(G) Numerical and Experimental Results

To begin, we shall show some data of

R. D. Moser, J. Kim & N. N. Mansour, “Direct numerical simulation of turbulent

flow up to Re, = 590,” Phys. Fluids 11 943-945 (1999)

as analyzed by Panton (2005). The first figure shows data for go(y*) and the second for the

composite expansion of the stress
u'v’

ug

comp

compared with the data. The third compares the composite expansion for the mean velocity

= fo(y™) + Wo(n)
comp
directly with the data and, in the fourth plot, by the log-law “diagnostic function”
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The expansions work less well for the mean-velocity which is not as highly constrained by the

RANS equations as in the stress.
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Fig. 39 Reynolds stress wall function for Ames channel flow DNS.
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Fig. 40 Composite expansion for Reynolds stress and Ames channel flow DNS.
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Fig. 41 Composite expansion for velocity and Ames channel flow DNS at Re*=590.
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Fig. 42 Log law diagnostic function gamma for channel flow.
Composite expansion and Ames DNS at Re*=590.

The same quantity has been analyzed in more recent simulations of

S. Hoyas & J. Jiménez, “Scaling of the velocity fluctuations in turbulent channels

up to Re; = 2003,” Phys. Fluids 18 011702 (2006)

J. Jiménez & R. D. Moser, “What are we learning from simulating wall turbulence?”

Philos. Trans. Roy. Soc. A 365 715-732 (2007).

In the first figure, the diagnostic function is plotted in both inner and outer scalings. No clear
plateau is observed. In the second figure a comparison is made with the next-order matched

asymptotics of

N. Afzal & K. Yajnik, “Analysis of turbulent pipe and channel flows at moderately

large Reynolds number,” J. Fluid Mech. 61 23-31 (1973)

which leads to the prediction

O(ujus) _ 1 + B
Y oy _E—I_age*—*—Re*
or
o(u/ux
y X = an+ g



The agreement seems good with @ = 1.0, = 150, when compared with the DNS and also

experiments of

V. K. Natrajan & K. T. Christansen, “The role of coherent structures in subgrid-

scale energy transfer within the log-layer of wall turbulence,” Phys. Fluids 18
065104 (2006)
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Figure 6. ydu™ /dy from direct numerical simulation at h* =550, 940 and 2000.
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Figure 7. Zoomed-in view of y(dut/dy) from (a) direct numerical simulation for Reynolds numbers
h* =550, 940 and 2000 and (b) PTV measurements at Reynolds numbers h* =1141, 1747 and 2433.
The thin lines are y(du'/dy) determined from equation (4.8), with constants a=1.0, =150 and
1/k=2.49, which were determined from the simulation data in (a).

But note that an overlap region seems to exist only for Re, = 900 and for y* = 300!
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We next consider data from the Princeton Superpipe experiment which studied turbulent pipe-
flow over a broad range of Reynolds numbers Re = 3 x 10% — 35 x 105, The results on the

mean-flow velocity are reported in

M. V. Zagarola & A. J. Smits, “Mean-flow scaling of turbulent pipe flow,” J. Fluid

Mech. 373 33-79 (1998)
with some important quantitative corrections in
B. J. McKeon et al. “Further observations on the mean velocity distribution in fully

developed pipe flow,” J. Fluid Mech. 501 135-147 (2004)
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The first figure (above) shows the results on the friction factor A = 8(us /iy, )?, which are well-
described by the Prandtl logarithmic friction law (with modified coefficient). The next figure

(below) shows the velocity profiles in inner scaling for 13 different Reynolds numbers.
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FIGURE 14. A comparison of the velocity profiles normalized using inner scaling variables for 13
different Reynolds numbers between 31 x 10® and 35 x 108,

We next show the results for

U =i/ u, — %lner
with the value of x inferred from the friction law, x = 0.436. This quantity should equal the
constant B in the logarithmic region. A plateau is observed in the range

600 < y* < 0.07RT,

smaller than was previously expected.
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FIGUrE 15. The difference between the velocity profile and the log law as a function of wall-normal
position for k = 0.436. The value of ¥ was averaged over multiple Reynolds numbers. In (a) the wall-
normal positions are normalized using inner scaling variables, and in (b) outer scaling variables.

The next figures show that no choice of x succeeds to extend the plateau to y© < 600 and that
the region is better fit by a power-law
u/u, = 8.70(y™)0137.
The outer range of the power-law is found to be
yT = min{500,0.15R™}

so that the range does not grow for Re, > 3300.

67



Mean-flow scaling of turbulent pipe flow 63

6.5
| B=6.15 |
DDDDDDDDDE\DDD
DDxxxxxxxxxxxxx
nxzn Q0605 a - ono
T60_ Eszzoj°i°°°°ooooo°
’ QEUDDD';‘;OZO“-? o ++++++++
S SR
O+o°Ooooo+
§Trrosey — 7=
g + o Ak =0 (k =0.436)
- ¢ x Ak =+0.002 E
5.5‘ ; o Ak =+ 0.004 ]
$ o Ak =-0.002 ]
+ Ak =—0.004
5.0_ %, Ll e L
10! 102 103 104 10°
y+

FIGURE 16. The difference between the velocity profile and the log law as a function of wall-normal
position for different values of «. The value of ¥ was averaged over multiple Reynolds numbers.
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FIGURE 17. A linear—log plot of the velocity profile data within 0.07R* of the wall normalized
using inner scaling variables for 26 different Reynolds numbers from 31 x 10® to 35 x 10°.
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FIGURE 19. A log-log plot of the velocity profile data within 0.07R" of the all normalized using
inner scaling variables for 26 different Reynolds numbers from 31 x 10® to 35 x 10°.
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Finally, we present some results of Zagarola & Smits (1998) on outer scaling. They found that
(U — Upm,)/us — const. as Re — oo, consistent with standard theory. On the other hand, better
collapse in outer scaling was obtained by using %. — %, as the velocity scale rather than the

conventional quantity ..
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FIGURE 23. A comparison between the velocity profiles normalized by (a) u, and (b) U,,,— U for
Reynolds numbers between 31 x 10* and 35 x 10°.

We now consider more results from the Superpipe experiments in

M. V. Zagarola, A. E. Perry & A. J. Smits, “Log laws or power laws: the scaling in

the overlap region,” Phys. Fluids 9 2094-2100 (1997)
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which tested the Barenblatt-Chorin theory. As seen from the first figure, the BC theory (with
constants fit from the old data of Nikuradze) has a decreasing less good fit at increasing Reynolds
numbers. Fitting a power law to their data over the range 40 < y™ < 0.85R™, the authors

found a best fit as u/u, = Cy$ with

_1.085 | _6.535
¥ = TnRe T {nRe)?

C = 0.1053(In Re) + 0.3055.
These power-laws gave a reasonable fit to the data, but with larger fractional differences than

a fit by a log-law, especially at higher Reynolds numbers.
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FIG. 5. Comparison between the mean velocity profiles and Eq. (14) for 4
different Reynolds numbers between 31X 10° and 35X 10°. The error bars
represent an uncertainty in U™ of +=0.57%.
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FIG. 7. Plot of the exponent in the power law given by Eq. (10) for 26
different Reynolds numbers between 31X 10° and 35X 10°.
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FIG. 6. Plot of the multiplicative constant in the power law given by Eq.
(10) for 26 different Reynolds numbers between 31X 10° and 35X 10°.
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FIG. 8. Comparison between the mean velocity profiles and Eq. (15) for 4
different Reynolds numbers between 31X 10° and 35X 10°. The error bars
represent an uncertainty in U™ of £0.57%.

Zagarola, Perry, and Smits

Barenblatt & Chorin in

G. I. Barenblatt & A. J. Chorin, “Scaling of the intermediate region in wall-bounded

turbulence: the power-law,” Phys. Fluids 10 1043-1044 (1998)

have imputed the disagreement with the Superpipe data at the higher Reynolds numbders to

the effects of roughness, which should become more important as Re increases. The issue of

roughness has been addressed by

M. A. Shockling, J. J. Allen & A. J. Smits, “Roughness effects in turbulent pipe

flow,” J. Fluid Mech. 564 267-285 (2006)

By performing new experiments with increased k™, the effects of roughness were systematically
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FIGURE 2. (a) Two-dimensional surface plot of the original Superpipe. Area shown is about
0.2mm x 0.25mm, and the amplitudes are in pm. (b) Probability density function of surface

elevation.
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FIGURE 3. (a) Two-dimensional surface plot of the new rough pipe. Area shown is about
0.8 mm x 1.2mm, and the amplitudes are in pm. (b) Probability density function of surface

elevation.
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A first result is shown for the friction factor A\ = 8(u/i,,)?, which shows no effects of
roughness for Re < 10°, in agreement with original claims of Zagarola & Smits. The friction
coefficient is non-monotonic in the Reynolds number, showing a “belly” qualitatively similar to

that seen in the old data of Nikuradze.
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FIGURE 6. Friction factor /4 for the present surface, compared with the rough-all relations
of Colebrook (1939) for the same k;, the smooth-wall relation of McKeon et al. (2005)
(equation (2.4)), and the results for the smallest sandgrain roughness used by Nikuradse
(1933).
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Shockling et al. have also studied the downward velocity profile shift with roughness, which has
been observed in previous studies as well. There are no effects of roughness in the new rough
pipe for kI < 3.5, again bolstering their previous claims about the lack of roughness effects in

the smooth-pipe experiment.
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Finally, Shockling et al. have verified Townsend’s “outer layer similarity hypothesis,” which
states that there should be no effect of roughness in the outer layer, except for the change
in friction velocity ug. The authors observe excellent scaling of the velocity profiles in outer

scaling for the smooth and rough pipe experiments.
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FIGURE 17. Outer scaling for 349 x 103 < Rep < 21.2 x 10%. Solid line: —(1/0.421)1nn + 1.20.
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