
(G) Numerical and Experimental Results

To begin, we shall show some data of

R. D. Moser, J. Kim & N. N. Mansour, “Direct numerical simulation of turbulent

flow up to Reτ = 590,” Phys. Fluids 11 943-945 (1999)

as analyzed by Panton (2005). The first figure shows data for g0(y+) and the second for the

composite expansion of the stress
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compared with the data. The third compares the composite expansion for the mean velocity
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directly with the data and, in the fourth plot, by the log-law “diagnostic function”
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The expansions work less well for the mean-velocity which is not as highly constrained by the

RANS equations as in the stress.

The question of when one can observe a logarithmic portion in

the velocity profile is addressed by the diagnostic function !(y!):

!"y!
du!

dy!
(7.21)

A logarithmic portion is indicated when ! takes on the constant
value !"1/". Figure 42 shows ! for the highest Re

*
"590 Ames

channel flow data along with the ! computed for the composite
profile shown in Fig. 41 with #"0.1. The DNS has no log portion
while the composite predicts a log portion between y!"65 and
95. A comparison of the ! predicted by the composite expansion
for channel flow Reynolds numbers of 500 and 1000 is displayed
on Fig. 43. The higher Reynolds number in channel flow increases

the log portion to 65#y!#160.
Figure 44 is a low-order composite expansion prediction for

boundary layer flow with #"0.60. In the boundary layer flow the
larger wake component completely obliterates the log portion at
Re
*

"500. At Re
*

"1000 there is a small portion that is almost
flat, 60#y!#85, but the level is ""0.379 rather then the value

assumed in the calculation, 0.390. At Re
*

"5000 the curve shows
a log region with a value ""0.3895. Very close to the 0.390 value
used in the calculation. The region where "$0.385 is located 60
#y!#270. According to this model the log region of a boundary
layer begins about y!"60 and extends upward as the Reynolds
number increases.

Based on a low-order composite expansion, a log portion

should not be expected until reasonably high Re
*
are attained. A

larger wake component compounds this effect. This is consistent
with the conclusion of Österlund et al $66% that significant loga-
rithmic overlap is not seen until Re&"6000 'Re*"1500(.

7.5 Power Law Versus Log Law. I regard the issue ‘‘power
law versus log law’’ as an artificial question. From the viewpoint
of composite expansions, the log law is the common part of the

inner and outer functions. It is the limiting form of f as y!⇒)
and of F as Y⇒0. In principle it is not an equation that approxi-
mates the data, the composite expansion theoretically has that
role. At high enough Re

*
the velocity profile does show a neigh-

borhood where the log law is a reasonable data approximation.

Fig. 38 Insensitivity of wake strength at high
Re*. Data of Smith and Walker †99‡ corrected
by East et al †72‡.

Fig. 39 Reynolds stress wall function for
Ames channel flow DNS. Data from Moser et al
†102‡.
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Fig. 39 Reynolds stress wall function for Ames channel flow DNS.
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This is easier to observe in pipe flow than in boundary layers
flows because pipe flows have a small wake component.
Consider the analogous question for the Reynolds stress. The

common part is !!uv"/u
*
2 "1. Is the value unity a good approxi-

mation for !!uv"/u
*
2 in some neighborhood of y#? Not really.

At Re
*

"10,000 the maximum is !!uv"/u
*
2 "0.97, 3% low. One

could fit a parabola at the maximum point

ymax
# #!Re

*
$

(7.22)

!!uv"max
u
*
2

#1!
2

!$ Re
*

(7.23)

The parabola would fit much better, however, it would have sev-
eral ‘‘constants’’ that depend on the Reynolds number. In essence
it would be a curve fit with no theoretical significance.
As noted in the introduction Prandtl used a power law as an

approximating equation for Reynolds numbers less than
UaveD/%$100,000. He assumed a friction law &with power law
form' to derive the power law U/u*"C(y#)n with n"1/7 and C
constant. Engineers have used a power law anchored at the center,

U/U0"Yn where n is a function of Reynolds number. These
equations have always been regarded as curve fits.

Barenblatt asserts that a power law is theoretically well-
founded and superior the log law for approximating pipe flow
velocity profiles. This idea is presented in his first book, Barenb-
latt (25) as a alternative to the log law. In more recent articles, his
power law is claimed to be superior to the log law &Barenblatt
et al (28–30)'. Specifically he advocates the relation

U&y '

u
*

"Cy#n (7.24)

where the coefficients are functions of the pipe Reynolds number,
Red :

n&Red'"
a

ln Red
"

3/2

ln Red
(7.25)

C&Red'"b#c ln Red"
1

!3
#
5

2
ln Red (7.26)

The choice of the coefficients a, b, and c was based on Ni-
kuradse’s data.
Barenblatt does not intend that Eq. &7.24' is valid in the center

of the pipe or near the wall.

Barenblatt’s equations have been plotted for Re*"103, 104,
105 and 106 on Figs. 45 and 46 in different forms. In the first

Fig. 40 Composite expansion for Reynolds
stress and Ames channel flow DNS. Data from
Moser et al †102‡.

Fig. 41 Composite expansion for velocity and
Ames channel flow DNS at Re*Ä590. Data from
Moser et al †102‡.
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Fig. 40 Composite expansion for Reynolds stress and Ames channel flow DNS.
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form' to derive the power law U/u*"C(y#)n with n"1/7 and C
constant. Engineers have used a power law anchored at the center,
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The choice of the coefficients a, b, and c was based on Ni-
kuradse’s data.
Barenblatt does not intend that Eq. &7.24' is valid in the center

of the pipe or near the wall.

Barenblatt’s equations have been plotted for Re*"103, 104,
105 and 106 on Figs. 45 and 46 in different forms. In the first

Fig. 40 Composite expansion for Reynolds
stress and Ames channel flow DNS. Data from
Moser et al †102‡.

Fig. 41 Composite expansion for velocity and
Ames channel flow DNS at Re*Ä590. Data from
Moser et al †102‡.
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Fig. 41 Composite expansion for velocity and Ames channel flow DNS at Re∗=590.
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figure the difference between the power law and the log law is

plotted as a function of y!. The log law coefficients used are
those recommended by Barenblatt !26"; #"0.40 and Ci"5.1. The
power law starts at a level higher than the log law, comes down

below the log law by about u!"#0.5 and then rises. Choosing
different constants # and Ci could make the power law curves
very closely tangent to the log law, however, this decreases the

approximating ability at larger distances. As the Reynolds number

increases, the region where the power law comes close to the log

law moves outward. Thus, the region of invalidity near the wall

increases in size as Reynolds number increases. But, this invalid

region is in terms of y!.

In Fig. 46 the difference curves are plotted as a function of Y.

This is essentially a wake representation and Coles wake law is

shown for comparison. The power law mimics the first portion of

the wake law and this approximation is better at higher Reynolds

numbers. The power law does not produce a wake component that

is independent of Reynolds number. The major point of Figs. 45

and 46 is that the power law mimics the outer part of the log law

and the beginning of the wake law. When the center of the pipe is

reached, the power law has its maximum slope. There is a region,

especially at high Reynolds numbers, where the power law

roughly approximates $$0.5% the data. The region of a reasonably
good fit is probably larger than that of the log law. However, the

log law is not an approximating formula. In principle the compari-

son should be made with the log law plus the wake law.

The authors of recent pipe flow measurements, Zagarola and

Smits !54" and Toonder and Nieuwstadt !104", have been asked to
compare their data to the power law. Neither set of authors con-

cludes that the power law is a superior representation. Now con-

cerning the claim that the power law has theoretical foundations.

Barenblatt begins his derivation from the equation

Fig. 42 Log law diagnostic function gamma for channel flow.
Composite expansion and Ames DNS at Re*Ä590.

Fig. 43 Log law diagnostic function gamma
for channel flow. Composite expansion at
Re*Ä500 and 1000.

Fig. 44 Log law diagnostic function gamma
for boundary layer. Composite expansion at
Re*Ä500, 1000, and 5000.
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The same quantity has been analyzed in more recent simulations of

S. Hoyas & J. Jiménez, “Scaling of the velocity fluctuations in turbulent channels

up to Reτ = 2003,” Phys. Fluids 18 011702 (2006)

by

J. Jiménez & R. D. Moser, “What are we learning from simulating wall turbulence?”

Philos. Trans. Roy. Soc. A 365 715-732 (2007).

In the first figure, the diagnostic function is plotted in both inner and outer scalings. No clear

plateau is observed. In the second figure a comparison is made with the next-order matched

asymptotics of

N. Afzal & K. Yajnik, “Analysis of turbulent pipe and channel flows at moderately

large Reynolds number,” J. Fluid Mech. 61 23-31 (1973)

which leads to the prediction

y ∂(ū/u∗)
∂y = 1

κ + α y+

Re∗
+ β

Re∗

or

y ∂(ū/u∗)
∂y = 1

κ + αη + β
Re∗
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The agreement seems good with α = 1.0, β = 150, when compared with the DNS and also

experiments of

V. K. Natrajan & K. T. Christansen, “The role of coherent structures in subgrid-

scale energy transfer within the log-layer of wall turbulence,” Phys. Fluids 18

065104 (2006)

refined overlap expressions:
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In the context of this analysis, the integration constants Bi and B0 are, in
general, Reynolds number-dependent, though k, a and b are not. However, the
data presented below indicates that this Reynolds number dependence should
not be strong.

A nearly identical result was obtained by Afzal & Yajnik (1973), though they
retained the possibility of a non-zero f0, by allowing F1 to be singular at zero,
which is not considered here because it violates our assumptions of the regularity
of the functions at zero. However, such a singular term could arise if a y shift is
introduced in the logarithmic law (Lindgren et al. 2004), which might extend the
range of validity of the representation to somewhat smaller y. This possibility
will not be explored here.

To evaluate the validity of the finite Reynolds number refinement of the
logarithmic law described above, numerical simulations (del Álamo et al. 2004;
Hoyas & Jiménez 2006) are used to determine the quantity yðduC=dyÞ, which is
plotted versus yC and ~y in figure 6. According to the above analysis, expressions
for this quantity in inner and outer coordinates are

y
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In the overlap region where these expressions apply, yðvuC=vyÞ, which would
be a constant with value 1/k in a log-layer, will be a line with slope of a/hC when
plotted in inner units. In this way, a log-layer is approached at high hC as
the slope of yðvuC=vyÞ goes to zero in the overlap. In outer units, the slope of
yðvuC=vyÞ in the overlap region is independent of hC. In figure 6, it appears that
the hCZ940 and hCZ2000 channels exhibit a straight region with these
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Figure 6. yduC/dy from direct numerical simulation at hCZ550, 940 and 2000.

725Study of turbulence near walls

Phil. Trans. R. Soc. A (2007)

properties for ~y!0:45 and yCO300, which are thus the limits of applicability of
the overlap expressions (4.8) and (4.9). The slope of the curves in the overlap
region is az1.0, which is estimated from the hCZ2000 case.

These limits are much larger than those commonly assumed and discussed in §2.
However, recent experiments also suggest amuch larger inner limit for the log layer,
ranging from yCw200 to 600 (Österlund et al. 2000; Zanoun et al. 2003; McKeon
et al. 2004). Further in Wosnik et al. (2000), a Reynolds number-dependent
mesolayer in the range 30!hC!300 is postulated, with a log layer only evident
beyond yCw300, and Lindgren et al. (2004) propose that the apparent log layer
breaks down for yC!200 owing to a y offset in the logarithmic term.

The extension of the outer limit of the overlap representation to ~yz0:45 is
somewhat surprising, but it may be that including the next order term expands
the range of applicability. For example, in the overlap range, the value of
yðduC=dyÞ, which can be considered the local value of 1/k, varies by
approximately 20% (independent of hC). If one insisted on a region with
negligible variation of k (i.e. a true logarithmic layer), one would likely choose a
more limited range of ~y.

The values of k and b in the channel are estimated from the numerical simulation
profiles at hCZ940 and2000 (figure 7a).The lines describedby (4.8) intersect at the
point yCZKb/azK150, yðduC=dyÞZ1=kz2:49. The parameters are thus
estimated to be kz0.40 and bz150. These estimates must be considered
preliminary, since the overlap region is marginal at hCZ940. There are also
statistical uncertainties in yðduC=dyÞ at large ~y, estimated to be as high as 0.04 in
the hCZ2000 case, leading to uncertainties of order G0.02,G0.1 andG40 in k, a
and b, respectively. The agreement with the standard value of k may thus be
coincidental. In addition, (4.8) is shown in figure 7a evaluated for hCZ550, and it
does not approach the hCZ550 curve. This Reynolds number is too low for the flow
to exhibit an overlap region, since, in this case, yCZ300 is at ~yZ0:54O0:45.

Experimental profiles that can be meaningfully differentiated are difficult to
obtain, which is probably why the yðduC=dyÞ diagnostic has not often been used
(exceptions include Zanoun et al. (2003); Lindgren et al. (2004)). However, the
mean velocity data from the experiments of Natrajan & Christensen (2006) are
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Figure 7. Zoomed-in view of yðduC=dyÞ from (a) direct numerical simulation for Reynolds numbers
hCZ550, 940 and 2000 and (b) PIV measurements at Reynolds numbers hCZ1141, 1747 and 2433.
The thin lines are yðduC=dyÞ determined from equation (4.8), with constants aZ1.0, bZ150 and
1/kZ2.49, which were determined from the simulation data in (a).

J. Jiménez and R. D. Moser726

Phil. Trans. R. Soc. A (2007)

But note that an overlap region seems to exist only for Re∗ ! 900 and for y+ ! 300!
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We next consider data from the Princeton Superpipe experiment which studied turbulent pipe-

flow over a broad range of Reynolds numbers Re = 3 × 103 − 35 × 106. The results on the

mean-flow velocity are reported in

M. V. Zagarola & A. J. Smits, “Mean-flow scaling of turbulent pipe flow,” J. Fluid

Mech. 373 33-79 (1998)

with some important quantitative corrections in

B. J. McKeon et al. “Further observations on the mean velocity distribution in fully

developed pipe flow,” J. Fluid Mech. 501 135-147 (2004)
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k1/2 = 2.0 log (Re k1/2) – 0.8 (Prandtl)
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k1/2 = 1.901 log (Re k1/2) – 0.432

Re ! k1/2

F 9. A comparison between our friction factor data with the relations proposed by
(a) Prandtl and Blasius, (b) by Prandtl.

that the constants chosen by Prandtl do not accurately represent our data. A least-
squares approximation (no weighting) was used with our data to determine new values
for the coefficient in (25). When all Reynolds numbers are used in the analysis (Case
1 in table 3), the new values for the constants are 1!901 and "0!432. The agreement
between this new curve and the data is satisfactory (see figure 9b), but more accurate
relationships can be found as follows.

As discussed earlier, it seems reasonable to disregard the data below # 100$10!

when determining the coefficients in (25). Also, there may be a slight roughness effect
at the very highest Reynolds number. Therefore, the coefficients in (25) were
determined using 98$10!%Re% 30$10" (Case 4 in table 3). For comparison with
this Reynolds number range, the analysis was repeated for the different ranges given
in table 3, where R

c
is the correlation coefficient. The results from a least-squares

approximation of Nikuradse’s friction factor data are also given for two different
ranges of Reynolds numbers. The coefficients found from Nikuradse’s data for
3!1$10!&Re& 3!2$10" are the same as those determined by Prandtl. The values of
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The first figure (above) shows the results on the friction factor λ = 8(u∗/ūm)2, which are well-

described by the Prandtl logarithmic friction law (with modified coefficient). The next figure

(below) shows the velocity profiles in inner scaling for 13 different Reynolds numbers.
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F 14. A comparison of the velocity profiles normalized using inner scaling variables for 13
different Reynolds numbers between 31!10! and 35!10".

then the near-wall limit of the log law (M
i
) should become apparent. If the wall-normal

positions are scaled by outer layer variables, then the core limit of the log law (M
o
)

should become apparent.
The value of Ψ was calculated using the value of κ determined from the friction

factor and centreline velocity data (κ" 0#436). Data for y!R$ 0#01 were neglected in
this analysis due to the large uncertainty in position and the data at the very highest
Reynolds number were neglected due to the possibility of roughness effects (see figure
8). To determine the inner limit, the Ψ data at each y+ location were averaged. Data
for y!R%M

o
were neglected to prevent data in the core region, where Ψ%B, from

increasing the average at a given y+. To determine the outer limit, the Ψ data at each
y!R location were averaged. Data for y+$M

i
were neglected to prevent data in the

near-wall region, where Ψ$B, from reducing the average at a given y!R. The limits
were adjusted until a consistent value of Ψ was obtained for some intermediate region
given by M

i
ν!uτ $ y$M

o
R.

The results are shown in figure 15(a, b). The error bars shown correspond to the
standard error (95% confidence interval) at a given position. These error bars are
considerably smaller than the uncertainty in B for a single Reynolds number (&0#12)
(see figure 8). The large uncertainty in figure 8 is due primarily to the uncertainty in uτ

which has a fixed value at a given Reynolds number. When an average is taken over
multiple Reynolds numbers, the random error in uτ tends to cancel providing us with
a more accurate method to determine B. The values of Ψ shown in figure 15(a, b) are
averages for data at six to seventeen Reynolds numbers. Inspection of figures 15(a) and
15(b) shows that for 600ν!uτ $ y$ 0#07R (600$ y+$ 0#07R+), Ψ has a constant value
of 6#15 in both figures.

Our proposed log-law limits are more restrictive than the commonly accepted limits
of 50ν!uτ $ y$ 0#15R but are consistent with Millikan’s proposal in that a logarithmic
overlap region can only exist for ν!uτi yiR or 1i y+iR+. These limits are also

We next show the results for

Ψ ≡ ū/u∗ − 1
κ ln y+

with the value of κ inferred from the friction law, κ = 0.436. This quantity should equal the

constant B in the logarithmic region. A plateau is observed in the range

600 < y+ < 0.07R+,

smaller than was previously expected.
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F 15. The difference between the velocity profile and the log law as a function of wall-normal
position for κ! 0"436. The value of Ψ was averaged over multiple Reynolds numbers. In (a) the wall-
normal positions are normalized using inner scaling variables, and in (b) outer scaling variables.

similar to the ones determined by George et al. (1997) (300# y+# 0"1R+) from a
simplified turbulence model. Accepting our proposed limits, a log law cannot exist for
R+# 600!0"07! 9$10! which corresponds to a pipe Reynolds number of 400$10!.
It is doubtful that other experiments could have defined these limits since to observe
a log law over an order of magnitude in y+ requires data at a Reynolds number of
5$10" which has only been obtained here and in the experiment by Dickinson (1975).

Critics of the log law often point to the Reynolds number dependence of the peak
in the Reynolds shear stress, which may occur in the log region, as evidence against the
existence of a log region. This criticism is based on the belief that if the log region is
truly an inertial region then the turbulence statistics must be independent of viscous
effects. We argue that the limits we propose resolve this apparent contradiction. An
equation for the Reynolds shear stress in the log region can be derived from the
streamwise momentum equation as

%u&+! 1%
y+

R+
%

1

κy+
, (41)

where %u&+ is the Reynolds shear stress normalized by uτ. Equation (41) can be used
to show that the peak in %u&+ occurs at

y+
p
! 01κR+1#/$. (42)

If a log law is not observed until R+& 9$10!, then the location of the peak is
inconsequential since %u&+& 1 and viscous effects are negligible. This is not the case
if we use the conventional limits for the log law since a log law would then exist at
R+& 50!0"15& 330 and

%u&+! 1%0 4

κR+1#/$! 0"83 (43)

if we let κ! 0"41. The proposed log-law limits are consistent with the streamwise

The next figures show that no choice of κ succeeds to extend the plateau to y+ < 600 and that

the region is better fit by a power-law

ū/u∗ = 8.70(y+)0.137.

The outer range of the power-law is found to be

y+ = min{500, 0.15R+}

so that the range does not grow for Re∗ > 3300.
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F 16. The difference between the velocity profile and the log law as a function of wall-normal
position for different values of κ. The value of Ψ was averaged over multiple Reynolds numbers.
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F 17. A linear–log plot of the velocity profile data within 0!07R+ of the wall normalized
using inner scaling variables for 26 different Reynolds numbers from 31"10! to 35"10".

momentum equation while the previously accepted limits appear to create a
contradiction between the equations of motion and the overlap argument used to
derive the log law.

The new log-law limits were used to determine B for each Reynolds number. The
results are shown in figure 8 which is described in §5. The additive constant has an
average value of 6!15 with a standard error of #0!02 when the highest Reynolds
number is neglected. No Reynolds number dependence is apparent except at the
highest Reynolds number and, as pointed out in §5, this may be caused by roughness.

So far we have assumed that κ$ 0!436. In figure 16 we show Ψ for κ$ 0!436#0!002
and #0!004. The data for κ$ 0!436 and κ$ 0!438 form a horizontal line for y+% 600.
For κ$ 0!438 the nominal value of B is 6!23. For the other values of κ, Ψ has either
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We believe that this region, which is closer to the wall than the log region and further
from the wall than the linear region, is better described by a power law than a log law
(Zagarola & Smits 1997). The power law is shown in figure 17. The local value of κ can
be evaluated from the slope of the power law using

κ# 0y+
dU+

dy+ 1−#. (45)

The value of κ varies from 0!49 to 0!36 for 50$ y+$ 500 which is consistent with the
variation observed by many previous investigators (Hinze 1964), and helps explain why
previous investigators have noted a Reynolds number dependence of the log-law
constants.

Finding the empirical constants and the limits of a power law are more difficult than
for the log law since neither of the constants is readily determined from the friction
factor data. The inner limit of the power law should scale on inner layer variables, but
the outer limit may scale on inner or outer layer variables depending on whether the
Reynolds number is large enough for a logarithmic overlap region to exist. From
inspection of figure 17, the inner limit of the power law appears to be at y+% 50 or 60.
At Reynolds numbers sufficiently large for a log law to exist (R+% 9"10!), we may
expect that the outer limit of the power law region is equivalent to the inner limit of
the log law (y+% 600). At lower Reynolds numbers, we expect viscous effects and the
power law scaling to extend beyond where the outer limit of the log law is located
(y+% 0!07R+). We can take y+# 0!15R+ as a first approximation since it is the
conventional outer limit of the log law.

The empirical constants in the power law were determined using a least-squares
approximation for the region given by 60$ y+$ 500 or 0!15R+. The data for 500$
y+$ 600 are inconsistent with the power law scaling, and we believe that this region
is a transition region between the power law and log law. In figure 19 we plot the U+

data in log–log coordinates in order to emphasize the power law dependence. The
power law is given by

U+# 8!70(y+)$!
#!%. (46)

The U+ data are within &0!72% (# 2"standard deviation) of (46) for 60$ y+$ 500
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or 0!15R+ which is commensurate with the uncertainty in U+ ("0!57%). The
multiplicative constant and the exponent in (46) are very close to the values (8!74,
1!7# 0!143) that Prandtl derived (see Durand 1943) from the Blasius friction factor
relation (equation (32)) using the assumption U! # 0!8U

CL
, and which Nikuradse

(1932) showed were in good agreement with his low Reynolds number data.
In figure 20, we show the outer limit of the power law as a function of R+. The outer

limit was determined as the point where the uncertainty intervals of the U+ data no
longer overlap (46). The outer limit appears to depend on Reynolds number for R+$
6%10!, and above this value, it appears to be independent of Reynolds number and
constant at approximately y+& 500. For R+$ 2!7%10!, the outer limit is in reasonable
agreement with y+# 0!15R+. For 2!7%10!$R+$ 5%10!, the power law appears to
extend considerably further into the outer region (y& 0!3R to 0!6R) than for the other
Reynolds numbers. We believe that this anomaly occurs because the slope of the
velocity profile at the outer limit of the power law, which depends on R+, coincides with
the slope near the inner limit of the outer region at these Reynolds numbers. We do not
believe that the extension of the power law this far from the wall is indicative of a
viscous dependence.

8. A new scaling argument for the inner region

The existence of a power law implies that viscosity is still an important parameter for
y+$ 500. The viscous dependence suggests that this region is part of the inner region,
but since the Reynolds number must be quite large for this region to exist, it could also
be an overlap region exhibiting incomplete similarity (Zagarola & Smits 1997). The
lowest Reynolds number where the power law exists is Re& 13%10! (R+& 400). The
existence of an overlap region at this Reynolds number is supported by the
investigation by Patel & Head (1969) in which they observed an overlap region for
Re' 10!. They concluded that the overlap region was logarithmic, but it is doubtful
that the scaling could be determined at such low Reynolds numbers.

It could also be argued that at sufficiently high Reynolds numbers the power law
becomes the log law. This scenario is consistent with Prandtl’s speculation (see Durand
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Finally, we present some results of Zagarola & Smits (1998) on outer scaling. They found that

(ūc− ūm)/u∗ → const. as Re→∞, consistent with standard theory. On the other hand, better

collapse in outer scaling was obtained by using ūc − ūm as the velocity scale rather than the

conventional quantity u∗.
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Barenblatt (1993). Both proposals presume a smooth or gradual variation of the
scaling in the overlap region. The proposal by George et al. presumes a smooth
variation of y+dU+!dy+ with y+. The proposal by Barenblatt presumes a smooth
variation of C

!
and γ with Reynolds numbers. The variation of y+dU+!dy+ at four

different Reynolds number is shown in figure 21. These proposals clearly differ in spirit
from the proposal given here. Despite the abrupt change in scaling, we note that the
entire overlap region in our model is still described only in terms of classic inner and
outer scales. The functional dependence is observed to change, but the power-law and
log-law regions should not be thought of as two separate overlap regions because they
share the same scaling variables.

For our overlap proposal to be valid, u
o
must be proportional to uτ at high Reynolds

number. From our analysis, it appears that a reasonable candidate for u
o

is U
CL

!U! ,
which is a true outer velocity scale, in contrast to uτ, which is a velocity scale associated
with the near-wall region which is ‘ impressed’ on the outer region. Figure 22 shows the
variation of (U

CL
!U! )!uτ with Reynolds number. At Reynolds numbers less than

" 300#10", u
o
!uτ is a function of Reynolds number, but at high Reynolds numbers,

u
o
!uτ is independent of Reynolds number (i.e. u

o
!uτ $ constant). For Reynolds

numbers greater than 300#10", the error bounds for all data overlap a horizontal line
at (U

CL
!U! )!uτ $ 4%34. If U

CL
!U! is the correct outer velocity scale, then it should

collapse the velocity profiles in the outer region for different Reynolds numbers onto
a single curve. A comparison between the velocity profiles in the outer region scaled by
U

CL
!U! and uτ is given in §9.

9. Velocity profile results : Outer scaling

In figure 23(a, b) we plot the velocity profiles scaled by uτ and U
CL

!U! for seven
different Reynolds numbers between 31#10" and 35#10#. When the velocity profiles
are scaled by uτ, the profiles do not collapse onto a single curve. The poor collapse is
particularly evident for 0%07& y!R& 0%30 which is part of the overlap or core region
depending on the Reynolds number. When using U

CL
!U! to scale the profiles (figure

23b), the collapse of the profiles is much improved for y!R' 0%10. For both scalings,
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the collapse in the overlap region is not very satisfactory. For low Reynolds numbers,
this behaviour should be expected because an overlap region which is independent of
Reynolds number (log law) does not exist for Re# 400"10!.

The difference between the velocity scales is more evident at low Reynolds numbers
since at high Reynolds numbers the scales are proportional. Therefore, in figure
24(a, b) we plot the velocity profiles normalized by uτ and U

CL
!U! , respectively, for all

Reynolds numbers investigated between 31"10! and 540"10!. A comparison between
the figures 24(a) and 24(b) indicates that the data scaled by U

CL
!U! are in much better

agreement for y!R$ 0%07 than the data scaled by uτ. The only profile that is not in

We now consider more results from the Superpipe experiments in

M. V. Zagarola, A. E. Perry & A. J. Smits, “Log laws or power laws: the scaling in

the overlap region,” Phys. Fluids 9 2094-2100 (1997)
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which tested the Barenblatt-Chorin theory. As seen from the first figure, the BC theory (with

constants fit from the old data of Nikuradze) has a decreasing less good fit at increasing Reynolds

numbers. Fitting a power law to their data over the range 40 < y+ < 0.85R+, the authors

found a best fit as ū/u∗ = Cyα
+ with

α = 1.085
ln Re + 6.535

(ln Re)2

C = 0.1053(lnRe) + 0.3055.

These power-laws gave a reasonable fit to the data, but with larger fractional differences than

a fit by a log-law, especially at higher Reynolds numbers.
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II. RESULTS AND DISCUSSION

In Fig. 1, we plot 13 mean velocity profiles measured in

the SuperPipe facility normalized by inner scaling variables.

From an analysis of all 26 velocity profiles, Zagarola and

Smits13 concluded that for y!"0.1R! (y"0.1R), the mean
velocity profile is independent of Reynolds number, or

equivalently, the outer length scale R . In Fig. 2, all 26 ve-

locity profiles are plotted for y!"0.1R! only, and no Rey-
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50"y!"500 or 0.1R!, and a log-law region for

500"y!"0.1R!. The outer limit of the power law is given

by y!!0.1R! if R!"5#103, and by y!!500 if
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(R!"2.4#103). Equation "7# was derived from an overlap

FIG. 5. Comparison between the mean velocity profiles and Eq. "14# for 4
different Reynolds numbers between 31#103 and 35#106. The error bars
represent an uncertainty in U! of &0.57%.

FIG. 6. Plot of the multiplicative constant in the power law given by Eq.

"10# for 26 different Reynolds numbers between 31#103 and 35#106.

FIG. 7. Plot of the exponent in the power law given by Eq. "10# for 26
different Reynolds numbers between 31#103 and 35#106.

FIG. 8. Comparison between the mean velocity profiles and Eq. "15# for 4
different Reynolds numbers between 31#103 and 35#106. The error bars
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Barenblatt & Chorin in

G. I. Barenblatt & A. J. Chorin, “Scaling of the intermediate region in wall-bounded

turbulence: the power-law,” Phys. Fluids 10 1043-1044 (1998)

have imputed the disagreement with the Superpipe data at the higher Reynolds numbders to

the effects of roughness, which should become more important as Re increases. The issue of

roughness has been addressed by

M. A. Shockling, J. J. Allen & A. J. Smits, “Roughness effects in turbulent pipe

flow,” J. Fluid Mech. 564 267-285 (2006)

By performing new experiments with increased k+, the effects of roughness were systematically

studied.
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Figure 1. Princeton/ONR Superpipe facility.
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Figure 2. (a) Two-dimensional surface plot of the original Superpipe. Area shown is about
0.2mm × 0.25 mm, and the amplitudes are in µm. (b) Probability density function of surface
elevation.

The test pipe is located inside the closed-return pressure vessel, and it is approx-
imately 0.129 m in diameter and 25.9 m in length, so that the length-to-diameter ratio
exceeds 200. Two test ports are available at 160D and 196D downstream of the
contraction, and all profiles were measured at the downstream location during these
experiments. The pipe was constructed using 5 in. (129 mm) ID, 1/2 in. (12.7mm)
thick drawn aluminum tube. Six sections of tube, approximately 4.6 m in length, were
connected and the centreline axis was aligned to within ±1.25 mm over a distance
of 30 m using the alignment procedure described by Zagarola (1996). Since the pipe
sections were connected during honing, the maximum step measured at each joint
during installation was about ±0.025 mm over the entire length of the pipe, negligibly
small according to Zagarola (1996).

The pipe surface roughness was designed to be geometrically similar to the surface
used by Zagarola & Smits (1998) and McKeon et al. (2004) while preserving a low
krms/D. A machined surface roughness is typically described using the roughness and
r.m.s. amplitudes, defined respectively as Ra =

∫ L

0 |y/L| dx, and Rq =(
∫ L

0 (y/L)2 dx)1/2,
where y is the surface height deviation from the mean level. For the original Superpipe
surface, comparator plates indicated that Ra ≈ 0.15 µm. To better define the geometry
of the surface roughness, a non-interfering, two-dimensional optical measurement was
made of the original Superpipe surface, as shown in figure 2. From this image, it is
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Figure 3. (a) Two-dimensional surface plot of the new rough pipe. Area shown is about
0.8mm × 1.2 mm, and the amplitudes are in µm. (b) Probability density function of surface
elevation.

clear that a particular wavelength has been imparted to the surface as a result of the
honing process. However, it can also be seen that the probability density function of
the surface elevation closely resembles a normal distribution, with a skewness of only
−0.31, and a flatness of 3.6. The data give Ra = 0.116 µm and Rq =0.15 µm, in good
agreement with the original comparator plate measurements.

One other useful measure that is relevant to the pipe surface design is the high
spot count (HSC), which is the number of peaks per unit length that exceed a certain
threshold. Using a threshold value for the peak counts equal to Rq results in a mean
wavelength, defined as λHSC = 1/HSC of 0.01 mm. Therefore the ratio of roughness
height to wavelength was very small in the original Superpipe experiments (#1/62),
and raises the question as to whether traditional concepts such as form drag behind
discrete objects can be used to describe the flow field over such a surface.

The new rough pipe was designed using the Colebrook roughness function so that
the flow was expected to be smooth up to ReD # 500 × 103, and fully rough for
ReD > 8 × 106. A surface with an equivalent sandgrain roughness value of ks = 7.6 µm
appeared to satisfy these requirements. Using ks # 3krms , as suggested by Zagarola &
Smits (1998), gives krms = 2.5 µm, and the new pipe was honed to obtain this roughness
and an appropriately scaled λHSC.

Figure 3 shows a two-dimensional plot of the surface elevation, generated using an
optical scanner of the new surface. For this surface, Rq =2.5 µm and Ra =1.92 µm.
The surface skewness was Sk = 0.31 and the flatness was 3.43. Again, these results
suggest that the roughness distribution is close to being Gaussian. Using a threshold
value for the peak counts equal to Rq gives λHSC = 90 µm, and an amplitude-to-
wavelength ratio of # 1/37. Although the rough surface is not geometrically identical
to the original Superpipe smooth surface, it is expected that the roughness scaling for
this surface will reflect closely the behaviour of the smooth Superpipe at equivalent
k+

s conditions since both surfaces show nearly Gaussian roughness distributions.

5. Measurement techniques
Mean velocity profiles were taken 196D downstream of the test pipe inlet. A

removable oval shaped plug, 100 mm × 50 mm wide was inserted into the test pipe,
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A first result is shown for the friction factor λ = 8(u∗/ūm)2, which shows no effects of

roughness for Re < 106, in agreement with original claims of Zagarola & Smits. The friction

coefficient is non-monotonic in the Reynolds number, showing a “belly” qualitatively similar to

that seen in the old data of Nikuradze.
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Figure 6. Friction factor λ for the present surface, compared with the rough-all relations
of Colebrook (1939) for the same ks , the smooth-wall relation of McKeon et al. (2005)
(equation (2.4)), and the results for the smallest sandgrain roughness used by Nikuradse
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Figure 7. Friction factor λ for the present surface, comparing the data using corrections as
described in § 6 and the data without any corrections.

friction factor begins to depart from the smooth curve, reaching a local minimum of
λ! 0.0106 in the region 3.1 × 106 <ReD < 4.0 × 106. The friction factor then rises to a
constant value of λ= 0.0108 for ReD > 10 × 106. The equivalent sandgrain roughness
for this surface, defined by the friction factor in the fully rough regime, is ks = 7.4 µm
= 3krms , in good agreement with Zagarola & Smits’s (1998) estimate ks ! 3krms for the
smooth pipe data.

Figure 7 shows a comparison of the friction factor as calculated with the prescribed
Pitot and static corrections to the friction factor without any corrections applied (for
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Shockling et al. have also studied the downward velocity profile shift with roughness, which has

been observed in previous studies as well. There are no effects of roughness in the new rough

pipe for k+
s < 3.5, again bolstering their previous claims about the lack of roughness effects in

the smooth-pipe experiment.
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slightly lower roughness Reynolds number, k+
s , which may be an effect of the random

variation in surface elevation; honed roughness has a nearly Gaussian roughness
distribution, whereas the roughness elements used by Ligrani & Moffat (1986) and
Nikuradse (1933) had an extremely narrow bandwidth and would not necessarily
possess a Gaussian distribution.

7.3. Velocity profiles: outer scaling

Figure 17 shows a collection of velocity profiles for Re " 349 × 103 scaled on outer
flow coordinates, y/R. It appears that the velocity profiles collapse well, as expected
according to Townsend’s outer flow similarity hypothesis for rough-wall flows. The
collapse in outer layer coordinates is comparable to that demonstrated by Zagarola
& Smits (1998) for the smooth Superpipe data and by Flack et al. (2005) in their
rough-wall boundary layer studies.
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Finally, Shockling et al. have verified Townsend’s “outer layer similarity hypothesis,” which

states that there should be no effect of roughness in the outer layer, except for the change

in friction velocity uk. The authors observe excellent scaling of the velocity profiles in outer

scaling for the smooth and rough pipe experiments.
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smooth, transitional, and fully rough regimes.
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