corresponding to times
between 37, and 67,, where D%(7) displayed a K41 scaling
range with ¥ = 1.
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TABLE I. Values of the relative scaling exponents measured in our experiment using ESS. The ESS curves were fit only in the range
of times where the second order structure function displayed a K41 scaling range with exponent {& =~ 1. For comparison, we included
the values measured from the DNS of Biferale et al. [8] and the experiment of Mordant et al. [9]

Ry /8 &8 Gl &/a &/ gl/a &G &/a fo/ &
200 0.59 +0.02 1.24 = 0.03 1.35=0.04 139 £0.07 1.40 +0.08 1.39=0.09 1.40 = 0.10 1.42=0.11 1.46 +0.12

690 0.58 = 0.05 1.28 £ 0.14 1.47 £0.18 1.61 £0.21 1.73 £0.25 1.83 £0.28 1.92*+0.32 1.97 = 0.35 1.98 = 0.38
815 0.58 = 0.12 1.28 £ 0.30 1.47 £0.38 1.59 £0.46 1.66 = 0.53 1.67 =0.60 1.65 = 0.66 1.61 =0.73 1.57 = 0.80

Ref. [8] 284 17005 20x0.05 22=*0.07
Ref. [9] 740 0.56 = 0.01 1.34 +0.02 1.56 = 0.06 1.73 = 0.1 1.8 202

024503-3

Here we reproduce Fig. 2 of H. Xu et al. (2006), which gives the results for ESS plots of structure
functions of Lagrangian time-increments of velocity obtained from a laboratory experiment of
driven turbulence at Re) = 815 using optical tracking of Lagrangian particles. The correspond-
ing exponents 55, along with those of Mordant et al. (2001) and of Biferale et al. (2004, 2005),
are given in their Table I, which is reproduced as well. It may be seen that the experimental
results are considerably smaller than those obtained from DNS by Biferale et al. (2004, 2005).
On the other hand, the experiments are more limited in the range of time-separations 7 that
they can study. The exponents of H. Xu et al. (2006), for example, are fit to data in the range
from 37, to 67,. If the DNS of Biferale et al. (2004, 2005) was employed in this same range
it would yield exponents consistent with those from the experiments. The experimental results

are thus consistent with the “trapping events” analyzed in detail by Biferale et al. (2005).

In addition,

H. Xu et al.,“Multifractal dimension of Lagrangian turbulence,” Phys. Rev. Lett.

96 114503 (2006)
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PRL 96, 114503 (2006) PHYSICAL REYV

o
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0 0.5 1 1.5 2

FIG. 3 (color online). Direct measurement of the Lagrangian
multifractal dimension spectrum. The symbols denote our ex-
perimental measurements at three different Reynolds numbers:
the M correspond to R, = 200, the @ to R, = 690, and the A to
R, = 815. The measured multifractal dimension spectra agree
well for all three Reynolds numbers, suggesting that D (k) has at
most a weak Reynolds number dependence. The three curves
correspond to models: the dashed line is the model due to
Chevillard et al. [9], the solid line is Kolmogorov’s log-normal
model [13], and the dot-dashed line is the log-Poisson model of
She and Lévéque [7].
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FIG. 4 (color online). Scaling exponents ¢ [’; of the Lagrangian
structure functions as a function of order. The @ denote direct
measurements of the ¢Z(p) at R, = 690. The M show the
exponents extracted from our measured D*(h) data via
Eq. (4). The two experimental measurements agree very well
with each other. The curves are models: the dashed line is again
the model of Chevillard et al. [9], the solid curved line is
Kolmogorov’s log-normal model [13], and the dot-dashed line
is the model of She and Lévéque [7]. The solid straight line
shows Kolmogorov’s 1941 prediction for the ¢ If [12].

have attempted to obtain the Lagrangian multifractal spectrum D% (iL) of the velocity time-
increments, both directly and via the Legendre transform of fﬁ :
DE(h) = inf,[ph + (d — &&)]

Note that the relation (x) gives, with x“(h) = d — DL (h), k(h) = d — D(h),
h

with b = % Such a relation goes back to Borgas (1993). The direct measurements of Xu

et al. (2006) for DL(h) are consistent with their measurements of ¢ Of course, as discussed
above the experimental results for f;} (and thus also for DL (h)) are consistently more singular
than those predicted by (*). Note also that Xu et al. cannot evaluate the multifractal spectrum
for h > h_; corresponding to p = —1, since the usual structure functions diverge for p < —1. To
access this portion of the multifractal spectrum, other techniques — such as inverse structure

functions — are necessary.
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We make finally some remarks about other forms of Lagrangian intermittency in fluid turbu-
lence. It should be clear from our earlier discussion of Richardson 2-particle diffusion that it
should also be subject to intermittency corrections. We found then that
AP (t) = (const.)tﬁ
when the velocity field has Holder exponent h. It is easy to use this result to derive a multifractal
generalization of the Richardson t3-law, in the form
(ACD]P) ~ Lr(f )
with
pip = inf, [F20)],
It is furthermore easy to show that
G=1 <<= =3,
so that the 4/5-law implies that
([AP(0)]) ~ (e)?

without any intermittency correction. All of these predictions are due to

G. Boffetta et al., “Pair dispersion in synthetic fully developed turbulence,” Phys.

Rev. E 60 6734-6741(1999)

Of course, the test of these predictions will be difficult, since even Richardson’s t3-law has
been very hard to verify in simulation or experiment. Just as there, it is easier to consider
inverse structure functions or exit statistics, of the form

(Tx(P)IP)

for the A-folding time T)(p). It is particularly straightforward to consider negative orders,

p — —p, since




with the (,’s scaling exponents of the Eulerian velocity space-increments, ¢, = inf[ph + x(h)].

These predictions have been tested in DNS by

G. Boffetta and I. M. Sokolov, “Relative dispersion in fully developed turbulence:
the Richardson’s law and intermittency corrections,” Phys. Rev. Lett. 88 094501

(2002)

and also by Biferale et al. (2005). We reproduce Figure 7 from the latter paper, which seems
to show better agreement of the DNS results with the multifractal prediction (x) rather than

with the K41 prediction oc p~2P/3,

26 ————
24 | -
22
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10

8 L PR T T R A A | L PR T S T S
10 100 1000

r/n

comp. {[1/T,(r)IP)"/*

FIG. 7. The inverse exit time moments, ([1/T,(r)|")""?, for p=1,...,4 com-
pensated with the Kolmogorov scalings (solid lines) and the multifractal
predictions (dashed lines) for the initial separation ry=1.2% and for p
=1.25.
As we have discussed earlier, computer simulations have now advanced to the stage where

direct comparison with Richardson’s theory is possible. This extends to the direct study of

intermittency effects. Consider the paper which we cited earlier for Richardson dispersion:

R. Bitane, H. Homann & J. Bec, “Geometry and violent events in turbulent pair

dispersion,” Journal of Turbulence, 14 23-45 (2013)

Their Fig.4 (see below) plots the 4th and 6th-order moments of the relative separation versus

time in their simulation with Rey = 730 :
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Figure 4. (a) Fourth-order moment (|R(t) — R(0)|*) and (b) sixth-order moment (|R(t) — R(0)|%) as

function of ¢/ty for Ry = 730. Both curves are normalized such that their expected long-time behavior is

o (t/t9)® and o (t/t9)°, respectively. The black dashed lines represent such behaviors.
Bitane et al. claim that the curves for different initial separations ry are well-described at
long times by classical Richardson scaling with no intermittency corrections (black dashed
lines). However, careful inspection shows that only the envelopes of these curves are parallel

(approximately) to the dashed line. The individual curves have distinctly shallower slopes,

consistent with sizable intermittency corrections!
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Figure 5. Fourth (a) and sixth (b) order moments of |R(t) — R(0)| as a function of its second-order

moment for Ry = 730. The two gray dashed lines show a scale-invariant behavior, i.e. (|R(t)— R(0)|*)

(|R(t)—R(0)|?)? and (|R(t)—R(0)|%) o (|R(t)—R(0)|?)3, respectively. The two insets show the associated

local slopes, that is the logarithmic derivatives dlog(|R(t) — R(0)?)/d log(|R(t) — R(0)|?), together with

the normal scalings represented as dashed lines.
This is even more clear in Fig. 5 of Bitane et al., which plots relative scaling of the 4th and
6th-order moments versus the 2nd-order moments. Normal scaling would correspond to straight
lines with constant slopes 2 and 3, respectively. However, the insets to the figures which plot

local slopes of the individual curves show that straight lines are not great fits and local slopes

are distinctly smaller than normal scaling values at long times.
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As a last comment on the results of Bitane et al., they also examined the statistics of the

relative velocities of Lagrangian particle pairs,

(2)

=— =v(a,t) —v(a,t), o =a+p,.

In particular they have considered the longitudinal component vﬁm (t) along the direction of

R®, which satisfies

@), dA(2)
yo (1) ==

with A®)(t) = |R(®)(t)|. Using a multifractal model argument with A®)(t) ~ (const.)tﬁ and

h
thus v|(|2) (t) = dAd? ~ (const.)tT-* would lead one to predict that the moments ((vﬁz) (t))P) scale
in time ¢ the same as the (longitudinal) Lagrangian velocity structure-functions ((dv(t))?), with

exponents {5 given by the formula (*). This is exactly what Bitane et al. have verified for

p =4 and p = 6, as shown in their Fig.12!
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Figure 12. Fourth-order (a) and sixth-order (b) moments of the longitudinal velocity difference as a func-
tion of its second-order moment for various times and initial separations. The two dashed lines correspond
to a scaling compatible with that of Lagrangian structure functions proposed in [25], namely ¢} /¢) = 1.71
and ¢ /¢ = 2.16. The insets show the logarithmic derivative dlog([V I (£)]?)/d log([V!I(£)]?) for (a) p = 4
and (b) p = 6 as a function of ¢/tg; there the bold dashed lines show the Lagrangian multifractal scaling
and the thin lines what is expected from a self-similar behavior.

Finally, we should note that there is also dissipation-range Lagrangian intermittency. For

example, the small-time limit of the Lagrangian velocity increments is the Lagrangian acceleration:

. ) :
a(a,t) = lim, o 2TXD — dv(y 4)

which, from the Navier-Stokes equation, is given by
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a(a,t) = —Vp(x,t) +vAu(x, t) + fB(x, )
evaluated at x = X(a, t). Clearly, this quantity will be dominated by viscous effects. If we use
the result
a(a,t) = —Vape(x,t) + vAu(x,t) + ££(x,t)

evaluated at x = Xy(c,t) and the estimates

Vir, £ = O(*5), visw, = O()
then we see that the former balance the latter at the length scale such that ¢du(¢) = v or
np = LRe—l/(l-i—h)

at a point with Holder exponent h. Alternatively, using

_ ¢ L\1—h
TK—WNTL(Z) )

we see that this corresponds to a fluctuating cut-off time scale

~ 7 pe— (D)
™ = T Re T+,

We can also estimate the acceleration itself locally as
2 1—2h

Sut(nn) ~ Ug p L0 ugL
~ ~ 20 1+h — U0l
a=— " =7 Re1+n, Re = =1

where g is the local (large-scale) fluctuating velocity. This line of reasoning has been used to

developed a multifractal model of the acceleration 1-point statistics or acceleration PDF, by

writing

and then assuming a probability distribution of exponents h as v — 0 distributed as (”fh)””(h)

2

and a Gaussian distribution of ug with mean zero and variance u2,,, = (u3). For details, see

L. Biferale et al., “Multifractal statistics of Lagrangian velocity and acceleration in

turbulence,” Phys. Rev. Lett. 93 064502 (2004)

A comparison of this theory with DNS results shows quite satisfactory agreement, at least in

the tails of the PDF":
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FIG. 2. Log-linear plot of the acceleration PDE The crosses
are the DNS data, the solid line is the multifractal prediction,
and the dashed line is the K41 prediction. The DNS statistics
were calculated along the trajectories of 2.0 X 10° particles
amounting to 1.06 X 10'° events in total. The statistical un-
certainty in the PDF was quantified by assuming that fluc-
tuations grow like the square root of the number of events.
Inset: a*7P(a) for the DNS data (crosses) and the multifractal
prediction.
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