
O. A Survey of Critical Experiments
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(A) Visualizations of Turbulent Flow

Figure 1: Van Dyke, Album of Fluid Motion #152. Generation of turbulence by a grid. Smoke wires

show a uniform laminar stream passing through a 1/16-inch plate with 3/4-inch square perforations.

The Reynolds number is 1500 based on the 1-inch mesh size. Instability of the shear layers leads to

turbulent flow downstream. Photograph by Thomas Corke and Hassan Nagib.
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Figure 2: Van Dyke, Album of Fluid Motion #153. Homogeneous turbulence behind a grid. Behind

a finer grid than above, the merging unstable wakes quickly form a homogeneous field. As it decays

downstream, it provides a useful approximation to the idealization of isotropic turbulence. Photograph

by Thomas Corke and Hassan Nagib.
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Figure 3: From Y. Kaneda and T. Ishihara, High-resolution direct numerical simulation of turbulence,

Journal of Turbulence, Volume7, No.20, 2006
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Figure 4: From http://www.eng.fsu.edu/ shih/succeed/cylinder/flow%20vis/shedding.gif.

Turbulent wake flow behind a circular cylinder, visualized by Particle Imaging Velocimetry (PIV).
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Figure 5: Van Dyke, Album of Fluid Motion #157. Sideview of a turbulent boundary layer. Here

a turbulent boundary layer develops naturally on a flat plate 3.3m long suspended in a wind tunnel.

Streaklines from a smoke wire near the sharp leading edge are illuminated by a vertical slice of light.

The Reynolds number is 3500 based on the momentum thickness. The intermittent nature of the outer

part of the layer is evident. Photograph by Thomas Corke, Y. Guezennec and Hassan Nagib.
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Figure 6: From http://torroja.dmt.upm.es/ftp/channels. Isosurface of the discriminant of the velocity

gradient tensor for an instantaneous realization of a Reτ = 1900 turbulent channel (J.C. del Alamo, J.

Jimenez, P. Zandonade and R.D. Moser 2006, Self-similar vortex clusters in the turbulent logarithmic

region. J. Fluid Mech. 561, 329-358)
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I Quantitative Estimates of Energy Dissipation Rates

Figure 7: Sketch of grid-generated turbulence.

The rate of decay of kinetic energy (per unit mass) can be measured from

ε ' − D

Dt

1

2
(u′)2 ' −U ∂

∂x

1

2
(u′)2 (Taylor hypothesis)

It can be non-dimensionalized by U3/M or by (u′)3/L, where L is the spatial correlation-length

or “integral length” of the velocity. The experimental evidence is that

ε ∼ CU
3

M
or C ′ (u

′)3

L
. (∗)

with prefactors C and C ′ that become independent of ReM = UM/ν and ReL = u′L/ν when

ReM � 1, ReL � 1.

The fundamental relation (*) was first proposed semi-phenomenologically for pipe-flow data by

G. I. Taylor, ”Statistical Theory of Turbulence,” Proc. Roy. Soc. Lond. A 151: 421 (1935).
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Figure 8: From K. R. Sreenivasan, On the scaling of the turbulence energy dissipation rate, Phys.

Fluids 27: 1048-1051 (1984), showing near-independence from Re = u′L/ν.
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Figure 9: From Y. Kaneda et al., Energy dissipation rate and energy spectrum in high resolution direct

numerical simulations of turbulence in a periodic box, Phys. Fluids, vol. 15, No. 2, L21-L24 (2003).
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Figure 10: From B. R. Pearson et al. Measurements of the turbulent energy dissipation rate, Phys.

Fluids, vol. 14, No. 3, 1288-1290 (2002). One-dimensional surrogate for the dimensionless energy

dissipation rate C is measured in shear flows over a range of the Taylor microscale Reynolds number

Reλ, 70 < Reλ < 1217.

11



In time ∆τ, the sphere displaces a volume V = U∆τ × S of air at rest. If all of its momentum

is transferred to the sphere, that implies a change in the momentum of the sphere of ∆P =

−M · U = −ρV · U, or

∆P = −ρSU2∆τ.

and thus a force F = ∆P/∆τ, or

F = −ρSU2.

In fact, only a fraction of the momentum of the air, conventionally denoted 1
2CD, is transferred,

leading to a formula for the drag force

F = −1

2
CDρSU

2,

where CD is the drag coefficient.
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By hydrodynamic similarity, we may rescale lengths by L =
√
S, velocities by U, times by

T = L/U, and masses by M = ρL3. Since

[F ] = (mass)
length

time2
= density × length2 × velocity2

it follows that

F = −1

2
CD(Re)ρSU2,

where CD is a function only of the Reynolds number Re = UL
ν .

Experimental evidence seems to indicate that

lim
re→∞

CD(Re) = CD(∞) > 0.

For example, see Figure 34 in Landau & Lifschitz, Fluid Mechanics, 2nd Edition (1987). There

is a little “glitch” around Re
.
= 2 − 3 × 105, called the drag crisis. But thereafter it appears

that CD(Re) asymptotes to a nonzero limit.
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Figure 11: From http://misclab.umeoce.maine.edu/boss/boss.php
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The power input to move the sphere is

P = FU =
1

2
CD(Re)ρL2U3.

This power input is dissipated by heating in the turbulent wake of the object, which has a

volume∼ L3 (again by hydrodynamic similarity). Thus, the energy dissipation in the turbulence

per unit mass, ε, is given by

ε =
P
M

∼
1
2CD(Re)ρL2U3

ρL3

=
1

2
CD

U3

L
.

Thus, as Re→∞, it appears that

ε ∼ U3

L

and is entirely independent of the molecular viscosity ν! This is a fundamental experimental

fact about 3D turbulent flow, sometimes called the “zeroth law of turbulence.”

Comment: One may define the circulation time L/U to be the time required for a parcel of

fluid to move distance L, and the damping time 1
2U

2
/
d
dt

(
1
2U

2
)

that required for a finite fraction

of the energy to be dissipated. Then (*) implies that

damping time =
1

2
U2
/ d
dt

(1

2
U2
)

=
1

2
U2
/U3

L

∼ L/U = circulation time

The turbulence is thus critically damped in some sense, because the circulation or eddy-turnover

time is approximately equal to the damping time.
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Wall-Bounded Flows

In wall-bounded flows, the situation is somewhat different:

(a) With smooth walls, the dissipation appears to weakly vanish, e.g. ∼ 1/ logRe, as Re→∞

(but possibly with a plateau at extremely large Re).

(b) With rough walls, the dissipation again appears to go to a nonzero limit as Re→∞.

The paper of O. Cadot et al. Phys. Rev. E 56: 427 (1997) studies several flows, e.g. the

“French Washing Machine” and the Couette-Taylor cell.

Their conclusion is that

(i) The dissipation in the boundary layer, where the production mechanism is Reynolds-

number dependent, appears also to decrease slowly with the Reynolds number.

(ii) The dissipation in the bulk of the flow, away from the walls, is apparently independent

of the Reynolds number Re.

Summary: This brief survey of key experiments supports the conclusion that turbulent energy

dissipation rates become Re-independent at high Reynolds number. We shall re-examine the

evidence more closely after developing more theory. A recent article

J. C. Vassilicos, “Dissipation in Turbulent Flows,” Annu. Rev. Fluid Mech. 47: 95–114 (2015)

contains a rather comprehensive and useful review of data from laboratory experiments and

numerical simulations (although the theoretical interpretations proposed in that paper differ a

bit from those developed in this course).
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Figure 12:
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Figure 13:
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Figure 14:
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Figure 15:
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Figure 16:
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We have emphasized the enhanced dissipation in turbulent flow, but there are other phenom-

ena as well. Another key property exhibited by turbulence is enhanced mixing/space-tranport

of heat, momentum, kinetic energy, dyes, etc.

E.g. chemical engineers use turbulence to efficiently mix chemical reactants so that reaction

rates are greatly accelerated. This is a practically beneficial aspect of turbulence.

Another example is turbulence efficiency at transporting air-borne chemicals and solutes in

liquids. The reason that you can smell your significant other’s perfume/cologne when they

enter the room is because of small-scale turbulence in the air!

We focus in this course first on understanding enhanced turbulent energy dissipation. As a

matter of fact, this turns out to be very closely related to the transport/mixing properties,

which we discuss later. The enhanced spatial dispersion of particles by turbulence was pointed

out by Lewis Fry Richardson already in (1926), who proposed that mean-square separation of

particles grows super-diffusively as

〈|x1(t)− x2(t)| ∼ εt3.

This proposal has been well-confirmed by recent, highly resolved numerical simulations (but is

still not conclusively seen in controlled laboratory experiments), e.g. R. Bitane et al. “Geometry

and violent events in turbulent pair dispersion,” J. Turbulence, 14: 2 (2013).
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Figure 17: From Bitane et al. (2013)
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Another important aspect of turbulence is its unpredictability. This is a property difficult

to measure in laboratory experiment, due to the lack of fine control in in-flow conditions,

etc. However, it is found in numerical simulations that two flows with slightly different initial

conditions u1(x), u2(x) have an error energy

E∆(t) =
1

2

∫
ddx|u1(x, t)− u2(x, t)|2

which grows as

E∆(t) ∼ Gεt

with G ' 0.45 (in 3D), roughly consistent with a prediction of Leith & Kraichnan (1972).

Figure 18: From G. Boffetta and S. Musacchio, “Chaos and predictability of homogeneous-isotropic

turbulence,” PRL 119 054102 (2017). See also A. Berera and R. D. J. G. Ho, ”Chaotic properties of a

turbulent isotropic fluid,” 120 024101 (2018).
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