
(B) 1-Particle and 2-Particle Turbulent Di↵usion

The problem of 1-particle di↵usion in a turbulent flow was first considered by

G. I. Taylor, “Di↵usion by continuous movements,” Proc. Lond. Math. Soc. Series

2, 20 196 (1921)

See also T&L, Section 7.1.

A question of great practical and theoretical interest is the mean square dispersion of particles,

or

h|�X(↵, t
0

; t)|2i

where

�X(↵, t
0

; t) = X(↵, t
0

+ t) � X(↵, t
0

)

is the displacement undergone by the particle between times t
0

and t
0

+ t. The average h·i

may be taken to be a volume-average over the particle positions ↵, or a time-average over the

initial-time t
0

, or both. It may also be taken to be an average over an ensemble of velocities.

If the latter is homogeneous and stationary, then we may write h|�X(t)|2i, since the average is

independent of ↵, t
0

. Without loss of generality, let us take the labeling time to be t
0

= 0. In

that case,

�X(↵, t) = X(↵, t) � ↵

=

Z
t

0

ds v(↵, s) (4)

and

h|�X(t)|2i =
R

t

0

ds
R

t

0

ds0 hv(s0) · v(s)i.

Let us assume, for simplicity, that the Lagrangian velocity process is stationary in time. This

will be true, for example, if the turbulent ensemble is stationary and homogeneous, so that the

statistics do not depend upon the particle’s location or its past history. For a discussion of

these issues, see T&L, Section 7.1. Under this assumption,

hv(s0) · v(s)i = hv(s0 � s) · v(0)i.
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In that case, one can change the integration variables from s, s0 to

⌧ = s0 � s, T = 1

2

(s0 + s)

with Jacobian of transformation
���@(⌧,T )

@(s,s

0
)

��� = 1. A bit of further calculation using hv(⌧) · v(0)i =

hv(0) · v(�⌧)i then gives

h|�X(t)|2i = 2
R

t

0

d⌧ (t � ⌧)hv(⌧) · v(0)i.

It follows that

lim
t!1

h|�X(t)|2i
2t

= D

as long as

D =
R 1
0

d⌧hv(⌧) · v(0)i < +1 (⇤)

As long as the latter condition holds, the long-time limit of the particle dispersion is di↵usive,

with h|�X(t)|2i / 2Dt, like a Brownian motion. This is the basic result of Taylor (1921). In

fact, it can be shown under the same condition (⇤) more generally that

lim
✏!0

�X(t/✏)p
2D/✏

= W(t)

in the sense of distributions on path-space, where W(t) is d-dimensional Brownian motion.

The condition (⇤) requires a rapid decay of time-correlations of the Lagrangian velocity v(↵, t).

The relevant time-scale is the Lagrangian integral time-scale

T
L

=
1

h|v(0)|2i

Z 1

0

hv(⌧) · v(0)id⌧

= D/h|v(0)|2i (5)

It is only for t � T
L

that �X(t) behaves di↵usively. It is useful to note that the single-point

statistics of the Lagrangian velocity v(↵, t) and the Eulerian velocity u(x, t) are the same, so

that

h|v(0)|2i = h|u(0)|2i = u2

rms

.

For a detailed proof, see T&L, Section 7.1. One can argue on phenomenological grounds that

D ⇠ u
rms

L,

where L is the integral length-scale, so that one gets

T
L

= D/u2

rms

⇠ L/u
rms

,
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the large-scale eddy turnover time. The Lagrangian time-correlation

C
L

(⌧) = hv(⌧) · v(0)i/u2

rms

has been determined in a laboratory experiment with a “French washing machine” flow:

N. Mordant et al., “Measurement of Lagrangian velocity in fully developed turbu-

lence,” Phys. Rev. Lett. 87 214501 (2001)

and more recently in DNS of forced, homogeneous steady-state turbulence:

L. Biferale et al., “Lagrangian statistics in fully developed turbulence,” J. Turbu-

lence 7 N0.6 (2006)

Both found that

C
L

(⌧) ⇡ exp (�⌧/T
L

)

See the reproduced figure from the latter paper:
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4 L. Biferale et al.

Figure 3. Lagrangian velocity autocorrelation function in linear coordinates and lin-log (inset) for the Rλ = 284
run. For comparison the exponential fit exp(−τ/TL ) is also shown.

large-scale fluctuations do not affect small-scale statistics which evolve on much faster time
scales.

The exponential decay of the autocorrelation function is a fundamental result as it is at the
basis of the stochastic models of turbulent dispersion [2]. Nevertheless, the analysis of single
Lagrangian trajectories reveals that turbulent dispersion is much more complex than random
dispersion. Figure 4 shows the trajectory of a particle which remains trapped within a vortical
structure for a rather long time. By numerically tracking velocity and acceleration of single
particles, one recognizes that these trapping events are at the origin of extreme fluctuations in
velocity and acceleration statistics (as shown in the insets of figure 4), which are not described
by simple stochastic processes. The analysis of our simulations reveals that these events are not
infrequent and dominate the tails of probability density functions (pdf) of velocity fluctuations
and acceleration.

Figure 4. Trajectory and time series. Left panel: Three-dimensional trajectory of a trapping event in a vortex filament.
The sampling time is #t = 0.07τη and Rλ = 284. Acceleration and velocity fluctuations for this event reach values
as large as 30 and 2 rms, respectively (see right-hand panels).

A more refined description of the 1-particle di↵usion than the dispersion h|�X(↵, t)|2i is given

by the 1-particle probability distribution

P (1)

t

(x|↵) = h�(X(↵, t) � x)i
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For homogeneous statistics this depends only on the displacement, P (1)

t

(x�↵) = P (1)(x�↵|0).

At long times, P (1)

t

(x � ↵) / exp (�|x � ↵|2/4Dt)/(4⇡Dt)d/2 as t ! 1.

An important application of 1-particle di↵usion is to the problem of evaluating the mean scalar

evolution

✓̄(x, t) = h✓(x, t)i

Here we use the representation

✓(x, t) = ✓
0

(A(x, t))

=

Z
dd↵ ✓

0

(↵)�(A(x, t) � ↵) (6)

and the fact that

�(A(x, t) � ↵) = �(X(↵,t)�x))

|@A/@x| = �(X(↵, t) � x)

since |@A/@x| = 1 by incompressibility. Thus,

✓(x, t) =
R

dd↵ ✓
0

(↵)�(X(↵, t) � x).

If we assume that the initial scalar field ✓
0

is statistically independent of the velocity field, then

the average factorizes as

✓̄(x, t) =

Z
dd↵ h✓

0

(↵)�(X(↵, t) � x)i

=

Z
dd↵ h✓

0

(↵)ih�(X(↵, t) � x))i

=

Z
dd↵ ✓̄

0

(↵)P (1)

t

(x|↵). (7)

Thus, we see that P (1)

t

propagates the mean scalar field forward in time.

2-particle di↵usion

The problem of 2-particle turbulent di↵usion was first considered by

L. F. Richardson, “Atmospheric di↵usion shown on a distance-neighbor graph,”

Proc. Roy. Soc. Lond. A 110 709-737 (1926)

The basic quantity of interest is the 2-particle separation
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�(2)(t) ⌘ |X(↵0, t) � X(↵, t)|, ↵0 = ↵ + �↵
0

which is the distance between two particles at time t which were initially displaced by �(2)

0

=

|�↵
0

|. We start by deriving a rigorous estimate on �(2)(t) under the assumption that the

advecting velocity field is Hölder continuous with exponent h:

|u(x0, t) � u(x, t)|  A|x0 � x|h.

By the reverse triangle inequality

d

dt

|X(↵0, t) � X(↵, t)| 
��� d

dt

[X(↵0, t) � X(↵, t)]
���.

Thus,

d

dt

�(2)(t)  |u(X(↵0, t), t) � u(X(↵, t), t)|

using (d/dt)X(↵, t) = u(X(↵, t), t). Applying the Hölder continuity of the velocity then gives

d

dt

�(2)(t)  A|X(↵0, t) � X(↵, t)|h = A[�(2)(t)]h.

This simple di↵erential inequality can easily be integrated to give a basic inequality

�(2)(t)  [�(1�h)

0

+ (1 � h)A(t � t
0

)]
1

1�h , (⇤)

If we assume that |u(x0, t) � u(x, t)| ⇠= A|x0 � x|h, then we can further expect that the above

inequality is an approximate equality

There is an important qualitative di↵erence in the above estimate for 0 < h < 1 and h ! 1. In

the latter case, we can rewrite

�(2)(t)  �
0


1 + (1�h)A(t�t

0

)

�

1�h
0

� 1

1�h

and we use lim
n!1(1 + x

n

)n = ex to obtain, as h ! 1,

�(2)(t)  �
0

exp[A(t � t
0

)].

This same estimate can also be obtained directly at h = 1. For t ! 1, assuming near equality,

we see that

�(2)(t) ⇠= �
0

eA(t�t

0

), t ! 1

so that the initial separations is never forgotten. On the contrary, for 0 < h < 1,

�(2)(t) ⇠= [(1 � h)A(t � t
0

)]
1

1�h , t ! 1

and knowledge of �
0

is lost for long times.
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In the Kolmogorov 1941 theory of turbulence, h = 1/3 in the inertial-range of turbulent flow,

so that one can expect that �(2)(t) ⇠= (t � t
0

)3/2, or

[�(2)(t)]2 ⇠= h"i(t � t
0

)3

in a dimensionally correct form. Of course, this asymptotics should apply only as long as

⌘ ⌧ �(2)(t) ⌧ L, i.e. at intermediate times. It was the prediction of Richardson (1926) that,

indeed, the above scaling should hold in a mean sense

h[�(2)(t)]2i ⇠= g
0

h"i(t � t
0

)3

with g
0

now called the Richardson constant. Notice that the growth of h[�(2)(t)]2i is much

faster than “ballistic”, i.e. faster than particles separating with a constant relative velocity U,

which would lead to [U(t � t
0

)]2. The reason is that, as the particles separate, they experience

larger relative velocities / |x � x0|1/3.

The approach of Richardson (1926) to arrive at this result was quite di↵erent. He con-

sidered the statistics of 2-particle turbulent di↵usion, which may be characterized by the

2-particle probability distribution

P (2)

t

(x,x0|↵, ↵0) = h�(X(↵, t) � x)�(X(↵0, t) � x

0)i

Setting x

0 = x + �x, ↵0 = ↵ + �↵ and assuming space homogeneity,

P (2)

t

(x,x0|↵, ↵0) = P (2)

t

(x,x + �x|↵, ↵ + �↵)

= P (2)

t

(x � ↵,x � ↵ + �x|0, �↵) (8)

Now let us form a reduced PDF just for the 2-particle separation

P̄ (2)

t

(�x|�↵) ⌘
R

dd

x P (2)

t

(x,x + �x|0, �↵).

Since we know that for t � t
0

, knowledge of �↵ is lost, let us also set

P̄ (2)

t

(�x) = lim
�↵!0

P̄ (2)

t

(�x|�↵).

If the velocity statistics are also isotropic and the orientation of �↵ is forgotten, then the PDF

will depend only on the magnitude ⇢ = |�x|, i.e.

P̄ (2)

t

(�x) = P̄ (2)

t

(⇢).

Richardson (1926) hypothesized a di↵usion equation for this quantity
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@

@t

P̄ (2)

t

(⇢) = 1

⇢

d�1

@

@⇢

[⇢d�1K(⇢)@

¯

P

(2)

t (⇢)

@⇢

]

with a scale-dependent eddy-di↵usivity

K(⇢) ⇠= 
0

h"i1/3⇢4/3.

Of course, Richardson’s work was pre-Kolmogorov and he inferred K(⇢) / ⇢4/3 — rather

miraculously — from a compilation of heterogeneous datasets on wind speeds from anemome-

ters, separation rates of balloons in the atmosphere, and dispersion of volcanic ash! See the

table in Richardson (1926), p. 724. Further, Richardson observed that this equation has an

analytic solution for the initial condition

P̄ (2)

t=0

(⇢) = �(⇢)

of the form

P̄ (2)

t

(⇢) = A⇢

2

(

0

h"i1/3

t)

9/2

exp [� 9⇢

2/3

4

0

h"i1/3

t

]

with A = (3

2

)8/�(9

2

). From this solution various moments can be calculated, in particular,

h[�(2)(t)]2i = h⇢2i = g
0

h"it3

with g
0

= 11443

0

/81. Thus, again, the t3-growth in time is obtained

Although these predictions are more than 90 years old, they have proved quite di�cult to verify!

Richardson’s t3-law has been claimed to be observed in simple models of “synthetic turbu-

lence” with a velocity field NOT governed by the Navier-Stokes equation, but with a similar

Kolmogorov energy spectrum and scaling of velocity increments. E.g. consider

F. W. Elliott, Jr. & A. J. Majda, “Pair dispersion over an inertial range spanning

many decades,” Phys. Fluids 8 1052-1060(1996)

who, in a model of “synthetic turbulence” by Gaussian random fields, reported seeing the t3

power-law over eight decades of time! However, it has been argued by

D. J. Thomson & B. J. Devenish, “Particle pair separation in kinematic simulation,”

J. Fluid Mech. 526 277-302 (2005).
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that the observation of Elliott & Majda is a numerical artefact and not a feature of the actual

model. More generally, Thomson & Devenish argue that the Richardson predictions should

not hold in synthetic models of Eulerian turbulence, in which the field u(x, t) represents the

velocity observed at a fixed position x at time t. In such models, particle pairs are swept

rapidly through non-moving eddies. This leads to a very short correlation time of the velocity

increment, which suppresses the particle separation. Elliott & Majda chose a time-step in their

numerical integration of the particle positions which was much too large to resolve this e↵ect!

Note that in actual fluid turbulence governed by the Navier-Stokes equation, the small-

scale eddies are swept together with the particles and thus the rapid decorrelation of velocity-

increments is not expected to occur. Synthetic models of Lagrangian turbulence are designed

to have the same property, by employing the model velocity in an equation for relative (not

absolute) separations:

d

dt
�x = u

L

(�x) ⌘ u(�x, t) � u(0, t).

The “quasi-Lagrangian velocity” u

L

(�x) can be interpreted as the velocity of the second par-

ticle at position �x in a frame of reference moving with the velocity u(0, t) of the first particle.

Simulations with such models, e.g.

G. Bo↵etta et al., “Relative dispersion in fully developed turbulence: Lagrangian

statistics in synthetic flows,” Europhys. Lett. 46(2) 177-182 (1999)

observe not only Richardson’s t3-law but also Richardson’s prediction for the stretched-exponential

PDF of pair-separations. We shall see later that there is another model where Richardson’s

di↵usion approximation is valid, when the velocity field has an extremely short-range in time.

Richardson’s predictions have also proved di�cult to verify in laboratory experiments. Consider

two recent attempts:

S. Ott and J. Mann, “An experimental investigation of the relative di↵usion of par-

ticle pairs in three-dimensional turbulent flow,” J. Fluid Mech. 422 207-223(2000)
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M. Bourgoin et al., “The role of pair dispersion in turbulent flow.” Science 311

835-838 (2006)

The first paper of Ott & Mann made some important theoretical contributions as well as carry-

ing out experiments on grid-generated turbulence in water tanks. Although their experiments

reached only Re
�

' 100, their results were consistent with the predictions of Richardson. How-

ever, the second experiment in a “French washing machine” flow at Re
�

' 815 did not observe

Richardson’s predictions. This is plausibly attributed to limitations on the initial distance �
0

between particles, which could not be taken smaller than about 30 Kolmogorov lengths. As

can be seen from equation (*) for h = 1/3, it requires a time of order h"i�1/3�2/3

0

to “forget”

the initial separations. A new facility by the same group, see

http://www.lfpn.ds.mpg.de/turbulence/tunnel.html

is designed to reach Re
�

' 104 and provide long enough times to forget initial separations.

Numerical simulations of Navier-Stokes turbulence have been more successful, in part be-

cause there are no limitations on the choice of �
0

. For example, we consider the study of

L. Biferale et al.“Lagrangian statistics of particle pairs in homogeneous isotropic

turbulence,” Phys. Fluids 17 115101(2005)

In Figure 1 of that paper are plotted the results for h⇢3(t)i from a 10243 DNS, Re
�

' 280 with

initial separations ⇢
0

= 1.2⌘, 2.5⌘, 9.8⌘ and 19.6⌘. Clearly, the initial separations are never

“forgotten”. Furthermore, there is no clean t3 range and no precise estimation of the Richardson

constant g
0

is possible. There seem to be “crossover” e↵ects from both the dissipation range

and the energy range that prevent a clear verification of the inertial-range predictions. Longer

inertial ranges seem necessary for this purpose. On the other hand, Richardson’s predictions

for P̄ (2)

t

(⇢) seem to be quite well confirmed, even at the relatively low Reynolds numbers of the

simulations. See Figure 2 in Biferale et al. (2005) for the comparison.
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p!r,t" =
Ar2

!k0!1/3t"9/2 exp#−
9r2/3

4k0!1/3t
$ , !2"

where A= !3/2"8 /"!9/2" is a normalization constant. This
exhibits strong non-Gaussianity with a narrow peak at the
origin and very large tails and gives rise to the celebrated
scaling for the second-order moment

%r2& = g!t3. !3"

Here g=1144k0
3 /81 is the Richardson constant which is

supposed to be universal. This result was also derived by
Obukhov24 using Kolmogorov’s classical theory of turbu-
lence !K41".9

The Richardson PDF is perfectly self-similar; all posi-
tive moments behave according to the dimensional law rp

# t3p/2. The scaling !3" is notoriously difficult to achieve both
in laboratory experiments and in DNS on account of the
large separation of scales that is required to observe it. As a
result, estimates of g have varied widely, from 0.06 to 3.5.8

The main practical difficulties in achieving a long inertial
subrange are due to dissipative range effects at the ultraviolet
end of the spectrum, integral scale effects at the infrared end
of the spectrum, and the finite initial separation of the pairs.
In the dissipation range, pairs separate exponentially and
with widely varying growth rates—some pairs separate rap-
idly while others remain close together. This leads to the
formation of a broad distribution of separations. As a result,
slowly separating pairs !which remain in the dissipative
range" and rapidly separating pairs !which approach the in-
tegral scales" “contaminate” the statistics in the inertial
range. A very large Reynolds number is therefore required to
produce reliable Lagrangian statistics in the inertial range.

In Fig. 1 we plot the mean-square separation %r2& vs t,
normalized by the Kolmogorov microscales, $ and %$, re-
spectively. Although the curves begin to collapse at large t,
they do not display a t3 scaling and still show a dependence
on the initial separation. Thus, any attempt to extract the
value of the Richardson constant will be marred by the
memory of the initial separation. The simplest way to mea-
sure g is to plot %r2& scaled by the asymptotic prediction, !t3,

and look for a plateau. These curves are displayed in the
inset of Fig. 1. It is clear that none of them produces a good
plateau, and, given the spread of curves with different initial
separations, the value will be at best an order of magnitude
estimate subject to considerable uncertainty.

An alternative method, used in Refs. 13, 15, and 18,
consists of fitting a straight line to %r2&1/3 in a suitable time
interval. If Eq. !3" holds, this straight line, when extrapolated
back toward t=0, should pass through the origin and have a
slope of !g!"1/3. For all curves, we find a small nonzero
intercept whose value varies with r0. This introduces an extra
free parameter in the linear fit corresponding to the nonzero
intercept. The curve with the smallest nonzero intercept has
r0=2.5$ and gives a value of g=0.47 with an error of the
order of approximately 10% depending on the time range
!here taken to be 15%$& t&75%$". This value of g is smaller
than that found by Yeung and Borgas18 and Ishihara and
Kaneda,15 though still of the same order of magnitude, but
agrees well with that of Ott and Mann13 and Boffetta and
Sokolov.14

In order to make a more complete analysis of Richard-
son’s model, we compute the PDF of the separation distance.
The Richardson PDF relies on two phenomenological as-
sumptions: the first is that the eddy diffusivity is self-similar,
the second is that the velocity field is short-time correlated.
However, it is known that anomalous corrections to the K41
scalings exist !see, e.g., Ref. 25", and these are likely to
complicate the situation.

In Fig. 2 we compare the separation PDF for the smallest
initial separation, r0=1.2$, calculated from the DNS data,
with that predicted by Richardson, namely !2". For small
times !up to t'40%$", we observed a rapid change in shape
with the PDF showing a pronounced tail, which indicates
that while most pairs are still close together, some have
moved very far apart !not shown". At these times the curves
do not rescale, indicating that the early stages of the separa-
tion process are very intermittent. Here, the physics of the
dissipative range still exerts an influence on the separation
process and so we would not expect agreement with the Ri-
chardson PDF. Only for times in the range 40–70%$ do we

FIG. 1. The evolution of %r!t"2& /$2 vs t /%$ for the initial separations r0
=1.2$, r0=2.5$, r0=9.8$, and r0=19.6$. The straight line is proportional to
t3. Inset: %r!t"2& /!t3 for the same four initial separations starting from t /%$

'15.

FIG. 2. Comparison of the Richardson PDF with the DNS data. The curves
refer to data for r0=1.2$ at t=5.2%$ !solid line", t=7%$ !long dashed line",
t=14%$ !short dashed line", t=42%$ !dotted line", and t=70%$ !dot-dashed
line". The thick solid line is the Richardson PDF !2".

115101-3 Lagrangian statistics of particle pairs Phys. Fluids 17, 115101 !2005"

Downloaded 19 Feb 2008 to 128.220.17.185. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

To help disentangle the e↵ects of di↵erent scales, an alternative approach has been proposed

based on exit-time statistics. See

G. Bo↵etta &I. M. Sokolov, “Relative dispersion in fully developed turbulence: The

Richardson’s law and intermittency corrections,” Phys. Rev. Lett. 88 094501

(2002)

In this approach one studies not ⇢(t) = �(2)(t) as function of time t but instead the �-folding time

(or exit time)

T
�

(⇢) = first time for �(2)(t) to increase from �(2)(0) = ⇢/� to the distance ⇢

= sup {t : �(2)(t) < ⇢, �(2)(0) = ⇢/�} (9)

for some � > 1. This is analogous to what was done in going from structure functions to

inverse structure functions in scaling of Eulerian velocity increments. The key advantage here

is that this quantity focuses on the statistics at a fixed length-scale ⇢. It may be shown using

Richardson’s equation that

hT
�

(⇢)i = 1

2

0

�

2/3�1

�

2/3

⇢

2/3

h"i1/3

/ ⇢2/3.
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Furthermore, the PDF of T
�

(⇢) can be determined from

P
�,⇢

(T ) = � d

dT

R
|�x|<⇢

P̄ (2)

T

(�x)d3(�x)

where P̄ (2)

T

(�x) is the solution of Richardson’s equation with initial condition P̄ (2)

0

(�x) =

�

2

4⇡⇢

2

�(|�x| � ⇢

�

). This can be shown to lead to

P
�,⇢

(T ) ⇠ exp (�K �

2/3�1

�

2/3

T

hT�(⇢)i)

for T � hT
�

(⇢)i with K ⇠= 2.72 a numerical constant.

For all these results, see Bo↵etta &Sokolov (2002), Biferale et al. (2005), Biferale et al. (2006)

P!,rn
!T" = # − 4"k0#1/3rn

10/3!p

!r
#

r=rn

, !5"

on making use of !1". Following Boffetta and Sokolov,28 we
can derive a solution of the 3D diffusion equation !1" in
terms of an eigenfunction decomposition. This gives us

p!$,t" = $
i=1

%

ci exp!− &i
2t"$−7/2J7/2!3&i$" , !6"

where $= !k0#1/3"−1/2r1/3, J7/2!x" is a Bessel function of the
first kind, &i=1/3!k0#1/3"1/2r−1/3j7/2,i, where j7/2,i are the ze-
ros of J7/2!x" and ci are constants. It then follows from !5"
that the large-time asymptotic form of the exit time PDF is
given by

P!,rn
!T" % exp&− '

2k0#1/3

rn
2/3 T' , !7"

where '(2.72 is a numerical constant derived from the
leading zero of the Bessel function described above.

Using Richardson’s diffusion equation !1", the mean exit
time can be shown to be14

)T!!rn"* =
1

2k0

!2/3 − 1
!2/3

rn
2/3

#1/3 . !8"

In the body of Fig. 5 we plot )T!!rn"* for a range of
initial separations. It is immediately clear that there is no
dependence on the initial separation in contrast to the mean-
square separation calculated as a function of time !see Fig.
1". Moreover, we see a much clearer inertial scaling region in
which the mean exit time grows almost like r2/3.

Equation !8" provides us with a method for calculating
the Richardson constant !since k0 is related to g":

g =
143
81

!!2/3 − 1"3

!2

r2

#)T!!r"*3 . !9"

In the inset of Fig. 5, we plot the expression !9" for the
Richardson constant versus r for various initial conditions.

We see that a collapse of curves is beginning to form for all
initial separations. We estimate the value of g to be approxi-
mately 0.50±0.05, which agrees with the value computed
above and with previous estimates of g.13,14,29 This method
has the advantage of relative insensitivity to the initial sepa-
ration and avoids the problem of the nonzero intercept dis-
cussed in Sec. III A. Of course, the present calculation of g
assumes the validity of Richardson’s model. We find that g
does not change significantly for !! +1.15,2,. It is also
worth noticing that the estimate of g is not very sensitive to
the Reynolds number !see the inset of Fig. 5".

The exit time PDF, P!,rn
!T", is shown in Fig. 6 for r0

=1.2( and clearly shows the exponential nature of the exit
time PDF at large times. At intermediate and large exit times,
T!!rn") )T!!rn"*, the exit time PDF agrees well with the the-
oretical prediction !7", when reexpressed in a universal form
using the mean exit time !8":

P!,rn
!T" % exp&− '

!2/3 − 1
!2/3

T

)T!!rn"*' . !10"

The clear collapse of curves for T!!rn") )T!!rn"* indi-
cates that the exit time statistics in this range are self-similar
!although we note that the collapse deteriorates with increas-
ing !". The deterioration of the collapse at very large exit
times is due to statistical noise—there are relatively few
pairs which remain close together for long periods of time.
Here we have shown that by focusing on statistics at fixed
scales, such that the effect of the infrared and ultraviolet
cutoffs on the inertial range is reduced and the finite initial
separation of the particle pairs becomes unimportant, the Ri-
chardson diffusion model appears to work well for the iner-
tial range of scales. For small exit times, T!!rn"* )T!!rn"*, on
the other hand, we do not find a complete collapse of curves
at different thresholds, indicating that rapidly separating
pairs are likely to exhibit intermittency !see the inset of
Fig. 6".

The higher-order moments of T are dominated by those
pairs which separate slowly. Conversely, the moments of the
inverse exit times, )+1/T!!r",p*, are dominated by those pairs

FIG. 5. The mean exit time for the initial separations r0=1.2( !thin con-
tinuous line", r0=2.5( !long dashed line", r0=9.8( !short dashed line", and
r0=19.6( !dotted line" with !=1.25. The straight line is proportional to r2/3.
In the inset we show Richardson’s constant, g, vs r /( as given by !9" for the
same initial separations at R&=284. To evaluate the variability of g with the
Reynolds number, we also plot a curve !thick continuous line" for the initial
separation r0=1.2( at R&=183.

FIG. 6. The log-linear plot of the exit time PDF for r0=1.2( with !=1.25 at
r=21.8( !dashed line", r=83.3( !dotted line", and r=130.1( !dot-dashed
line". The solid line is the large time prediction !10". Inset: a lin-lin plot of
the same figure showing more detail.
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In Figure 5 of Biferale et al. (2005) is plotted the result for hT
�

(⇢)i, at a variety of initial

separations ⇢
0

. There is now a much better collapse of results for di↵erent values of ⇢
0

, so that

initial separations are “forgotten”. Furthermore, there is a range of ⇢ with scaling very close

to hT
�

(⇢)i / ⇢2/3 [but with possibility a small intermittency correction that will be discussed

later!]. The value of Richardson’s constant can be inferred from

g
0

= 143

81

(�

2/3�1)

3

�

2

⇢

2

h"ihT�(⇢)i

which gives

g
0

⇠= 0.50 ± 0.05
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in close agreement with the experimental determination of Ott &Mann(2000). In Figure 6 of

Biferale et al. (2005) the prediction of Richardson’s model for P
�,⇢

(T ) has also been shown to

fit the DNS data quite well.

In the past decade, computer power has increased to the point that Richardson’s predictions

(with caveats) can be observed directly. For example, the following paper

R. Bitane, H. Homann, and J. Bec, “Geometry and violent events in turbulent pair

dispersion,” Journal of Turbulence, 14 23–45 (2013)

reports results of a 40963 DNS study at Re
�
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Figure 2. Time-evolution of the mean-squared distance for R� = 730 (a) and R� = 460 (b) for various

initial separations r

0

as labeled. The horizontal and vertical solid lines represent the integral scale L and

its associated turnover time ⌧L, respectively. The dashed line corresponds to the explosive Richardson-

Obukhov law (3) with g = 0.52.
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(b)
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Figure 3. (a) Compensated mean-squared displacement h|R(t) � R(0)|2i/(✏ t

3

) as a function of t/t

0

with

t

0

= S

2

(r

0

)/(2✏) for various initial separations and R� = 730 (�) and R� = 460 (+). The two curves show

behaviors of the form h|R(t) � R(0)|2i � g ✏ t

3

+ A t

2

, with A = S

2

(r

0

), given by Batchelor’s ballistic

regime (black dotted line), and A = 2.5/t

2

0

(grey dashed line). (b) Measured value of the constant g C in

front of the subleading term as a function of the initial separation. It stabilizes to C � 1.3/g � 2.5 for

r

0

� ⌘; this value is represented as a dashed line.

Figure 2 shows for the two simulations the time evolution of the mean squared
distance h|R(t)|2i for various values of the initial separation r

0

. Times and space
are there represented in dissipative-scale units. After a transient (which roughly
corresponds to Batchelor’s ballistic regime), the mean-squared distance approaches
the explosive Richardson–Obukhov regime

�
|R(t)|2

�
' g � t3. (3)

We observe for both values of the Reynolds number a Richardson–Obukhov con-
stant g ⇡ 0.52 ± 0.05. The low accuracy with which this constant is determined
comes from the fact that, even at the higher resolution, the t3 scaling is observed
in a rather limited time range. This is even clearer from Fig. 3 (a), which shows
the compensated mean squared increase of the distance h|R(t)�R(0)|2i/(� t3). On
this figure, the time has been rescaled by t

0

= S
2

(r
0

)/(2�), where S
2

designates
the second-order Eulerian structure function with absolute values. The choice of
such a timescale was motivated in [20] as that of deviations from Batchelor’s initial
ballistic regime. Surprisingly, the data shown in Fig. 3 (a) corresponding to var-
ious initial separations r

0

far enough in the inertial range seem to collapse. This
suggests that the timescale t

0

contains most of the dependence of pair dispersion
upon the initial separation r

0

. Also data indicate that the subdominant terms in
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Figure 5. Fourth (a) and sixth (b) order moments of |R(t) � R(0)| as a function of its second-order

moment for R� = 730. The two gray dashed lines show a scale-invariant behavior, i.e. h|R(t)�R(0)|4i �
h|R(t)�R(0)|2i2 and h|R(t)�R(0)|6i � h|R(t)�R(0)|2i3, respectively. The two insets show the associated

local slopes, that is the logarithmic derivatives d logh|R(t)�R(0)|pi/d logh|R(t)�R(0)|2i, together with

the normal scalings represented as dashed lines.

t ⌧ t
0

in the insets of Fig. 5, which represent the logarithmic derivatives of the
high-order moments with respect to the second order. At times of the order of t

0

,
noticeable deviations to normal scaling can be observed. Finally, at much larger
scales, data corresponding to di↵erent values of the initial separation r

0

collapse but
the curves start to bend down. One observes in the insets that the associated local
slopes approach values clearly smaller than those corresponding to normal scaling.
This gives evidence of a rather weak intermittency in the distribution of tracer
separations. Note that the presented measurements were performed for R

�

= 730
but the same behavior has been observed for R

�

= 460.
To our knowledge, the most convincing observation of an intermittent behavior

in pair dispersion has been based on an exit-time analysis [23]. However, the rela-
tion of such fixed-scale statistics to the usual fixed-time measurements we report
here requires to consider pair separation velocities. As we will see in next Section,
the velocity di↵erence between two tracers displays statistics that are much more
intermittent than those for pair separation. This implies that there is no contra-
diction between an almost normal scaling for distances as a function of time and
an anomalous behavior of exit times as a function of distance.
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Figure 6. Probability density function of the distance r at time t = 2.5 t

0

(a) and t = 5 t

0

(b) and for

various values of the initial separation. We have here normalized it by 4⇡r

2

and represented on a logy axis

as a function of r/h|R(t)|2i1/2

. With such a choice, Richardson’s di�usive density distribution (2) appears

as a straight line (represented here as a black dashed line).

To investigate further this weak intermittency in the separation distribution, we
have represented in Fig. 6 the probability density function (PDF) of the distance
|R(t)| for various initial separation and at times where we expect to have almost

The t3-law is directly observed, with clear “forgetting” of initial separations. The Richard-

son constant is determined to be g = 0.52, in good agreement with previous estimates. The

Richardson stretched-exponential PDF of separation distances is also observed. Interestingly,

however, there is agreement only for a limited range 1/2 . r/hr2(t)i . 2. Outside this range

there are clear deviations which remain to be understood! The di↵usion approximation pro-

posed by Richardson is clearly an ad hoc assumption and many interesting alternative models

have been suggested. For example, see:

C. C. Lin, “On a theory of dispersion by continuous movements,” Proc. Nat. Acad.

Sci. USA 46, 566 (1960).

M. F. Shlesinger, B. J. West & Joseph Klafter, “Lévy dynamics of enhanced di↵u-

sion: Application to turbulence,” Physical Review Letters 58 1100 (1987).

G. L. Eyink & D. Benveniste, “Di↵usion approximation in turbulent two-particle

dispersion,” Physical Review E 88 041001 (2013)

S. Thalabard, G. Krstulovic & J. Bec, “Turbulent pair dispersion as a continuous-

time random walk,” Journal of Fluid Mechanics 755 R4 (2014).
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The problem of 2-particle di↵usion has an important relation with the evolution of 2-point

statistics of passive scalars. Using the relation ✓(x, t) =
R

dd↵ ✓
0

(↵)�(X(↵, t)�x) and assuming

again that the initial scalar field is statistically independent of the velocity field, then

h✓(x, t)✓(x0, t)i =

Z
dd↵

Z
dd↵0 h✓

0

(↵)✓
0

(↵0)�(X(↵, t) � x)�(X(↵0, t) � x

0)i

=

Z
dd↵

Z
dd↵0h✓

0

(↵)✓
0

(↵0)ih�(X(↵, t) � x)�(x(↵0, t) � x

0)i

=

Z
dd↵

Z
dd↵0h✓

0

(↵)✓
0

(↵0)iP (2)

t

(x,x0|↵, ↵0). (10)

Thus, P (2)

t

evolves the 2-point correlation of the scalar in the same way as P (1) evolves the

1-point correlation. If the statistics of the velocity field and of the scalar field are both space-

homogeneous, then

h✓(x, t)✓(x0, t)i = h✓(0, t)✓(�x, t)i := ⇥(2)(�x, t), �x = x

0 � x,

and

P (2)

t

(x,x0|↵, ↵0) = P (2)

t

(y,y + �x|0, �↵), �↵ = ↵0 � ↵, y = x � ↵,

so that substitution into (10) gives

⇥(2)(�x, t) =

Z
dd(�↵) ⇥(2)

0

(�↵) P
(2)

t

(�x|�↵)

where P
(2)

t

(�x|�↵) =
R

ddy P (2)

t

(y,y + �x|0, �↵) is the reduced PDF. In particular at long

times t when |�x| � |�↵| and assuming statistical isotropy with ⇢ = |�x|, Richardson’s

di↵usion equation @
t

⇥(2)(⇢, t) = 1

⇢

d�1

@

@⇢

h
⇢d�1K(⇢) @

@⇢

⇥(2)(⇢, t)
i

should be reasonably accurate.

These latter results obviously generalize to N -particle di↵usion described by transition prob-

abilities P (N)

t

(x
1

, · · · , x
N

|↵
1

, · · · , ↵
N

) and N-point scalar correlations h✓(x
1

, t) · · · ✓(x
N

, t)i. For

more discussion of N -particle di↵usion, see:

G. Falkovich, K. Gawȩdzki & M. Vergassola, “Particles and fields in fluid turbu-

lence,” Rev. Mod. Phys. 73 913-975(2001)

L. Biferale et al., “Multiparticle dispersion in fully developed turbulence,” Phys.

Fluids 17 111701 (2005)
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