
(D) RANS Equations of Pipe Flow

As another example, we consider turbulent flow down a circular pipe of constant radius R. This

example is very similar to channel flow, so we may be briefer. The geometry is

Figure D.1.

It is convenient to use cylindrical coordinates (r, θ, z), with the centerline of the pipe taken to

be the z-axis. The mean flow is assumed to be in the z-direction, driven by a pressure-gradient

in that direction. The various directions are called

radial or wall-normal r-direction

azimuthal θ-direction

streamwise or axial z-direction

Similarly as for channel flow, the velocity statistics may be assumed independent of θ, z and t,

if the pipe is long enough and if the flow has been allowed to become statistically steady. Then

all derivatives of averages with respect to these variables will be zero, except for ∂p̄/∂z, which

maintains the flow against all stresses. All other averages, such as the mean flow velocity ūz(r),

depend only upon the radial distance r. Its plot looks very similar to that for channel flow ū(y)

if the latter is plotted as a function of y′ = y − h.

The Navier-Stokes equations in cylindrical coordinates may be found, for example, in G. K.

Batchelor, An Introduction to Fluid Dynamics (Cambridge, 1967) Appendix 2. We need here

the equations only for the z- and r-components of velocity:
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where " is the Laplacian operator on scalar functions,
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With our statistical assumptions, these become
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By differentiating the r-equation with respect to z, one finds that
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so that ∂p̄/∂z is r-independent. Thus, one can multiply the z-equation by r and integrate, to

obtain
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which is just the net momentum balance in the z-direction
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giving equality of stress integrated over the surface of the pipe and pressure-gradient integrated

over the cross-sectional area. Alternatively, −∂p̄/∂z = 2u2
∗/R. Substituting this result back

into the equation for general r gives

u′
ru

′
z − ν ∂ūz
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This is the same as the equation for channel flow if one identifies r with y′ = y − h there.

It is straightforward to consider also the energy balances, both of the mean velocity field and

of the turbulent velocity fluctuations. The results are essentially identical to those for channel

flow, so we leave that as an exercise. However, we shall consider here the vorticity dynamics,

which has some geometric differences from the case of channel flow. The mean vorticity has

only an azimuthal component
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ω̄θ(r) = −∂ūz
∂r (r) > 0

The lines of the mean vorticity thus correspond to vortex rings. From the equation for the

θ-component of vorticity
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one gets that
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Thus, the flux of azimuthal vorticity in the radial direction is constant (independent of r), so

that one may consider turbulent pipe flow as sustaining simultaneously “spatial cascades” of

momentum and vorticity in the radial direction.

The z-component of the momentum equation may be further written as

∂uz
∂t = urωθ − uθωr − ν[1r

∂
∂r (rωθ)− 1

r
∂ωr
∂θ ]− ∂

∂z (p + 1
2 |u|2)

so averaging gives

Σrθ = ∂p̄
∂z < 0

The picture is as follows:

Figure D.2.

Rings of azimuthal vorticity form at the pipe wall, generated by the axial pressure gradient

∂p̄/∂z. These rings then shrink toward the centerline, where they annihilate at zero radius. Of

course, this is only an accurate description “in the mean” and the true vortex dynamics is more

complex. Cf. the earlier discussion for channel flow.
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