
(C) RANS Equations of Channel Flow

T & L, Section 5.2

We consider turbulent flow between two parallel plates separated at a distance 2h.

Figure C.1.

The mean flow ū is assumed to be in the direction x, driven by a pressure-gradient in that

direction, parallel to the two plates. The various directions are called

streamwise x-direction

wall-normal or cross-stream y-direction

spanwise z-direction

If the channel is large enough in the streamwise and spanwise directions, then the velocity

statistics should become independent of x and z and depend only on y, i.e. become homogeneous

in the plane-parallel directions. Furthermore, if the system is evolved long enough, then the

velocity statistics should become independent of time t, i.e. become stationary in time. We

shall hereafter assume plates infinitely long and wide, and let the flow evolve infinitely long in

time. Thus, all derivatives with respect to t and z are zero, and all derivatives with respect to

x are also zero, except for the pressure gradient ∂p̄/∂x, which drives the flow against the shear

stresses at the walls.

A sketch of the flow is as follows:

22



Figure C.2.

With all the above assumptions, the RANS equations become

x-momentum 0 = −∂p̄

∂x
− ∂

∂y
u′v′ + ν

∂2ū

∂y2

y-momentum 0 = −∂p̄

∂y
− ∂

∂y
(v′)2

z-momentum 0 = − ∂

∂y
w′v′

continuity 0 =
∂v̄

∂y
(4)

Since v̄(0) = 0 due to the stick b.c. at the wall, the final continuity equation just reproduces

v̄(y) ≡ 0. Since w′v′(y = 0) = 0 also due to stick b.c., the z-momentum equation integrates to

give w′v′(y) = 0.

The two most important equations are those for the x- and y-components of momentum. Since

(∂/∂x)(v′)2 = 0 by assumption, the partial x-derivative of the y-equation gives

0 = − ∂
∂x(∂p̄

∂y )− ∂

∂x

∂

∂y
(v′)2

︸ ︷︷ ︸
=0

= − ∂
∂y ( ∂p̄

∂x)

which shows that streamwise pressure-gradient is y-independent:

∂p̄
∂x = constant in y

This fact allows us to integrate the x-momentum equation in y. Let us define the friction velocity

u∗ in terms of the viscous stress at the bottom wall:

−ν ∂ū
∂y |y=0 = −u2

∗

Since ū(y) should be an increasing function near y = 0, ∂ū/∂y(0) > 0 and this definition makes

sense. By symmetry around the centerplane, one must have

−ν ∂ū
∂y |y=2h = +u2

∗
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at the upper wall. Note that u′v′ = 0 at y = 0 or 2h because of the stick b.c. and thus the

viscous stress is the total stress at the two walls.

Using this definition, we may now integrate the x-equation from y = 0 upward, to yield

0 = −y( ∂p̄
∂x)− u′v′(y) + ν ∂ū

∂y (y)− u2
∗

This equation has several interesting special cases. The first is at the centerplane (y = h),

where the total shear stress must vanish by symmetry:

τ tot
xy = u′v′ − ν ∂ū

∂y = 0 at y = h

Solving yields the important relation

u2
∗ = −h ∂p̄

∂x

The same relation can be obtained by setting y = 2h, giving

2u2
∗ = (2h)(− ∂p̄

∂x)

which just represents the total balance of x-momentum. The pressure-gradient integrated across

the channel of width 2h balances the stress u2
∗ at each of the 2 walls.

Substituting this result into the equation for general y gives

τ tot
xy = u′v′ − ν ∂ū

∂y = −u2
∗(1−

y
h)

This result has the consequence that the stress near the wall is constant (independent of y):

τ tot
xy
∼= −u2

∗, 0 ≤ y % h

For very small y the viscous stress dominates, while for larger y the Reynolds stress domi-

nates (as we shall see). This is often considered to be a “momentum cascade” in space, in

analogy to the Kolmogorov energy-cascade in scale where the energy flux plus viscous dissi-

pation is constant for length-scales $ ≤ L. The stress may also be written in terms of the

displacement from the centerplane

y′ = y − h

which gives

τ tot
xy = u′v′ − ν ∂ū

∂y = u2
∗

y′

h .

This formula exhibits the anti-symmetry of stress around the center plane.
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energy balance:

The energy balance in the mean field can be obtained by multiplying the x-momentum equation

by ū(y):

ū(− ∂p̄
∂x)− ∂

∂y [ūτ tot
xy ] = −u′v′ ∂ū

∂y + ν(∂ū
∂y )2 = −∂ū

∂y τ tot
xy

The spatial transport of energy is balanced by the turbulent production and the viscous dissi-

pation. Integrated across the channel, this yields

ūm(− ∂p̄
∂x) = − 1

2h

∫ 2h
0 dy ∂ū

∂y τ tot
xy = ūmu2

∗
h

where the second equality used an integration by parts and we have defined

ūm = 1
2h

∫ 2h
0 dy ū(y),

the mean value of ū over a section of the channel. Thus, the relation −∂p̄/∂x = u2
∗/h also

expresses the energy balance in the mean field.

The turbulent kinetic energy balance becomes

∂
∂y [(p′ + 1

2q2)v′ − 1
2ν ∂q2

∂y ] = −u′v′ ∂ū
∂y − ε

with, as usual, ε = νu′i,ju
′
i,j the viscous dissipation by turbulence fluctuations. Integrated across

the channel, we see that

1
2h

∫ h
0 [−u′v′ ∂ū

∂y ]dy = 1
2h

∫ 2h
0 ε(y)dy.

Thus, turbulence production balances turbulent dissipation.

mean vorticity balance

The only non-vanishing component of the mean vorticity is

ω̄z = −∂ū
∂y

From the vorticity conservation ∂ω̄ + ∇ · Σ = 0 one infers

∂yΣyz = 0

with

Σyz = v′ω′z − w′ω′y − ν ∂ω̄z
∂y .

Thus, the flux of mean z-vorticity in the y-direction is constant across the channel, i.e.

−Σyz = Σzy = σ∗ = const.
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Although τ tot
xy is only approximately constant, ∼= −u2

∗ for 0 ≤ y ≤ h, the vorticity flux is exactly

constant across the whole width of the channel. Thus, there is a “spatial cascade” not only of

momentum but also of vorticity.

An important relation for σ∗ can be obtained by rewriting the Navier-Stokes equation as

∂tuk = 1
2εk#mΣ#m − ∂kp∗,

p∗ = p + 1
2 |ū|2.

This result is more or less obvious, because the curl of the NS equation must give ∂tω = −∇ ·Σ.

It is just another form of the equation

∂tū = u× ω − ν∇× ω −∇p∗.

If we now consider statistically stationary turbulence, the RANS equations yield

∂kp̄∗ = 1
2εk#mΣ#m , or Σij = εijk∂kp̄∗.

If this is applied in channel flow, one gets for example

Σyz = ∂p̄
∂x = −u2

∗
h < 0.

In particular, σ∗ = u2
∗/h. Of course, the mean space flux of other vorticity components in other

directions will be related also to pressure gradients, but here we focus on z-vorticity.

The picture is as follows:

Figure C.3.

Lines of negative ωz-vorticity form at the bottom plate (y = 0) and move upward, while lines

of positive ωz-vorticity form at the upper plate and more downward. This is only a crude

description, of course, accurate in the mean but not for the fluctuations. We shall discuss later

the implications for vorticity fluctuations.
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The relation Σyz = ∂p̄/∂x was apparently first derived in RANS theory by

G. I. Taylor, “The transport of vorticity and heat through fluids in turbulent mo-

tion,” Proc. Roy. Soc. Lond. A 135 685-702 (1932)

Of course, we also know from the later work of Lighthill (1963) that ∂p/∂x is the source of

ωz-vorticity at both the walls. Taylor’s relation implies very important constraints on vorticity

dynamics that have not always been observed in phenomenological turbulence models.

One important implication is for energy dissipation. Since energy balance requires that

ūm(− ∂p̄
∂x) = 1

2h

∫ h
−h[ε(y) + ν(∂ū

∂y )2]dy′ = εtotm

we see that also

ūm(−Σyz) = εtot
m .

This result implies that organized motion of vorticity is necessary to produce mean energy

dissipation in channel flow! We shall discuss in more detail below the precise motions involved.

It is interesting to note that this connection between vortex motion on the one hand and

pressure drops & energy dissipation on the other hand has been noted in a rather differ-

ent context, that of quantum superfluids and superconductors. There it is known is the

Josephson-Anderson relation. See especially

P. W. Anderson, “Considerations on the flow of superfluid helium,” Rev. Mod.

Phys. 38 298-310 (1966), Appendix B.

E. R. Huggins, “Energy dissipation theorem and detailed Josephson equation for

ideal incompressible fluids,” Phys. Rev. A 1 332-337 (1970)

The latter paper, although it discusses quantum vortices, uses as a model the classical Navier-

Stokes equation and thus applies also to classical fluids. In the quantum context, the relation

states that

µ∗(2)− µ∗(1) = 1
2

∫
C:1→2 εk#mΣ#m dxk
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where Σ#m is the flux of the mth component of vorticity in the $th direction for a quantized

vortex-line and

µ∗ = µ + 1
2 |u|2

where µ is the chemical potential (replacing the pressure p in the classical analogue). The curve

C is any smooth path starting at point 1 and ending at point 2. If points 1 and 2 are two points

in a channel containing a superflow with mass flux J down the channel, as pictured here:

Figure C.4.

and if a quantized vortex line created at the bottom wall migrated across the whole channel

width, crossing curve C, then the loss of energy of the superflow between points 1 and 2 is given

by

J [µ∗(2)− µ∗(1)] = 1
2J

∫
C:1→2 εk#mΣ#m dxk = εtot.

For reviews, see

W. Zimmerman, Jr., “Energy transfer and phase slip by quantum vortex motion in

superfluid He4,” J. Low Temp. Phys. 93 1003-1018 (1993)

R. E. Packard, “The role of the Josephson-Anderson equation in superfluid helium,”

Rev. Mod. Phys. 70 641-651 (1998)

Also interesting may be the following papers

E. R. Huggins, “Vortex currents in turbulent superfluid and classical fluid channel

flow, the Magnums effect, and Goldstone bosom fields, ” J. Low Temp. Phys. 96

317-346 (1994)
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G. L. Eyink, “Turbulent flow in pipes and channels as cross-stream ‘inverse cascades’

of vorticity,” Phys. Fluids 20 125101 (2008)

which are concerned with the strong analogies between the superfluid turbulence and classical

turbulence flows in a channel. (Note that Huggins was not aware of the much earlier work of

G. I. Taylor on the classical case!)

It is interesting to compare the two problems. For example, there is a “drag reduction” problem

also in superconductor technology, involving charged superfluids. In that case, supercurrents

along a superconducting wire should be resistanceless and without voltage drops. However, in

practice, there are voltage drops and energy dissipation associated with nucleation of quantized

vortex lines, containing magnetic flux in quantized amounts, that migrate across the current.

Applied physicists have found that this problem may be solved by “pinning” the vortices so

that they cannot cross the wire. For example, one way to do this is to use not pure crystalline

superconductors but instead powdered samples. This introduces pinning sites that trap the

vortex lines and allow resistanceless flow! See

D. J. Bishop, P. L. Gammel, and D. A. Huse, “Resistance in high-temperature

superconductors,” Sci. Am. 268 48–55 (1993)

Let us return to turbulent channel flow. Up until now we have considered only structures

of the ensemble-averaged vorticity. Let us briefly discuss the instantaneous vorticity of the

individual realizations. An influential early proposal was made by

T. Theodorsen, “Mechanism of turbulence,” in Proceedings of the Midwestern Con-

ference on Fluid Mechanics (Ohio State University, Columbus, OH, 1952)

that vorticity structures near the wall in channel flow have a hairpin structure. Here is the

sketch from Theodorsen’s original paper:
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head would be stretched and intensified, causing the vortex
to lift away from the wall into still higher mean velocity,
resulting in still greater stretching. Being purely kinematic,
this instability is easy to understand.

Theodorsen10 supported his ideas with smoke visualiza-
tions attributed to Weske, and Weske is also believed to have
made the beautiful sketch of a horseshoe presented in Fig.
3!b" !provided by courtesy of J. Wallace, University of
Maryland". Interestingly, the drawing also indicates smaller-
scale hairpin vortices on the larger horseshoe, i.e., a hierar-
chy of scales, although it is not clear that such patterns were
actually observed. In fact, the technology of the day did not
permit measurement of vorticity, which would have estab-
lished that the loops of smoke were, indeed, vortices. More-
over, in all but low Reynolds number flows, it was extremely
difficult to visualize structures in the interior of the flow,
where Theodorsen imagined them to occur first.

Figure 2!b" shows the long streamwise streaks of H2
bubbles reported by Kline, et al.11 in a plane close to the
wall. These streaks were shown to be regions of low stream-
wise momentum, and in the buffer layer their mean spanwise

spacing was found to be approximately 100 viscous wall
units, one of the more reliable physical constants in the study
of turbulence. Later, the low-speed regions were associated
with quasistreamwise vortices lifting viscously retarded fluid
upwards from the region close to the wall !cf. Robinson12 for
a summary of the evidence". Observations of bubbles in x-y
planes also revealed the sequence of events that came to be
known as bursting, in which the bubble streaks wavered ver-
tically with increasing amplitude and then lifted away from
the wall in a vigorous, chaotic motion. The bursting concept
excited considerable interest, and many subsequent research-
ers sought mechanisms to explain the origin of explosive
upward motions, using quadrant analysis of time series data
to identify events occurring before and after the signatures of
bursts. Of particular note is the mean tendency of Q2 events
to be followed almost immediately by somewhat longer du-
ration Q4 events, and the fact that Q2 events tend to occur in
groups. It was not until almost two decades after the first
observation of bursts that Bogard and Tiederman13 and later
Tardu14 were able to show that bursts are actually a sequence

FIG. 3. !Color" !a" Theodorsen’s !1952" depiction of a horseshoe vortex !from Ref. 9"; !b" sketch of “The Horseshoe” attributed to Weske !courtesy of J.
Wallace, University of Maryland"; !c" Robinson’s summary of structures found in direct numerical simulation of wall turbulence !from Ref. 12".

041301-3 Hairpin vortex organization in wall turbulence Phys. Fluids 19, 041301 !2007"

Downloaded 09 Jun 2008 to 128.220.254.4. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

Figure C.4.

Such hairpin vortices are also sometimes called “Λ-vortices” or “Ω-vortices”. The legs of the

vortex were suggested by Theodorsen to be inclined at 45◦ with respect to the wall. As you can

see from the flows in the sketch, the resulting fluid motions have v′ < 0 when u′ > 0, and v′ > 0

when u′ < 0. Hence, such structures can contribute to the required negative Reynolds stress

u′v′ < 0 at the bottom wall (and their mirror images about the center-plane will contribute

positive stress at the top wall.) The “lifting” of such vortices from the wall will also contribute

to the required mean flux of spanwise vorticity in the cross-stream direction.

These ideas of Theodorsen have received some support from numerical simulations and

experiments. Detailed visualizations were first possible using simulations. The papers

P. Moin & J. Kim, “The structure of the vorticity field in turbulent channel flow.

Part 1. Analysis of instantaneous fields and statistical correlations”, J. Fluid Mech.

155 441–464 (1985)

P. Moin & J. Kim, “The structure of the vorticity field in turbulent channel flow.

Part 2. Study of ensemble-averaged fields” , J. Fluid Mech. 162 339–363 (1986)

observed hairpin-like structures both in instantaneous vortex lines:
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The vorticity field in turbulent channel flow 

(b) 

46 1 

FIGURE 17. A set of vortex lines (vortex filament) displaying a hairpin-like structure. (a) 3-D view, 
the streamwise extent of the figure is 1.968 (1257v/u1) and its spanwise extent is 0.748 (471v/u1); 
(b)  end view ((y, %)-plane); (c) side view ((5,~)-plane). 

FIGURE 18. Same as figure 17 (a), except that the step size, A8, used for numerical integration of 
(4.1) is: (a) two times, and (b)  fives times that used to generate figure 17. 

Figure C.4.

and in the lines of conditionally averaged vorticity:
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FIQURE 6. Vortex lines of VISA-2 ensemble in the vicinity of the detection point: (a) lines that approach yf x 106 aa z+ a ; ( b )  lines that approach 
yf x 320; (c) end view of the vortex lines at x+ x - 1 9 0  for several y-locations; ( d )  end view of the vortex lines at z + x  - 380. IP 
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Figure C.5.

The lines above are taken from a “variable-interval space-averaging” (VISA) sampling tech-

nique, in which events are chosen so that ∂u/∂x > 0 and the velocity variance in a local

streamwise space-average are greater than 1.2u2
rms. The condition ∂u/∂x > 0 means that the

streamwise velocity is increasing downstream of the test point, which implies the point is in-

volved in a streamwise low-speed fluctuation. This conditions are applied at a distance 100
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“wall units” ν/u∗ away from the wall, so that the event should consist of an “ejection” of low-

speed fluid away from the wall. Clearly, both instantaneous and conditional vorticity structures

are similar to the hairpins predicted by Theodorsen.

Experimental techniques are now also capable of detailed 3D imaging. For example

J. Sheng, E. Malkiel & J. Katz, “Buffer layer structures associated with extreme

wall stress events in a smooth wall turbulent boundary layer,” J. Fluid Mech. 633

17–60 (2009)

employ digital holographic microscopy to measure 3D velocity fields in the inner part of a

turbulent boundary layer. Their measurements are taken at distances less than 60 ν/u∗, where

current numerical simulations have difficulty in achieving good spatial resolution.

Here are some of their plots of both instantaneous vortex lines
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Figure 4. Sample instantaneous distributions of λ2 isosurfaces, wall shear stress and vortex
lines, as defined in the text: (a) for a counter-rotating vortex pair, λ2 = − 480; (b) for multiple
streamwise vortices, λ2 = − 775; (c) for a hairpin, λ2 = − 530; and (d ) for high-lying outer
layer structure, λ2 = − 665. Note that the samples are presented at different angles in order to
provide the clearest illustration of the flow phenomena involved.

the streamwise axis frequently exceeds 45◦. The centres of these pairs are located at
3 < y+ < 40 but mostly around y+ = 20, and the spacing between them is z+ = 50–70.
Their normalized streamwise vorticity ωxδ/uτ often exceeds 1000. In 28 (11 %) of
the (total) realizations, the flow induced by a pair is downward; i.e. they generate a
stagnation-like ‘splatting’ flow and a stress maximum on the wall. In 41 (16 %) of the
cases, the pairs generate an anti-splatting flow away from the wall, and there is a wall
stress minimum between them, as illustrated in figure 4(a). Similar to this sample
(statistics follows), a local τxy minimum is typically bounded by maxima on both
sides, but they are staggered in the streamwise direction; i.e. the local minimum is
located upstream of the local maximum. Near the stress minimum, the structures are
still located very close to the wall, and the vortex lines are aligned upward, at an angle
of almost 90◦. As the structures lift away from the wall, the shear stress between them
starts to recover; the vortex lines turn downstream; and the high-shear-stress zones on
both sides of the minimum begin to peak. The origin, flow and turbulence associated
with these structures are the main foci of this paper, as discussed in § 3 and § 4.

3.2.2. Multiple quasi-streamwise vortices

In 92 (36 %) of the cases, multiple quasi-streamwise vortices coexist within the buf-
fer layer and contribute about 35 % of the mean wall shear stress. Figure 4(b) provides

and lines of conditionally averaged vorticity:
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34 J. Sheng, E. Malkiel and J. Katz
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Figure 7. Conditionally averaged three-dimensional flow structure and wall stress based on a
local stress minimum, τxy < 0.6〈τxy〉, at x+ = z+ = 0. (a) Isosurface of λ2 = −350, selected (blue)
vortex lines and distribution of τ̂min

xy ("x, 0,"z)/〈τxy〉. (b) Conditionally averaged near-wall

vortex lines and distribution of τ̂min
xy ("x, 0,"z)/〈τxy〉. Insert: x–y projection of the vortex

lines.

mostly an ‘ejection’ (û′min < 0, û′min > 0, Q2 event) between them. For brevity, we
will drop the superscript ‘min ’ in referring to sampling based on stress minimum
for the rest of this section. The λ2 plot indicates that two vortices emerge from a
region containing spanwise vortices located at −5 < x+ < 10 and are not connected

The vortex field in the second image is averaged over a conditional ensemble given that the

instantaneous viscous stress at a point on the wall (x = z = 0) has a value less than (more

negative than) −0.6u2
∗. The colors at the walls indicate the values of the stress divided by −u2

∗.

For a recent more detailed survey of the hairpin picture, see

R. J. Adrian, “Hairpin vortex organization in wall turbulence,” Phys. Fluids 19

041301 (2007)

and for a contrarian view:

P. S. Bernard, “The hairpin vortex illusion,” 13th European Turbulence Conference

(ETC13), Journal of Physics: Conference Series 318 062004 (2011)
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