
(E) Dynamics of Vortex-Lines in a Turbulent Flow

The conservation of circulations (Kelvin Theorem) is intimately related to the materiality of

vortex lines. Many classical arguments in turbulence assume also that vortex lines move as

material lines, e.g. Taylor’s explanation of growth of !2. These ideas must therefore also be

critically reconsidered.

Let us first review some of the standard theory of vortex lines. By definition, a vortex line is

a line everywhere parallel/tangent to the local vorticity vector. Thus, a parameterized curve

x(�) is a vortex line i↵ for some scalar field ↵(x)

dx
d� = ↵(x)!(x).

Now consider a material line x(�, t) which satisfies for some velocity u

d
dtx(�, t) = u(x(�, t), t)

for all t and �. If x(�, t) is a vortex line at the initial instant t = t
0

, then it remains a vortex

line for all other times if and only if

(⇤) 0 = ! ⇥ [Dt! � (! ·r)u] = ! ⇥ [@t! �r⇥ (u⇥ !)]

or, equivalently, if and only if

(⇤) Dt! � (! ·r)u = @t! �r⇥ (u⇥ !) = �!

for some scalar field �(x, t). This is the so-called Helmholtz-Zorawski condition from

K. Zorawski, “Über die Erhaltung der Wirbelbewegung,” Bulletin de l’Académie

des Sciences de Cracovie, Comptes Rendus, p. 335 (1900)

This condition is somewhat weaker than the condition for conservation of vorticity flux through

a moving circuit C(t). We give a simple proof of this result, following

R. Prim & G. Truesdell, “A derivation of Zorawski’s criterion for permanent vector

lines,” Proc. Amer. Math. Soc. 1 32 (1950); C. Truesdell, The Kinematics of Vorticity

(Indiana University Press, Bloomington, 1954).

The material line is a vortex line if and only if
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@x
@� ⇥ ! = 0.

Note that

d
dt(

@x
@� ) = (@x@� ) ·ru(x, t)

by the chain rule. Now take the time-derivative of y(�, t) ⌘ @x
@� (�, t)⇥ !(x(�, t), t):

d

dt
y(t) = (

@x

@�
·r)u⇥ ! +

@x

@�
⇥ (Dt!)

= (
@x

@�
·r)u⇥ ! +

@x

@�
⇥ (! ·r)u+ �(

@x

@�
⇥ !) (48)

Next substitute into the first two terms the decomposition dx
d� = � · ! + �(! ⇥ (dxd� ⇥ !)) with

components parallel and perpendicular to !, where � = 1

|!|2 (! · dxd� ) and � = 1

|!|2 . It is easy to

see that the term parallel to ! gives a zero contribution. The final result is that

d
dty = �

⇣
(! ⇥ y) ·r

⌘
u⇥ ! + �(! ⇥ y)⇥ (! ·r)u+ �y.

Although this equation appears complicated, it is just a linear ODE for each value of �

d
dty = A(t)y

with an appropriate matrix A(�, t). This equation has the exact solution

y(t) = Texp

✓Z t

t0

dsA(s)

◆
y(t

0

) (49)

in terms of a time-ordered exponential. Thus, y(t) = @x
@� ⇥ ! = 0 if the same condition held

true at the initial time t
0

. Thus (⇤) is su�cient for the material line to remain a vortex line.

On the other hand, the condition (⇤) is also clearly necessary, as follows from the first line of

(48) by substituting @x
@� = ↵!. Finally, note by vector calculus identities

Dt! � (! ·r)u = @t! + (u ·r)! � (! ·r)u

= @t! �r⇥ (u⇥ !)� (r · u)! + (r · !)u| {z }
=0

(50)

so that

! ⇥ [Dt! � (! ·r)u] = 0 i↵ ! ⇥ [@t! �r⇥ (u⇥ !)] = 0 QED

It is worthwhile to remark that this proof did NOT assume that u is the velocity related to the

vorticity itself, i.e.
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! = r⇥ u.

Material lines for any velocity u will remain integral lines of !/“vortex lines” (if initially so)

as long as the condition (⇤) is satisfied.

We now see that coarse-grained vorticity in a turbulent flow will generally NOT satisfy the

required condition (⇤), which takes the form

!̄` ⇥ [r⇥ (fv` � ⌫r⇥ !̄` + f̄B` )] 6= 0.

if one chooses the natural advection velocity ū`. In the inertial range of turbulent flow the

dominant term is the vortex force

fv` = (u⇥ !)` � ū` ⇥ !̄`

or, equivalently, the subscale force f s` . It is interesting to decompose this into parts longitudinal

and transverse to the vorticity !̄`:

fv` = ↵`!̄` +4u` ⇥ !̄`

with

↵` = !̄` · fv` /|!̄`|2, 4u` = !̄` ⇥ fv` /|!̄`|2.

Clearly, ↵` and 4u` are quantities with dimension of velocity.

Let us now consider the physical significance of each of these separate terms. The quantities

4u` may be interpreted as a drift velocity of vortex lines of !̄`. This can be justified in exact

terms if ↵` ⌘ 0, in which case

@t!̄` = r⇥ (ū` ⇥ !̄` + fv` )

becomes

@t!̄` = r⇥ (u⇤
` ⇥ !̄`)

with

u⇤
` ⌘ ū` +4u`.

In that case, the condition (⇤) is satisfied for the net velocity u⇤
` , so that vortex lines may

be considered to be material lines for that velocity rather than ū`. It is interesting that the

transverse force can be rewritten then as
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fv,trans` = (u⇤
` � ū`)⇥ !̄`

and interpreted as a subscale Magnus force. This interpretation arises from the well-known

Robins-Magnus e↵ect according to which a body in a fluid with a net circulation around it expe-

riences a transverse force when it moves relative to the fluid. First observed experimentally by B.

Robins (1761) and G. Magnus (1853), the e↵ect was explained by the Kutta-Joukowski theorem

in aerodynamics, derived in the early 20th century to describe the lift force around an airfoil.

There are similar forces on vortex lines in a variety of other physical systems, e.g. quantized

vortex lines in superfluids. The essential ingredient is that the vortex lines must move not at

the fluid velocity ū` but instead with a di↵erent velocity u⇤
` . The reciprocal e↵ect is that a

vortex line subjected to a transverse force f trans moves with a velocity not parallel to the force

but instead in a perpendicular direction at a velocity 4u / !̄` ⇥ f trans. The general picture is:

Compare with T&L, Fig. 3.4.

The longitudinal force

fv,long` ⌘ ↵`!̄`

is also physically important. It is a hydrodynamic analogue of the ↵-e↵ect in MHD:

U. Frisch, Z. S. She & P. L. Sulem, “Large-scale flow driven by the anisotropic

kinetic alpha e↵ect,” Physica D 28 382-392 (1987)

It plays an important role in theories of vortex reconnection:
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G. Hornig, “Reconnection in magnetic and vorticity fields,” in Tubes, Sheets and Singularities

in Fluid Dynamics, ed. K. Bajer (Kluwer, Amsterdam)

The longitudinal force is the only component that contributes to the helicity flux

⇤` = �2!̄` · fv` = �2↵`|!̄`|2.

There is a similar expression for energy cascade when expressed in terms of the work W` against

the vortex-force:

W` = ū` · fv` = ↵`(ū` · !̄`)�4u` · (ū` ⇥ !̄`)

Likewise, the loop-torque can be written as

�` ⌘ �
I

C
`

(t)
fv` · dx = �

I

C
`

(t)
!̄` · [↵`dx+ dx⇥4u`] (51)

We see that the ↵�e↵ect creates/destroys circulation when the vorticity !̄` has a nonzero

component tangent to the loop C`(t). The second term represents the rate at which vorticity

is being carried across the curve C`(t) by the vortex-line motion with relative velocity 4u`.

With our sign convention, this term is positive when vorticity which is threading the loop in

the positive sense (according to the right-hand rule) migrates out of the loop.

This gives us another way to interpret the persistent torques on loops in a turbulent flow. In

the figure below we plot the conditional mean torque �` on loops with a given net circulation

K, or h�`|Ki, from the DNS of Chen et. al. (2006). We see that h�`|Ki has the same sign as

K itself. This shows that the turbulent transport of the vortex-lines is, on average, di↵usive.

That is, if there is an excess of vorticity of one sign threading the loop, then the turbulence

tends to transport this excess out of the loop!
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range value of the rms circulation flux. In the inset to
Fig. 1(b) we plot the rms value versusR, revealing a scaling
very close to R1=2. Since K‘!C; t0" has the dimension of
velocity squared, the mean-field Kolmogorov scaling
would be R2=3. The smaller exponent shows that rms
circulation flux scales anomalously with R, similar to the
circulation itself [15].

It is illuminating to compare these numerical results for
3d with corresponding results for the cascade of enstrophy
(mean-square vorticity) in 2d [16]. We have analyzed the
solutions of a 20482 DNS, for details of which see
Ref. [17]. This simulation yielded about a decade and a
half of inertial range with constant mean enstrophy flux
and an energy spectral exponent close to #3. In Fig. 2(a)
we plot the PDF’s of circulation flux K‘!C; t0" from this
DNS for a square loop with R $ 128 and several cutoff
lengths ‘ < R. Unlike the corresponding results in Fig. 1(a)
for 3d, the PDF’s are not independent of ‘ but instead
narrow rapidly as ‘ decreases. This is quantified in
Fig. 2(b), which plots the rms circulation flux versus kc,
again for loops with radius R $ 128. A power-law decay is
observed for increasing kc with an exponent between #1
and #2, consistent with the rigorous bound in Ref. [13].
These results show that the Kelvin theorem is valid in the
2d enstrophy cascade, whereas circulation is not conserved
in the 3d energy cascade range as ‘ ! 0, due to persistent
nonlinear transport of vortex lines.

Although the Kelvin theorem is not valid in the classical
sense in 3d turbulence, it was conjectured in [13] that a
weaker form may still be valid. Consistent with the results
above, the circulation !!C; t" on an advected loop C!t" is
expected not to be invariant in time. In fact, associated with
the phenomenon of ‘‘spontaneous stochasticity’’ in the
zero-viscosity limit [18], the loop C!t" should be random
for a fixed initial loop C and advecting velocity field u.
Under these circumstances, the time series of !!C; t" will
be a stochastic process. It was proposed in Ref. [13] that
the random time series of circulations should possess the
‘‘martingale property’’:

 h!!C; t"j!!C; s"; s < t0i $ !!C; t0"; t > t0: (6)

That is, the conditional expectation of the circulation in the
future should be the last given value. This is a natural
statistical generalization of the Kelvin theorem and, in
fact, is a generalized form of the inviscid Euler equations
of motion for a turbulent fluid [13].

A full test of these ideas will be quite difficult and
involve, among other things, careful Lagrangian tracking
of the loops C!t". Here we check a somewhat weaker result.
In Fig. 3 we plot the conditional average circulation flux
hK‘!C; t0"j!!C; t0" $ !i from the 3d DNS as a function of
kc $ !=‘, for a square loop with R $ 64 and for various
values of the circulation level !. Unlike (6), this expecta-
tion includes an average over the turbulent ensemble of
velocities u. The plot in Fig. 3 shows that the sign of
K‘!C; t0" is positively correlated with that of !!C; t0",
consistent with the diffusive character of turbulent vortex
line transport. Thus, the effect of subscale modes at length
scales <‘ will be to reduce the magnitude of the circula-
tion, regardless of its sign. However, the conditional aver-
age flux for each value of ! tends to zero as ‘ decreases
through the inertial range. This is a true effect of the
nonlinear dynamics, as illustrated by the dashed line in
Fig. 3, which plots the expectation of the viscosity term

kc

〈
2 〉1/

2

101 102 10310-6

10-5

10-4

10-3

10-2

Κ l

(b)

Κl

P(
)

-0.01 -0.005 0 0.005 0.0110-1

100

101

102

103

104

105

kc=16
kc=32
kc=64
kc=256
kc=512

Κ l
(a)

FIG. 2. (a) The PDF’s of circulation flux from a 20482 simu-
lation of 2D enstrophy cascade for loops of radius R $ 128 and
several kc $ !=‘. (b) The rms circulation flux plotted versus kc,
also for R $ 128.
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FIG. 3. The conditional average circulation flux from the 3d
DNS as a function of kc, for a square loop with R $ 64 and for
various values of the circulation level (solid lines). The dashed
line shows the conditional expectation of the viscosity term,
given ! $ !rms, as a function of kc.
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Another feature noted in this plot is that, apparently,

lim
`!0

h�`|Ki = 0, (52)

This shows that the conservation of circulations is restored in a mean sense, as ` ! 0. This

had been conjectured by Eyink (2006) to occur, on various plausible grounds. For example,

h�`i = 0 in homogeneous turbulence because f s` = �r · ⌧ ` has zero average. If �` becomes

statistically independent of the circulation on the loop as ` ! 0, then h�`|Ki ! 0. This issue

will be discussed more in the next chapter on Lagrangian aspects of turbulence.

A related result is that vortex lines behave more like material lines as ` ! 0. To see this we

estimate

fv` = O( �u
2
(`)
` ), !̄` = O( �u(`` )

so that

↵`,4u` = O⇤( �u
2
(`)/`

�u(`)/` ) = O⇤(�u(`))

This is not a rigorous big-O bound, because we have divided by |!̄`(x, t)| which may become

very large at null-points (zeros) of the vorticity vector. However, heuristically, one can expect

that ↵`,4u` scale essentially as velocity increments �u(`) ⇠ u
0

(`/L)h, and thus vanish as ` ! 0,

as long as h > 0. For example, in K41 theory, �u(`) ⇠ (h"i`)1/3. Thus, we may expect that

vortex lines behave more as material lines for small ` ! 0. The net e↵ect on circulations does

not vanish, however, except in some mean sense. We see that the PDF of �` hardly changes
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as ` ! 0. The reason is that |!̄`| ⇠ �u(`)
` tends to diverge as ` ! 0, as long as h < 1. Since

|fv` | / |↵`| · |!̄`|, |4u`| · |!̄`| the combination need not be small, even if |↵`|, |4u`| ! 0 as ` ! 0.

The e↵ects that we have studied here for the coarse-grained or filtered vorticity could also be

studied in the fine-grained vorticity, where the main contribution is from the viscous force

fvis⌫ = �⌫r⇥ !

Thus may likewise be decomposed as

fvis⌫ = ↵⌫! +4u⌫ ⇥ !

A heuristic estimation gives

↵⌫ , |4u⌫ | ⇠ �u(⌘h) ⇠ u
0

(⌘hL )h ⇠ u
0

Re�
h

1+h

at a point with local Hölder exponent h. Thus, ↵⌫ , |4u⌫ | also tend to vanish as ⌫ ! 0 or

Re ! 1. Of course, all the e↵ects of non-zero ↵⌫ , |4u⌫ | — such as non-conservation of

circulations — are not removed in that limit. A number of studies have been made of di↵erences

between material lines and vortex-lines in turbulence, by experiment and by simulation. E.g.

M. Guala et al., “On the evolution of material lines and vorticity in homogeneous

turbulence,” J. Fluid Mech. 533 339-359(2005)

and references therein. Guala et al.(2005) find significant di↵erences in the statistical properties

of vortex lines and material lines. In particular, at the Reynolds numbers and observation

times available to them, they observe a greater tendency of material lines to align with the

most extensive strain direction, rather than with the intermediate strain direction as observed

from vortex lines.

The work of Constantin & Iyer (2008) sheds fundamental light also on this question of vortex-

line motion. Their results show, in a very precise sense, that vortex-lines for incompressible

Navier-Stokes fluids are material lines in a stochastic sense. To state their result, we must

return to the properties of vorticity for smooth solutions of the incompressible Euler equations.
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The Helmholtz equation for the vorticity

Dt! = ! ·ru

can be explicitly integrated by the formula4

!(x, t) = !(a, t
0

) ·rax(t|a, t0)
���
a(t0|x,t)

already derived by Augustin-Louis Cauchy in 1815, published in

A.-L. Cauchy, Théorie de la propagation des ondes à la surface d’une fluide pesant

d’une profondeur indéfinie. Oeuvres Completes d’Augustin Cauchy, Série I, Tome

I, 5-318, 1882.

Proof: Taking the gradient ra of the particle equation of motion gives by the chain rule

that d
dtrax(t|a, t0) = rax(t|a, t0) · rxu(rax(t|a, t0), t). Dotting this equation with !(a, t

0

),

it follows that the Cauchy formula satisfies the Helmholtz equation. QED.

Constantin & Iyer (2008) showed that the Cauchy formula carries over to the incompressible

Navier-Stokes equation in the stochastic form:

!(x, t) = !(a, t
0

) ·raex(t|a, t0)
���
a=

e
a(x,t|t0)

,

where ex(t|a, t
0

) are the stochastic Lagrangian flow maps obtained by solving the SDE (45)

forward in time, ea(x, t|t
0

) := ex(t
0

|x, t) are the inverse or “back-to-labels” maps, and overline

(· · ·) is the average over the ensemble of Brownian motions. This formula gives the unique

smooth solution (when it exists) to the viscous Helmholtz equation:

Dt! = ! ·ru+ ⌫4!.

4From a di↵erential-geometric point of view, this formula means that the vorticity ! is Lie-transported by the

fluid velocity u as a di↵erential 2-form. More concretely, the components ⌦
ij

= � 1
2 ✏ijk!k

of the vorticity 2-form

transform in time according to ⌦
ij

(x, t) = ⌦
nm

(a, t0)
@an
@xi

@am
@xj

, the pullback by the inverse Lagrangian map. For

example, see Nicolas Besse and Uriel Frisch, “Geometric formulation of the Cauchy invariants for incompressible

Euler flow in flat and curved spaces.” J. Fluid Mech. 825 412-478 (2017).
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An intuitive way to understand the stochastic Cauchy formula is by means of the “virtual

vorticity vectors”

e!(x, t) = !(a, t
0

) ·raex(t|a, t0)
���
a=

e
a(x,t|t0)

.

The virtual vorticities—by the same argument as above—can be obtained by solving the inviscid

Helmholtz equation de!/dt = e!·ru forward in time along the stochastic Lagrangian trajectories

ex(t) which arrive to point x at time t. In a numerical implementation, this set of stochastic

Lagrangian trajectories is instead most easily obtained by integrating the SDE (45) with the

final value ex(t) = x backward to the initial time t
0

. The physical vorticity vector is finally

obtained by averaging over the ensemble of virtual vorticities:

!(x, t) = e!(x, t)

The di↵erent steps in the procedure are illustrated graphically:STOCHASTIC FLUX FREEZING AND MAGNETIC DYNAMO PHYSICAL REVIEW E 83, 056405 (2011)

start

transport

average

FIG. 3. (Color) Illustration of the stochastic Lundquist formula.
Three stochastic Lagrangian trajectories running backward in time
from a common point are shown in red, green, and blue. Starting
field vectors, represented by correspondingly colored arrows, are
transported along the trajectories, stretched, and rotated to the
common final point. These are then averaged to give the resultant
magnetic field at that point, indicated by the black arrow.

three stochastic trajectories generated numerically from the
turbulence database together with the starting magnetic field
vectors B0, indicated by arrows at the starting locations ã(t0).
The next step is to transport each of the field vectors in
the usual “frozen-in” fashion along the stochastic Lagrangian
trajectories to the final space-time point (x,t). The result is an
ensemble of field vectors B̃ at that point, stretched and rotated
by the flow. These are illustrated in Fig. 3 (middle) by the
collection of three arrows at (x,t), obtained by transporting
the three initial vectors. In the usual deterministic Lundquist
formula, there would be just one trajectory and one vector B̃
at the final point, which would give the desired magnetic field.
Now, however, as the final step, one must average over the
ensemble of random vectors B̃ in order to obtain the resultant
magnetic field B(x,t). This is illustrated by the black arrow
in Fig. 3 (bottom). In contrast to the previous transport step,
which preserved line topology (in each individual realization),
the final averaging step resistively “glues” the transported lines
together and changes the magnetic field-line topology.

There is an elegant reformulation of the stochastic
Lundquist formula that must be mentioned here, both because
of its conceptual simplicity and also because of its potentially
greater generality (see next section). Consider any smooth,
oriented surface S at final time t. Then, the formula (32)
may integrated in x over the surface S, with respect to
the vector area element dA(x) = dx × dx, and the ensemble
average and surface integration interchanged on the right-hand
side. Because the expression under the overbar is the one
that appears in the usual Lundquist formula, the standard

FIG. 4. (Color) Illustration of the stochastic Alfvén theorem.
Shown are three members (red, green, and blue) of the infinite
ensemble of loops obtained by stochastic advection of a loop C

(black) at time t backward in time to t0. The average of the magnetic
flux through the ensemble of loops is equal to the magnetic flux
through C.

multivariable calculus manipulations convert this into a surface
integral over ã(S,t), with the surface S randomly advected
backward in time to the initial time t0. As before, ã(·,t) =
x̃−1(·,t) is the “back-to-label map” for the stochastic forward
flow. The result is the following stochastic Alfvén theorem:

∫

S

B(x,t)·dA(x) =
∫

ã(S,t)
B0(a)·dA(a), t > t0. (33)

This result generalizes a previous theorem [45] to compressible
plasmas. Equation (33) expresses the conservation of magnetic
flux on average, as illustrated in Fig. 4. An initial loop C,
boundary of the surface S, is shown there in black. This is
stochastically advected backward in time to give an infinite
ensemble of loops at the initial time t0. These are represented
by the three colored loops. The ensemble average of the
magnetic flux through the collection of loops at the initial
time t0 is equal to the magnetic flux through the loop C at the
final time t.

The stochastic Alfvén theorem is an example of what
is called a “martingale property” in probability theory. The
magnetic flux through each advected loop at the earlier time
t0 is unequal to the magnetic flux through C at time t.
Nevertheless, the mean flux remains the same. Note that this
result implies an irreversibility or an “arrow of time” since
it only holds for backward stochastic advection of loops.
Backward-in-time is the causal direction, since the magnetic
flux at the present must be obtained as an average of past values
and not of future values. If we assumed a “forward martingale”
property, then we would obtain instead the magnetic induction
equation (26) with a negative resistivity term −λ△B. Note,
in fact, that the stochastic Alfvén theorem (backward in time)
is mathematically equivalent to the usual resistive induction
equation (25) or (26) [45].

B. High-Reynolds-number limit

We now consider the limit of large kinematic and magnetic
Reynolds numbers. For simplicity, we shall assume that Prm =
ν/λ remains fixed as ν,λ → 0.

Consider the Feynman-Kac formula (27). By a naive
application of the Laplace method, one would assume that
the path integral collapses to a single deterministic trajectory
as λ → 0, with rms fluctuations of order (λt)1/2 for small
but nonzero λ. This is precisely the heuristic estimate of
line slippage made by Kulsrud [2], which was quoted in the
Introduction. This estimate is rigorously correct if the velocity

056405-9

FIGURE. Illustration of the steps in computing vorticity by the stochastic Cauchy formula
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What the Constantin-Iyer (2008) results show is that there is a well-defined sense in which

vortex lines in a Navier-Stokes fluid do indeed move as material lines. Do these results help

to justify Taylor’s ideas on vortex-stretching as the origin of turbulent energy dissipation?

Perhaps, but the detailed mechanisms are very subtle and many points are unclear, even at

a heuristic level. Individual “virtual vortex lines” are stretched by the turbulent flow, which

amplifies their strength, but the ensemble average leads to large cancellations (representing

viscous dissipation of vorticity). Later we shall present some further ideas and speculations on

this subject. However, the whole issue is presently wide open!
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