(C) RANS Equations of Channel Flow

T & L, Section 5.2

We consider turbulent flow between two parallel plates separated at a distance 2h.

Figure C.1.

The mean flow u is assumed to be in the direction x, driven by a pressure-gradient in that
direction, parallel to the two plates. The various directions are called
streamwise  z-direction

wall-normal or cross-stream y-direction

spanwise  z-direction
If the channel is large enough in the streamwise and spanwise directions, then the velocity
statistics should become independent of z and z and depend only on y, i.e. become homogeneous
in the plane-parallel directions. Furthermore, if the system is evolved long enough, then the
velocity statistics should become independent of time ¢, i.e. become stationary in time. We
shall hereafter assume plates infinitely long and wide, and let the flow evolve infinitely long in
time. Thus, all derivatives with respect to ¢t and z are zero, and all derivatives with respect to
x are also zero, except for the pressure gradient 9p/dz, which drives the flow against the shear

stresses at the walls.

A sketch of the flow is as follows:
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Figure C.2.

With all the above assumptions, the RANS equations become

r-momentum 0 = 7@ — 2u’v’ + V@
- 9z Oy Oy
op 0 ——=
- t 0 = —— ——(')?
y-momentum oy 9y (v)
z-momentum 0 = ——w'v’
dy
ov
tinuity 0 = — 4
continuity a9 (4)

Since 9(0) = 0 due to the stick b.c. at the wall, the final continuity equation just reproduces
o(y) = 0. Since w'v’(y = 0) = 0 also due to stick b.c., the z-momentum equation integrates to
give w'v'(y) = 0.

The two most important equations are those for the z- and y-components of momentum. Since

(0/0x)(v")2 = 0 by assumption, the partial z-derivative of the y-equation gives

_ 9 O — .
0= 53~ 555, P = 5B
—_—

=0
which shows that streamwise pressure-gradient is y-independent:

op __ :
55 = constant in y

This fact allows us to integrate the z-momentum equation in y. Let us define the friction velocity
Uy in terms of the viscous stress at the bottom wall:

v %Z|y:0 = —u?
Since @(y) should be an increasing function near y = 0, 94/9y(0) > 0 and this definition makes
sense. By symmetry around the centerplane, one must have

ou _ 2
—ya—y |y:2h = tuj
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at the upper wall. Note that w/v/ = 0 at y = 0 or 2h because of the stick b.c. and thus the

viscous stress is the total stress at the two walls.

Using this definition, we may now integrate the x-equation from y = 0 upward, to yield
P — _
0=—y(58) —u'v/(y) + v3i(y) — u?
This equation has several interesting special cases. The first is at the centerplane (y = h),

where the total shear stress must vanish by symmetry:

tot _ 7.7 _ 5,00 __ _
Tay =WV —vg5 =0 at y="h

Solving yields the important relation
u? = —h%
The same relation can be obtained by setting y = 2h, giving
2u? = (2h)(—52)
which just represents the total balance of z-momentum. The pressure-gradient integrated across

the channel of width 2h balances the stress u? at each of the 2 walls.

Substituting this result into the equation for general y gives

tot _ 77 ou __ 2 Y
Toy = UV —vgr=—ui(l—§)

This result has the consequence that the stress near the wall is constant (independent of y):

Tl —ul, 0<y<h
For very small y the viscous stress dominates, while for larger y the Reynolds stress domi-
nates (as we shall see). This is often considered to be a “momentum cascade” in space, in
analogy to the Kolmogorov energy-cascade in scale where the energy flux plus viscous dissi-

pation is constant for length-scales £ < L. The stress may also be written in terms of the

displacement from the centerplane

r_
y=y—h
which gives
tot _ 7.7 ou _ 2y
Tay = WV — VG = Ui

This formula exhibits the anti-symmetry of stress around the center plane.
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energy balance:
The energy balance in the mean field can be obtained by multiplying the z-momentum equation
by u(y):

a(—52) — Llurket] = —u'§E 4 v(§3)? = — Jhriot

The spatial transport of energy is balanced by the turbulent production and the viscous dissi-

pation. Integrated across the channel, this yields

_ 8p) 1 dy 0u_tot _ Umul

U (— 55 2 0 oyTry = TR

where the second equality used an integration by parts and we have defined
U = 5= [ dya(y),
the mean value of @ over a section of the channel. Thus, the relation —9p/dz = u2/h also

expresses the energy balance in the mean field.

The turbulent kinetic energy balance becomes

210 + T — Wi = g — e

with, as usual, € = vu/ Juz j the viscous dissipation by turbulence fluctuations. Integrated across

the channel, we see that

2h
2h fo uv’gz y:ﬁ o €)dy.

Thus, turbulence production balances turbulent dissipation.

mean vorticity balance

The only non-vanishing component of the mean vorticity is

€l
N
|
|
g

From the vorticity conservation 0w + V - ¥ = 0 one infers

Q?

=0
with

N ol g 0,00
Yy = VW —wwy —vGE.

Thus, the flux of mean z-vorticity in the y-direction is constant across the channel, i.e.

—Xy, = X,y = 04 = const.
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Although T;Zt is only approximately constant, = —u? for 0 < y < h, the vorticity flux is exactly
constant across the whole width of the channel. Thus, there is a “spatial cascade” not only of

momentum but also of vorticity.

An important relation for o, can be obtained by rewriting the Navier-Stokes equation as
Ok = SekemSem — Oxps,

ps =p+ 3%
This result is more or less obvious, because the curl of the NS equation must give Oyw = —V - X.
It is just another form of the equation

du=uxw-—vV xw-—Vp,.
If we now consider statistically stationary turbulence, the RANS equations yield
OkDs = 2€ktmSem , OF Tij = €;j,OkDs-
If this is applied in channel flow, one gets for example
D)

In particular, o, = u2/h. Of course, the mean space flux of other vorticity components in other

directions will be related also to pressure gradients, but here we focus on z-vorticity.

The picture is as follows:

¥ w >0
y_2h <

| B!
.

1=0 RRRARRRARRRRRE® o, < 0
Figure C.3.

Lines of negative w,-vorticity form at the bottom plate (y = 0) and move upward, while lines
of positive w,-vorticity form at the upper plate and more downward. This is only a crude
description, of course, accurate in the mean but not for the fluctuations. We shall discuss later

the implications for vorticity fluctuations.
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The relation iyz = 0p/0z was apparently first derived in RANS theory by

G. I. Taylor, “The transport of vorticity and heat through fluids in turbulent mo-

tion,” Proc. Roy. Soc. Lond. A 135 685-702 (1932)

Of course, we also know from the later work of Lighthill (1963) that dp/0z is the source of
w,-vorticity at both the walls. Taylor’s relation implies very important constraints on vorticity

dynamics that have not always been observed in phenomenological turbulence models.

One important implication is for energy dissipation. Since energy balance requires that
- op 1 rh 012
Um(=55) = a5 Jople(y) +v(5))%dy’ = 3
we see that also
U (—2y) = €2t

This result implies that organized motion of vorticity is necessary to produce mean energy

dissipation in channel flow! We shall discuss in more detail below the precise motions involved.

It is interesting to note that this connection between vortex motion on the one hand and
pressure drops & energy dissipation on the other hand has been noted in a rather differ-
ent context, that of quantum superfluids and superconductors. There it is known is the

Josephson-Anderson relation. See especially

P. W. Anderson, “Considerations on the flow of superfluid helium,” Rev. Mod.
Phys. 38 298-310 (1966), Appendix B.
E. R. Huggins, “Energy dissipation theorem and detailed Josephson equation for

ideal incompressible fluids,” Phys. Rev. A 1 332-337 (1970)

The latter paper, although it discusses quantum vortices, uses as a model the classical Navier-
Stokes equation and thus applies also to classical fluids. In the quantum context, the relation

states that

/1/*(2) - lu’*(l) = % fC:1—>2 €kem Lim ATy
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where Y4, is the flux of the mth component of vorticity in the fth direction for a quantized

vortex-line and

pe = p+ 3 uf?

where p is the chemical potential (replacing the pressure p in the classical analogue). The curve
C is any smooth path starting at point 1 and ending at point 2. If points 1 and 2 are two points

in a channel containing a superflow with mass flux J down the channel, as pictured here:
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Figure C.4.

and if a quantized vortex line created at the bottom wall migrated across the whole channel
width, crossing curve C, then the loss of energy of the superflow between points 1 and 2 is given

by

J[14(2) — pe(1)] = %J Jou1 o EktmSem day = €.

For reviews, see

W. Zimmerman, Jr., “Energy transfer and phase slip by quantum vortex motion in

superfluid He4,” J. Low Temp. Phys. 93 1003-1018 (1993)

R. E. Packard, “The role of the Josephson-Anderson equation in superfluid helium,”

Rev. Mod. Phys. 70 641-651 (1998)

Also interesting may be the following papers

E. R. Huggins, “Vortex currents in turbulent superfluid and classical fluid channel

flow, the Magnums effect, and Goldstone bosom fields, ” J. Low Temp. Phys. 96
317-346 (1994)
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G. L. Eyink, “Turbulent flow in pipes and channels as cross-stream ‘inverse cascades’

of vorticity,” Phys. Fluids 20 125101 (2008)

which are concerned with the strong analogies between the superfluid turbulence and classical
turbulence flows in a channel. (Note that Huggins was not aware of the much earlier work of

G. I Taylor on the classical case!)

It is interesting to compare the two problems. For example, there is a “drag reduction” problem
also in superconductor technology, involving charged superfluids. In that case, supercurrents
along a superconducting wire should be resistanceless and without voltage drops. However, in
practice, there are voltage drops and energy dissipation associated with nucleation of quantized
vortex lines, containing magnetic flux in quantized amounts, that migrate across the current.
Applied physicists have found that this problem may be solved by “pinning” the vortices so
that they cannot cross the wire. For example, one way to do this is to use not pure crystalline
superconductors but instead powdered samples. This introduces pinning sites that trap the

vortex lines and allow resistanceless flow! See

D. J. Bishop, P. L. Gammel, and D. A. Huse, “Resistance in high-temperature

superconductors,” Sci. Am. 268 48-55 (1993)

Let us return to turbulent channel flow. Up until now we have considered only structures
of the ensemble-averaged vorticity. Let us briefly discuss the instantaneous vorticity of the

individual realizations. An influential early proposal was made by

T. Theodorsen, “Mechanism of turbulence,” in Proceedings of the Midwestern Con-

ference on Fluid Mechanics (Ohio State University, Columbus, OH, 1952)

that vorticity structures near the wall in channel flow have a hairpin structure. Here is the

sketch from Theodorsen’s original paper:
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Figure C.4.

Such hairpin vortices are also sometimes called “A-vortices” or “Q2-vortices”. The legs of the
vortex were suggested by Theodorsen to be inclined at 45° with respect to the wall. As you can
see from the flows in the sketch, the resulting fluid motions have v/ < 0 when v’ > 0, and v' > 0
when v < 0. Hence, such structures can contribute to the required negative Reynolds stress
wv’ < 0 at the bottom wall (and their mirror images about the center-plane will contribute
positive stress at the top wall.) The “lifting” of such vortices from the wall will also contribute
to the required mean flux of spanwise vorticity in the cross-stream direction.

These ideas of Theodorsen have received some support from numerical simulations and

experiments. Detailed visualizations were first possible using simulations. The papers

P. Moin & J. Kim, “The structure of the vorticity field in turbulent channel flow.
Part 1. Analysis of instantaneous fields and statistical correlations”, J. Fluid Mech.

155 441-464 (1985)

P. Moin & J. Kim, “The structure of the vorticity field in turbulent channel flow.

Part 2. Study of ensemble-averaged fields” , J. Fluid Mech. 162 339-363 (1986)

observed hairpin-like structures both in instantaneous vortex lines:
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FiGURE 17. A set of vortex lines (vortex filament) displaying a hairpin-like structure. (a) 3-D view,
the streamwise extent of the figure is 1.968 (1257v/u,) and its spanwise extent is 0.748 (471v/u,);
(b) end view ((y, 2)-plane); (c) side view {(z, y)-plane).

Figure C.4.

and in the lines of conditionally averaged vorticity:

(@
300

Figure C.5.

The lines above are taken from a “variable-interval space-averaging” (VISA) sampling tech-
nique, in which events are chosen so that du/dx > 0 and the velocity variance in a local
streamwise space-average are greater than 1.2u2, .. The condition du/0z > 0 means that the

streamwise velocity is increasing downstream of the test point, which implies the point is in-

volved in a streamwise low-speed fluctuation. This conditions are applied at a distance 100
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“wall units” v/u, away from the wall, so that the event should consist of an “ejection” of low-
speed fluid away from the wall. Clearly, both instantaneous and conditional vorticity structures
are similar to the hairpins predicted by Theodorsen.

Experimental techniques are now also capable of detailed 3D imaging. For example

J. Sheng, E. Malkiel & J. Katz, “Buffer layer structures associated with extreme
wall stress events in a smooth wall turbulent boundary layer,” J. Fluid Mech. 633

17-60 (2009)

employ digital holographic microscopy to measure 3D velocity fields in the inner part of a
turbulent boundary layer. Their measurements are taken at distances less than 60 v/u,, where
current numerical simulations have difficulty in achieving good spatial resolution.

Here are some of their plots of both instantaneous vortex lines

and lines of conditionally averaged vorticity:

32



Yo 0 T

60 0507091.113151.719

/,
wadlll]:

| A
T L g

The vortex field in the second image is averaged over a conditional ensemble given that the
instantaneous viscous stress at a point on the wall (x = z = 0) has a value less than (more

negative than) —0.6u2. The colors at the walls indicate the values of the stress divided by —u?.

For a recent more detailed survey of the hairpin picture, see

R. J. Adrian, “Hairpin vortex organization in wall turbulence,” Phys. Fluids 19

041301 (2007)
and for a contrarian view:

P. S. Bernard, “The hairpin vortex illusion,” 138th Furopean Turbulence Conference

(ETC13), Journal of Physics: Conference Series 318 062004 (2011)
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