O. A Survey of Critical Experiments



(A) Visualizations of Turbulent Flow

Figure 1: Van Dyke, Album of Fluid Motion #152. Generation of turbulence by a grid. Smoke wires
show a uniform laminar stream passing through a 1/16-inch plate with 3/4-inch square perforations.
The Reynolds number is 1500 based on the 1-inch mesh size. Instability of the shear layers leads to

turbulent flow downstream. Photograph by Thomas Corke and Hassan Nagib.



Figure 2: Van Dyke, Album of Fluid Motion #153. Homogeneous turbulence behind a grid. Behind
a finer grid than above, the merging unstable wakes quickly form a homogeneous field. As it decays
downstream, it provides a useful approximation to the idealization of isotropic turbulence. Photograph

by Thomas Corke and Hassan Nagib.
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Figure 3. Intense-vorticity isosurfaces showing the region where w = (w) + 40,,. R, = 732. (a) The size of the
display domain is (59842 < 1496) 7, periodic in the vertical and horizontal directions. (b) Close-up view of the central
region of (a) bounded by the white rectangular line; the size of display domain is (29922 x 1496) :}", (¢) Close-up
view of the central region of (b); 14967 ?jl" (d) Close-up view of the central region of (c); (7482 x 1496) :;3,

Figure 3: From Y. Kaneda and T. Ishihara, High-resolution direct numerical simulation of turbulence,
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Figure 4: From http://www.eng.fsu.edu/ shih/succeed/cylinder/flow%20vis/shedding.gif.

Turbulent wake flow behind a circular cylinder, visualized by Particle Imaging Velocimetry (PIV).



Figure 5: Van Dyke, Album of Fluid Motion #157. Sideview of a turbulent boundary layer. Here

a turbulent boundary layer develops naturally on a flat plate 3.3m long suspended in a wind tunnel.
Streaklines from a smoke wire near the sharp leading edge are illuminated by a vertical slice of light.
The Reynolds number is 3500 based on the momentum thickness. The intermittent nature of the outer

part of the layer is evident. Photograph by Thomas Corke, Y. Guezennec and Hassan Nagib.



Figure 6: From http://torroja.dmt.upm.es/ftp/channels. Isosurface of the discriminant of the velocity
gradient tensor for an instantaneous realization of a Re, = 1900 turbulent channel (J.C. del Alamo, J.
Jimenez, P. Zandonade and R.D. Moser 2006, Self-similar vortex clusters in the turbulent logarithmic

region. J. Fluid Mech. 561, 329-358)



I Quantitative Estimates of Energy Dissipation Rates

//\_/
// Pl
/ />< cre i) -
1T L >4 =
u PR
U ] =
— A
A T | o
3 // /4/\J%,
L s
] 1 v e
M

Figure 7: Sketch of grid-generated turbulence.

The rate of decay of kinetic energy (per unit mass) can be measured from

D1, ,, 01 9 ~
e~ —th(u )2 o~ _U%§(u ) (Taylor hypothesis)

It can be non-dimensionalized by U3 /M or by (u')3/L, where L is the spatial correlation-length
or “integral length” of the velocity. The experimental evidence is that

3 n3
€ ~ CUM or C’(UL). (%)

with prefactors C' and C” that become independent of Reys = UM /v and Rey, = u/L/v when

Repy > 1, Rep, > 1.

The fundamental relation (*) was first proposed semi-phenomenologically for pipe-flow data by

G. L. Taylor, ”Statistical Theory of Turbulence,” Proc. Roy. Soc. Lond. A 151: 421 (1935).
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FIG. 1. The quantity eL ./ u” for biplane square-mesh grids. All data except
+ are for the initial period of delay, and are explained in Table I. + indi-
cate typical data'” in the final period of decay. — cerresponds to Eq. [1).

Figure 8: From K. R. Sreenivasan, On the scaling of the turbulence energy dissipation rate, Phys.

Fluids 27: 1048-1051 (1984), showing near-independence from Re = u'L/v.
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FIG. 3. Normalized energy dissipation rate D versus K, from Ref. 5 (data
up to R, =250), Ref. 3 (/. @), and the present DNS databases (H.A).

Figure 9: From Y. Kaneda et al., Energy dissipation rate and energy spectrum in high resolution direct

numerical simulations of turbulence in a periodic box, Phys. Fluids, vol. 15, No. 2, L21-L.24 (2003).
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Measurements of the turbulent energy dissipation rate 1289
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FIG. 1. Normalized dissipation rate for a number of shear flows. Details as
found in this work and Refs. 14-16. (a) C% [Eq. (3)]: (b) C% [Eq. (4)]. O,
circular disk, 154=R,=188; V, pipe, 70=R,=178; O, normal plate, 79
=R),=335; A, NOorRMAN grid, 174=R,=516: X NORMAN grid (slight mean
shear, d U/ dy =d U/ dv|mau/2), 807=R, =1217; [>, NorMAN grid (zero mean
shear), 425=R,=1120; @, “active” grid Refs. 14, 15, 100=R,=731; #,
“active” grid, with L, estimated by Ref. 16. For Ref. 14 data, we estimate
L,=0.1 m and for Ref. 15 data we estimate L,~0225m.

Figure 10: From B. R. Pearson et al. Measurements of the turbulent energy dissipation rate, Phys.
Fluids, vol. 14, No. 3, 1288-1290 (2002). One-dimensional surrogate for the dimensionless energy
dissipation rate C' is measured in shear flows over a range of the Taylor microscale Reynolds number

Rey, 70 < Rey < 1217.
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In time A7, the sphere displaces a volume V = UAT x S of air at rest. If all of its momentum
is transferred to the sphere, that implies a change in the momentum of the sphere of AP =
—M-U=—-pV-U,or

AP = —pSU?AT.
and thus a force F' = AP/Ar, or

F = —pSU>.

In fact, only a fraction of the momentum of the air, conventionally denoted %C D, is transferred,

leading to a formula for the drag force
1 2
F= —§CD,OS U-,

where Cp is the drag coefficient.
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By hydrodynamic similarity, we may rescale lengths by L = v/S, velocities by U, times by

T = L/U, and masses by M = pL3. Since

length
[F] = (mCLSS)W

= density x length?® x velocity?
it follows that
1
F = —iCD(Re)pSUz,

where Cp is a function only of the Reynolds number Re = %

Experimental evidence seems to indicate that

lim Cp(Re) = Cp(oc0) > 0.

re— 00

For example, see Figure 34 in Landau & Lifschitz, Fluid Mechanics, 2nd Edition (1987). There

is a little “glitch” around Re = 2 — 3 x 10°, called the drag crisis. But thereafter it appears

that Cp(Re) asymptotes to a nonzero limit.
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Figure 7.13 Log-log plot of drag coefficient Cp as a function of Reynolds
Number Re for spheres, transverse cylinders, and face-on discs. The broken
straight line represents Stokes’s law.

Figure 11: From http://misclab.umeoce.maine.edu/boss/boss.php
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The power input to move the sphere is
1
P=FU-= 5CD(Re),oL2U3.

This power input is dissipated by heating in the turbulent wake of the object, which has a
volume ~ L3 (again by hydrodynamic similarity). Thus, the energy dissipation in the turbulence

per unit mass, ¢, is given by

P $Cp(Re)pL?U3
TM o3

1, U3

= —-Cp—.

2 7L

Thus, as Re — oo, it appears that

U3
g~ T

and is entirely independent of the molecular viscosity v! This is a fundamental experimental

fact about 3D turbulent flow, sometimes called the “zeroth law of turbulence.”

Comment: One may define the circulation time L/U to be the time required for a parcel of

fluid to move distance L, and the damping time %U 2 / % (%U 2) that required for a finite fraction
of the energy to be dissipated. Then (*) implies that

Lo

U?)

. . 1 d
damping time = §U2/ ag(i
I
= U7

~ L/U = circulation time

The turbulence is thus critically damped in some sense, because the circulation or eddy-turnover

time is approximately equal to the damping time.
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Wall-Bounded Flows

In wall-bounded flows, the situation is somewhat different:

(a) With smooth walls, the dissipation appears to weakly vanish, e.g. ~ 1/log Re, as Re — o0

(but possibly with a plateau at extremely large Re).
(b) With rough walls, the dissipation again appears to go to a nonzero limit as Re — oc.
The paper of O. Cadot et al. Phys. Rev. E 56: 427 (1997) studies several flows, e.g. the
“French Washing Machine” and the Couette-Taylor cell.

Their conclusion is that

(i) The dissipation in the boundary layer, where the production mechanism is Reynolds-

number dependent, appears also to decrease slowly with the Reynolds number.

(ii) The dissipation in the bulk of the flow, away from the walls, is apparently independent

of the Reynolds number Re.

Summary: This brief survey of key experiments supports the conclusion that turbulent energy
dissipation rates become Re-independent at high Reynolds number. We shall re-examine the

evidence more closely after developing more theory. A recent article
J. C. Vassilicos, “Dissipation in Turbulent Flows,” Annu. Rev. Fluid Mech. 47: 95-114 (2015)

contains a rather comprehensive and useful review of data from laboratory experiments and
numerical simulations (although the theoretical interpretations proposed in that paper differ a

bit from those developed in this course).
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FIG. 1. Schemes of the two variants of experiment A. (a)
Smooth stirrers: the two stirrers are disks with a cylindrical rim. (b)
Rough or inertial stirrers: inside the rim, six blades are placed per-

pendicular to the disk surfaces and thus perpendicular to the rota-
tion velocity.

Figure 12:
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FIG. 2. Experiment A: Logarithmic plots of the nondimensional
rate of energy injection 5, and dissipations 8, and S as a function
of the Reynolds number for the three variants of the experiment.
Black symbols: results obtained with smooth stirrers. Triangles (&),
rate of energy dissipation B, circles (@), rate of energy injection
B, diamonds ( #), estimate of the rate of energy 35 dissipated in
the bulk of the fluid as estimated from the pressure fluctuations. The
dashed line shows a power law dependence proportional to
Re % Open symbols: results obtained with the very rough (or
inertial) stirrers. Triangles (4), rate of energy dissipation S ;
circles (O), rate of energy injection B3;; diamonds (<), rate of
energy dissipation 85 . Results are obtained with the stirrers having
smaller platelets. > is the mean rate of the energy dissipation

Bp .

Figure 13:
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FIG. 3. Plot of the typical velocity I/ in the bulk of the flow as
deduced from the histograms of the pressure fluctuations [see Eq.
(7)]. The black triangles (A) are the data obtained with smooth

stirrers, and the open ones (/) correspond to the data obtained with
the rough ones.

Figure 14:
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a) b)

FIG. 4. Schemes of experiment B: (a) the Couette-Taylor cell
with smooth surfaces and (b) the section of the system perpendicu-
lar to the axis of rotation and showing the ribs which make the
walls rough.

Figure 15:
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FIG. 5. Couette-Taylor experiments. Logarithmic plots of the
nondimensional rates of energy dissipation S5 as a function of the
Reynolds number. The black triangles (A) are the results obtained
with smooth cylinders, and the open ones (/) correspond to those
obtained with the ribbed ones. The crosses (%) show for compari-
son the rates of energy injection 8, deduced from the data obtained
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with smooth cylinders by Lathrop, Finenberg, and Swinney [8].

Figure 16:
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We have emphasized the enhanced dissipation in turbulent flow, but there are other phenom-

ena as well. Another key property exhibited by turbulence is enhanced mixing/space-tranport

of heat, momentum, kinetic energy, dyes, etc.

E.g. chemical engineers use turbulence to efficiently mix chemical reactants so that reaction

rates are greatly accelerated. This is a practically beneficial aspect of turbulence.

Another example is turbulence efficiency at transporting air-borne chemicals and solutes in
liquids. The reason that you can smell your significant other’s perfume/cologne when they

enter the room is because of small-scale turbulence in the air!

We focus in this course first on understanding enhanced turbulent energy dissipation. As a
matter of fact, this turns out to be very closely related to the transport/mixing properties,
which we discuss later. The enhanced spatial dispersion of particles by turbulence was pointed
out by Lewis Fry Richardson already in (1926), who proposed that mean-square separation of

particles grows super-diffusively as

(|x1(t) — x2(t)| ~ et®.

This proposal has been well-confirmed by recent, highly resolved numerical simulations (but is
still not conclusively seen in controlled laboratory experiments), e.g. R. Bitane et al. “Geometry

and violent events in turbulent pair dispersion,” J. Turbulence, 14: 2 (2013).
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Figure 2. Time-evolution of the mean-squared distance for R; = 730 (a) and R; = 460 (b) for
various initial separations r, as labeled. The horizontal and vertical solid lines represent the integral
scale L and its associated turnover time t; , respectively. The dashed line corresponds to the explosive

Richardson-Obukhov law (3) with g = 0.52.

Figure 17: From Bitane et al. (2013)
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Another important aspect of turbulence is its unpredictability. This is a property difficult

to measure in laboratory experiment, due to the lack of fine control in in-flow conditions,
etc. However, it is found in numerical simulations that two flows with slightly different initial

conditions u;(x), uz(x) have an error energy

Ea(t) = ;/ddx]ul(x,t) w(x, )2

which grows as

EA(t) ~ Get

with G ~ 0.45 (in 3D), roughly consistent with a prediction of Leith & Kraichnan (1972).
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FIG. 1. Error energy E,(r) growth for the simulation at

N =1024. The error energy is averaged over ten different
realizations (black line). The fluctuations of the error energy
within one standard deviation from the mean are represented by
the shaded area. Inset: The initial exponential growth of the error.

Figure 18: From G. Boffetta and S. Musacchio, “Chaos and predictability of homogeneous-isotropic
turbulence,” PRL 119 054102 (2017). See also A. Berera and R. D. J. G. Ho, ” Chaotic properties of a

turbulent isotropic fluid,” 120 024101 (2018).
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