(B) 1-Particle and 2-Particle Turbulent Diffusion

The problem of 1-particle diffusion in a turbulent flow was first considered by

G. I. Taylor, “Diffusion by continuous movements,” Proc. Lond. Math. Soc. Series

2, 20 196 (1921)

See also T&L, Section 7.1.

A question of great practical and theoretical interest is the mean square dispersion of particles,

or
(10X (e, to; 1))
where
0X(a,tp;t) = X(a, to + t) — X(a, tp)

is the displacement undergone by the particle between times ¢y and ¢y + t. The average (-)
may be taken to be a volume-average over the particle positions «, or a time-average over the
initial-time tg, or both. It may also be taken to be an average over an ensemble of velocities.
If the latter is homogeneous and stationary, then we may write (|0X(¢)[?), since the average is
independent of o, tg. Without loss of generality, let us take the labeling time to be typ = 0. In

that case,

X(a,t) = X(a,t) —a
= /t ds v(a, s) (4)
0
and
(16X (1)) = fy ds Jy ds' (v(s') - v(s).
Let us assume, for simplicity, that the Lagrangian velocity process is stationary in time. This
will be true, for example, if the turbulent ensemble is stationary and homogeneous, so that the

statistics do not depend upon the particle’s location or its past history. For a discussion of

these issues, see T&L, Section 7.1. Under this assumption,

(v(s) - v(s)) = (v(s' = s) - v(0)).



In that case, one can change the integration variables from s, s’ to

T=5—s T=3(s+53)

with Jacobian of transformation ’ggg = 1. A bit of further calculation using (v(7) - v(0)) =

(v(0) - v(—7)) then gives

([6X () =2 [y dr (t = 7)(v(7) - v(0)).
It follows that

(16X (1)[?)

2t =D

lim¢ o
as long as
D= [dr(v(r)-v(0) <400 (%)
As long as the latter condition holds, the long-time limit of the particle dispersion is diffusive,
with (|6X(t)|?) o 2Dt, like a Brownian motion. This is the basic result of Taylor (1921). In

fact, it can be shown under the same condition (*) more generally that

lim,_,q i;(% = W(t)

in the sense of distributions on path-space, where W (t) is d-dimensional Brownian motion.

The condition (x) requires a rapid decay of time-correlations of the Lagrangian velocity v(e, t).

The relevant time-scale is the Lagrangian integral time-scale

A O] /O (v(7) - v(0))dr
= D/NO)P) (5)

It is only for ¢ > T, that 6X(¢) behaves diffusively. It is useful to note that the single-point
statistics of the Lagrangian velocity v(a,t) and the Eulerian velocity u(x,t) are the same, so
that
(IV(O)2) = ([u(0)2) = 2,
For a detailed proof, see T&L, Section 7.1. One can argue on phenomenological grounds that
D ~ upmsL,
where L is the integral length-scale, so that one gets

1 = D/u%ms ~ L/“rm&
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the large-scale eddy turnover time. The Lagrangian time-correlation
<V(T) ’ V(0)>/urms

Cr(r) =

has been determined in a laboratory experiment with a “French washing machine” flow:
N. Mordant et al., “Measurement of Lagrangian velocity in fully developed turbu-

lence,” Phys. Rev. Lett. 87 214501 (2001)
and more recently in DNS of forced, homogeneous steady-state turbulence:

L. Biferale et al., “Lagrangian statistics in fully developed turbulence,” J. Turbu-

lence 7 N0.6 (2006)

Both found that
Cr(r) =~ exp (—7/T1)

See the reproduced figure from the latter paper:
L. Biferale et al.
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Lagrangian velocity autocorrelation function in linear coordinates and lin-log (inset) for the R, = 284

Figure 3.
run. For comparison the exponential fit exp(—t/7},) is also shown.
A more refined description of the 1-particle diffusion than the dispersion (|§X(a,t)[?) is given

by the 1-particle probability distribution
1
P (xla) = (5(X(et,t) = x))




For homogeneous statistics this depends only on the displacement, Pt(l) (x—a) = PW(x—al0).
At long times, Pt(l)(x —a) x exp (—|x — a|?/4Dt)/(4xDt)¥? as t — cc.
An important application of 1-particle diffusion is to the problem of evaluating the mean scalar
evolution

0(x,t) = (0(x,1))

Here we use the representation

0, t) = Oo(A(x,1))
_ / da Oo(c)S(A(x,1) — ) (6)

and the fact that

S(A(x 1) — ) = 2EERD2D — §(X (1) - x)

since |0A/0x| = 1 by incompressibility. Thus,
0(x,t) = [da fy(a)d(X(a,t) — x).
If we assume that the initial scalar field 0y is statistically independent of the velocity field, then

the average factorizes as

0(x,t) = /dd (Oo(a)d(X (e, 1) — x))
_ / o (00(a)) (5(X(ax, £) — x)))
= / d'a fo(c) PV (x]av). (™)

Thus, we see that Pt(l) propagates the mean scalar field forward in time.

2-particle diffusion

The problem of 2-particle turbulent diffusion was first considered by

L. F. Richardson, “Atmospheric diffusion shown on a distance-neighbor graph,”

Proc. Roy. Soc. Lond. A 110 709-737 (1926)

The basic quantity of interest is the 2-particle separation
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AR () = |X(a,t) — X(a,t)], o =a+ Aag
which is the distance between two particles at time ¢ which were initially displaced by A(()Q) =
|Acy|. We start by deriving a rigorous estimate on A®)(¢) under the assumption that the
advecting velocity field is Holder continuous with exponent h:

lu(x',t) —u(x,t)| < Ajx’ — x|

By the reverse triangle inequality

41X (ol 1) — X(a )] < | 4[X(e' 1) — X(a, )]
Thus,

%A(Q)(t) < lu(X(a,t),t) —u(X(a, t),t)]

using (d/dt)X(a,t) = u(X(a,t),t). Applying the Holder continuity of the velocity then gives

%A@) (t) < A|X(d/,t) — X(a, t)|" = A[AP) (1)]".
This simple differential inequality can easily be integrated to give a basic inequality

AR () < (AT 4 (L= WA~ 1) TR, (+)
If we assume that |u(x’,t) — u(x,t)| = A|x’ — x|", then we can further expect that the above

inequality is an approximate equality

There is an important qualitative difference in the above estimate for 0 < h <1 and h — 1. In

the latter case, we can rewrite
1

AP () < A [1 + “"‘A)f(i‘t‘))} o
and we use lim, (1 + %)™ = €” to obtain, as h — 1,
AD(t) < AgexplA(t — to)].
This same estimate can also be obtained directly at h = 1. For ¢t — oo, assuming near equality,
we see that

AR (1) = AgeAlt=to) | ¢ — o0

so that the initial separations is never forgotten. On the contrary, for 0 < h < 1,

AP (1) 2 [(1 — h)A(t — to)]TF, t— o0

and knowledge of Ay is lost for long times.
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In the Kolmogorov 1941 theory of turbulence, h = 1/3 in the inertial-range of turbulent flow,
so that one can expect that A (t) = (t —t9)%/2, or
[AB (@) 2 (e)(t — to)?
in a dimensionally correct form. Of course, this asymptotics should apply only as long as
n < AP (t) « L, i.e. at intermediate times. It was the prediction of Richardson (1926) that,
indeed, the above scaling should hold in a mean sense
(A2 2 gole) (t — t)?

with go now called the Richardson constant. Notice that the growth of ([A®)(¢)]?) is much

faster than “ballistic”, i.e. faster than particles separating with a constant relative velocity U,
which would lead to [U(t — tg)]?. The reason is that, as the particles separate, they experience
larger relative velocities o< |z — z/|'/3.

The approach of Richardson (1926) to arrive at this result was quite different. He con-
sidered the statistics of 2-particle turbulent diffusion, which may be characterized by the

2-particle probability distribution

PP (x, x|, ') = (6(X (e, t) — x)5(X (e, t) — x'))

Setting x' = x + Ax,a’ = a + Aa and assuming space homogeneity,

Pt(Q) (x, X |, @) = Pt(2) (x,x + Ax|a, a + Acx)

= Pt(2) (x —a,x —a+ Ax[0, Aa) (8)

Now let us form a reduced PDF just for the 2-particle separation
P (Ax|Aa) = [ dix PP (x,x + Ax|0, Aa).
Since we know that for t > tg, knowledge of A« is lost, let us also set
PP (Ax) = limaaso P2 (Ax|Acy).
If the velocity statistics are also isotropic and the orientation of A« is forgotten, then the PDF
will depend only on the magnitude p = |Ax], i.e.
PP (Ax) = PP (p).

Richardson (1926) hypothesized a diffusion equation for this quantity
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5(2 _ ap?
P 0) = eyl K (0) )

with a scale-dependent eddy-diffusivity

K(p) = ro{e)'/3p"/5.
Of course, Richardson’s work was pre-Kolmogorov and he inferred K(p) o< p*3 — rather
miraculously — from a compilation of heterogeneous datasets on wind speeds from anemome-
ters, separation rates of balloons in the atmosphere, and dispersion of volcanic ash! See the
table in Richardson (1926), p. 724. Further, Richardson observed that this equation has an
analytic solution for the initial condition
P2 (p) = 8(p)
of the form

_(2) . Ap2 9,2/3
P (p) = Wexp [—m]

with A = (2)8/I'(). From this solution various moments can be calculated, in particular,

(AP D)) = () = go(e)t®

with go = 11443 /81. Thus, again, the t>-growth in time is obtained
Although these predictions are more than 90 years old, they have proved quite difficult to verify!

Richardson’s t3-law has been claimed to be observed in simple models of “synthetic turbu-
lence” with a velocity field NOT governed by the Navier-Stokes equation, but with a similar

Kolmogorov energy spectrum and scaling of velocity increments. E.g. consider

F. W. Elliott, Jr. & A. J. Majda, “Pair dispersion over an inertial range spanning

many decades,” Phys. Fluids 8 1052-1060(1996)

who, in a model of “synthetic turbulence” by Gaussian random fields, reported seeing the ¢

power-law over eight decades of time! However, it has been argued by

D. J. Thomson & B. J. Devenish, “Particle pair separation in kinematic simulation,”

J. Fluid Mech. 526 277-302 (2005).
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that the observation of Elliott & Majda is a numerical artefact and not a feature of the actual
model. More generally, Thomson & Devenish argue that the Richardson predictions should
not hold in synthetic models of Eulerian turbulence, in which the field u(x,t) represents the
velocity observed at a fixed position x at time t¢. In such models, particle pairs are swept
rapidly through non-moving eddies. This leads to a very short correlation time of the velocity
increment, which suppresses the particle separation. Elliott & Majda chose a time-step in their
numerical integration of the particle positions which was much too large to resolve this effect!

Note that in actual fluid turbulence governed by the Navier-Stokes equation, the small-
scale eddies are swept together with the particles and thus the rapid decorrelation of velocity-
increments is not expected to occur. Synthetic models of Lagrangian turbulence are designed
to have the same property, by employing the model velocity in an equation for relative (not
absolute) separations:

%AX =urz(Ax) = u(Ax,t) —u(0,1).

The “quasi-Lagrangian velocity” ur(Ax) can be interpreted as the velocity of the second par-
ticle at position Ax in a frame of reference moving with the velocity u(0, ¢) of the first particle.

Simulations with such models, e.g.

G. Boffetta et al., “Relative dispersion in fully developed turbulence: Lagrangian

statistics in synthetic flows,” Europhys. Lett. 46(2) 177-182 (1999)

observe not only Richardson’s t3-law but also Richardson’s prediction for the stretched-exponential
PDF of pair-separations. We shall see later that there is another model where Richardson’s

diffusion approximation is valid, when the velocity field has an extremely short-range in time.

Richardson’s predictions have also proved difficult to verify in laboratory experiments. Consider

two recent attempts:

S. Ott and J. Mann, “An experimental investigation of the relative diffusion of par-

ticle pairs in three-dimensional turbulent flow,” J. Fluid Mech. 422 207-223(2000)
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M. Bourgoin et al., “The role of pair dispersion in turbulent flow.” Science 311

835-838 (2006)

The first paper of Ott & Mann made some important theoretical contributions as well as carry-
ing out experiments on grid-generated turbulence in water tanks. Although their experiments
reached only Rey ~ 100, their results were consistent with the predictions of Richardson. How-
ever, the second experiment in a “French washing machine” flow at Re) ~ 815 did not observe
Richardson’s predictions. This is plausibly attributed to limitations on the initial distance Ay
between particles, which could not be taken smaller than about 30 Kolmogorov lengths. As
can be seen from equation (*) for h = 1/3, it requires a time of order <5>_1/3A§/3 to “forget”

the initial separations. A new facility by the same group, see
http://www.lfpn.ds.mpg.de/turbulence/tunnel.html

is designed to reach Rey ~ 10* and provide long enough times to forget initial separations.
Numerical simulations of Navier-Stokes turbulence have been more successful, in part be-

cause there are no limitations on the choice of Ag. For example, we consider the study of

L. Biferale et al.“Lagrangian statistics of particle pairs in homogeneous isotropic

turbulence,” Phys. Fluids 17 115101(2005)

In Figure 1 of that paper are plotted the results for (p3(t)) from a 1024 DNS, Re, ~ 280 with
initial separations pg = 1.21,2.51,9.8n and 19.6n. Clearly, the initial separations are never
“forgotten”. Furthermore, there is no clean ¢> range and no precise estimation of the Richardson
constant gg is possible. There seem to be “crossover” effects from both the dissipation range
and the energy range that prevent a clear verification of the inertial-range predictions. Longer
inertial ranges seem necessary for this purpose. On the other hand, Richardson’s predictions
for Pt@) (p) seem to be quite well confirmed, even at the relatively low Reynolds numbers of the

simulations. See Figure 2 in Biferale et al. (2005) for the comparison.
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115101-3 Lagrangian statistics of particle pairs Phys. Fluids 17, 115101 (2005)
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FIG. 1. The evolution of (r(1)’)/ 7 vs t/, for the initial separations r,  FIG. 2. Comparison of the Richardson PDF with the DNS data. The curves

=127, ry=2.57, ry=9.87, and r=19.67. The straight line is proportional to refer to data for ry=1.27 at t=5.27, (solid line), r=7, (long dashed line),

£. Inset: (r()*)/ef® for the same four initial separations starting from ¢/7, t=147, (short dashed line), r=427, (dotted line), and r=707, (dot-dashed
~15. line). The thick solid line is the Richardson PDF (2).

To help disentangle the effects of different scales, an alternative approach has been proposed

based on exit-time statistics. See

G. Boffetta &I. M. Sokolov, “Relative dispersion in fully developed turbulence: The
Richardson’s law and intermittency corrections,” Phys. Rev. Lett. 88 094501
(2002)

In this approach one studies not p(t) = A®)(t) as function of time ¢ but instead the A-folding time

(or exit time)

Ty(p) = first time for A®)() to increase from A®)(0) = p/A to the distance p

= sup{t: AP (1) < p, AB(0) = p/A} (9)

for some A > 1. This is analogous to what was done in going from structure functions to
inverse structure functions in scaling of Eulerian velocity increments. The key advantage here
is that this quantity focuses on the statistics at a fixed length-scale p. It may be shown using
Richardson’s equation that

2/3_ 2/3
(Ta(p)) = o= X010 o g3,

Ko A2/3 (g)1/3
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Furthermore, the PDF of T)(p) can be determined from

=(2
Prp(T) = = [ iy P (AX)d*(Ax)

where P:(FQ)(AX) is the solution of Richardson’s equation with initial condition Pé2)(Ax) =
%ﬂ\AX\ — £). This can be shown to lead to
2/3_
Prp(T) ~ exp (—K 3575 )

for T > (T(p)) with K = 2.72 a numerical constant.

For all these results, see Boffetta &Sokolov (2002), Biferale et al. (2005), Biferale et al. (2006)

115101-5 Lagrangian statistics of particle pairs Phys. Fluids 17, 115101 (2005)
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FIG. 5. The mean exit time for the initial separations ry=1.27% (thin con- . . . .
tinuous line), r;=2.57 (long dashed line), r;=9.87 (short dashed line), and FIG. 6. The 10g-1m§ar plot of the exit time PDF for rg=1.27 with p=1.25 at
ro=19.67 (dotted line) with p=1.25. The straight line is proportional to %3, r4=21.Sn (das.heq h“@’ r= 83‘377' (dotted .lmle)‘ and r=130.1 n (d9t»dashed
In the inset we show Richardson’s constant, g, vs /7 as given by (9) for the line). The solid line is the large time prediction (10). Inset: a lin-lin plot of
same initial separations at R, =284. To evaluate the variability of g with the ~the same figure showing more detail.

Reynolds number, we also plot a curve (thick continuous line) for the initial

separation ry=1.27 at R,=183.

In Figure 5 of Biferale et al. (2005) is plotted the result for (T»(p)), at a variety of initial
separations pg. There is now a much better collapse of results for different values of pg, so that
initial separations are “forgotten”. Furthermore, there is a range of p with scaling very close
to (Th(p)) o< p*/? [but with possibility a small intermittency correction that will be discussed

later!]. The value of Richardson’s constant can be inferred from

143 ()\2/371)3 2
90 =S @)

which gives

go = 0.50 £ 0.05
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in close agreement with the experimental determination of Ott &Mann(2000). In Figure 6 of
Biferale et al. (2005) the prediction of Richardson’s model for Py ,(7T") has also been shown to

fit the DNS data quite well.

In the past decade, computer power has increased to the point that Richardson’s predictions

(with caveats) can be observed directly. For example, the following paper

R. Bitane, H. Homann, and J. Bec, “Geometry and violent events in turbulent pair

dispersion,” Journal of Turbulence, 14 23-45 (2013)

reports results of a 40963 DNS study at Rey ~ 730 :
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Figure 2. Time-evolution of the mean-squared distance for Ry = 730 (a) and Ry = 460 (b) for various
initial separations rg as labeled. The horizontal and vertical solid lines represent the integral scale L and
its associated turnover time 7, respectively. The dashed line corresponds to the explosive Richardson-
Obukhov law (3) with g = 0.52.
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Figure 6. Probability density function of the distance r at time ¢ = 2.5¢y (a) and t = 5tg (b) and for
various values of the initial separation. We have here normalized it by 4712 and represented on a logy axis
as a function of r/(|R(t)|?)!/2. With such a choice, Richardson’s diffusive density distribution (2) appears
as a straight line (represented here as a black dashed line).

The t3-law is directly observed, with clear “forgetting” of initial separations. The Richard-
son constant is determined to be g = 0.52, in good agreement with previous estimates. The
Richardson stretched-exponential PDF of separation distances is also observed. Interestingly,
however, there is agreement only for a limited range 1/2 < r/(r?(t)) < 2. Outside this range
there are clear deviations which remain to be understood! The diffusion approximation pro-
posed by Richardson is clearly an ad hoc assumption and many interesting alternative models

have been suggested. For example, see:

C. C. Lin, “On a theory of dispersion by continuous movements,” Proc. Nat. Acad.
Sci. USA 46, 566 (1960).

M. F. Shlesinger, B. J. West & Joseph Klafter, “Lévy dynamics of enhanced diffu-
sion: Application to turbulence,” Physical Review Letters 58 1100 (1987).

G. L. Eyink & D. Benveniste, “Diffusion approximation in turbulent two-particle
dispersion,” Physical Review E 88 041001 (2013)

S. Thalabard, G. Krstulovic & J. Bec, “Turbulent pair dispersion as a continuous-

time random walk,” Journal of Fluid Mechanics 755 R4 (2014).
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The problem of 2-particle diffusion has an important relation with the evolution of 2-point
statistics of passive scalars. Using the relation 0(x,t) = [ d%a6y(a)d(X(a, ) —x) and assuming

again that the initial scalar field is statistically independent of the velocity field, then

O(x, DO, 1) = / o / o/ (Bo(0)fo(@)0(X (0, £) — X)3(X (e, 1) — %))
_ / dio / 0/ (B ()8 () (5(X (e, 1) — x)5(x(a, £) — X))
= /dda/dda'<00(a)00(a’)>Pt(2)(X,x'\a,a'). (10)

Thus, Pt(Z) evolves the 2-point correlation of the scalar in the same way as P(Y) evolves the
1-point correlation. If the statistics of the velocity field and of the scalar field are both space-

homogeneous, then
O(x,0)0(x', 1)) = (0(0,1)0(Ax,1)) := 0P (Ax, 1), Ax=x —x,
and
Pt@)(x,x’|a, a) = Pt(Q)(y,y + Ax|0,Aa), Aa=d —a, y=x-—a,
so that substitution into (10) gives
0@ (Ax, 1) = / #(Aa) 02 (Aa) PP (Ax|Aa)

where FgQ)(AX\Aa) = [dly Pt(2) (v,y + Ax|0, Aa) is the reduced PDF. In particular at long

times ¢ when |Ax| > |Aa| and assuming statistical isotropy with p = |Ax|, Richardson’s

diffusion equation 8,0 (p,t) = pdl,l a% [pdilK(p)a%@@)(p, t)] should be reasonably accurate.
These latter results obviously generalize to N-particle diffusion described by transition prob-
abilities Pt(N) (z1,--+,zN|oq, -, ayn) and N-point scalar correlations (0(x1,t)---0(xn,t)). For

more discussion of N-particle diffusion, see:

G. Falkovich, K. Gawedzki & M. Vergassola, “Particles and fields in fluid turbu-
lence,” Rev. Mod. Phys. 73 913-975(2001)
L. Biferale et al., “Multiparticle dispersion in fully developed turbulence,” Phys.

Fluids 17 111701 (2005)
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