
(D) Conservation of Circulations in Turbulent Flow

We have emphasized the importance of developing a better understanding of the dynamical &

statistical origin of the positivity of vortex-stretching rate

h!̄>
` S`!̄`i > 0.

For the fine-grained vorticity (` ! 0), this is important in Taylor’s proposed mechanism for

production of energy dissipation h⌫|!|2i. For ` in the inertial-range, we have seen that the flux

of energy to small-scales is proportional to the stretching rate:

h⇧`i / `2h!̄>
` S`!̄`i,

to a first approximation, local in space and in scale. A deeper understanding of the vortex-

stretching process might help us to better predict and control turbulent flow.

As we reviewed at the beginning of this chapter, most arguments for positivity of vortex-

stretching use — in some form or another — the conservation of circulations. Here we give,

just as one instance, the following explanation of T&L:

“Vorticity amplification is a result of the kinematics of turbulence. As an exam-

ple, take a situation in which the principlal axes of the instantaneous strain rate

are aligned with the coordinate system, so that Sij has only diagonal compo-

nents (S
11

, S
22

,and S
33

). Let us assume for simplicity that S
22

= S
33

, so that,

by virtue of continuity, S
11

= �2S
22

. The term !i!jSij becomes, if we also

assume that !2

2

= !2

3

,

!2

1

S
11

+ !2

22

S
22

+ !2

3

S
33

= S
11

(!2

1

� !2

2

)

If S
11

> 0, !2

1

is amplified (see Figure 3.5), but !2

2

and !2

3

are attenuated

because S
22

and S
33

are negative. Thus, !2

1

� !2

2

tends to become positive if

S
11

is positive. Again, if S
11

< 0, !2

1

decreases, but !2

2

and !2

3

increase, so that

!2

1

� !2

2

< 0, making the stretching term positive again.”
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— H. Tennekes & J. L. Lumley, A First Course in Turbulence, (MIT

press, Cambridge, MA, 1972), Section 3.3. p.92

This argument assumes that, as the vortex lengthens along a particular direction — the 1-

direction, say — the corresponding component !
1

of vorticity increases. This result depends,

however, on the conservation of circulations. T&L discuss this explicitly in their explanation

of their Fig. 3.5, which illustrates vortex-stretching in a wind-tunnel contraction:

To explain this figure, T&L wrote:

“The change of vorticity by vortex stretching is a consequence of the conser-

vation of angular momentum. The angular momentum of a material volume

element would remain constant if viscous e↵ects were absent; if the fluid ele-

ment is stretched so that its cross-sectional area and moment of inertial become

smaller, the component of the angular velocity in the direction of the stretching

must increase in order to conserve angular momentum.”
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- H. Tennekes & J. L. Lumley, A First Course in Turbulence, (MIT press,

Cambridge, MA, 1972), Section 3.3. pp. 83-84

As usual, T&L use the term “conservation of angular momentum” as a more elementary substi-

tute for the more proper term “conservation of circulations.” The argument is essentially that

of G. I. Taylor (1937, 1938) that we discussed earlier. If we let !
1

, !0
1

represent the vorticity

magnitude in the 1-direction before and after stretching, respectively, and likewise A
1

, A0
1

the

cross-sectional area of the vortex tube before and after, conservation of circulations implies that

!
1

A
1

= !0
1

A0
1

.

If we let `
1

, `0
1

represent the length of the tube before and after stretching, then incompressibility

implies

`
1

A
1

= `0
1

A0
1

.

It therefore follows that !
1

/`
1

= !0
1

/`0
1

or, equivalently,

!0
1

/!
1

= `0
1

/`
1

.

Thus, the vorticity magnitude grows in direct propotion to line length.

Large-Scale Circulation Balance

The arguments of Taylor, Tennekes & Lumley, etc. assume that circulations will be conserved

“if viscous e↵ects were absent.” The negligibility of the viscous terms may indeed be expected in

the large scales, with ` fixed as ⌫ ! 0. Thus, let us consider in detail the balance of circulations

in the scales > `.

We have seen that the momentum balance in the large scales takes the form

D`tū` = �rp̄` + f s` � ⌫r⇥ !̄` + f̄B`

= �rp⇤` + fv` � ⌫r⇥ !̄` + f̄B` (32)

with p⇤` = p̄` + k`. Let us now consider the Lagrangian circulation
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K`(t) ⌘
I

C
`

(t)
ū`(t) · dx (33)

where C`(t) is the loop C advected by the large-scale velocity ū` to time t. One can see from a

couple of points of view that this is the interesting quantity to consider. First, mathematically,

we note that

d

dt
K`(t) ⌘

I

C
`

(t)
[f s,v` � ⌫r⇥ !̄` + f̄B` ] · dx (34)

Secondly, from the physical point of view, K`(t) is the quantity that an experimentalist would

consider who wanted to test the validity of Kelvin’s Theorem by means of fluid measurements

at space resolution `. Measuring ū`(x, t) [e.g. by holographic PIV or other techniques], he

would then be able to construct C`(t) by solving

d
dtC`(✓i, t) = ū`(C`(✓i, t), t)

for a set of fluid markers ✓i 2 [0, 2⇡], i = 0, · · · , N � 1. Finally, he could take

K`(t) ⇠=
N�1X

i=0

ū`(C`(✓i, t), t) · [C`(✓i+1

, t)� C`(✓i, t)] (35)

or some other discrete approximation to the integral, converging in the limit N ! 1. By then

taking ⌫ as small as possible and measurements at finer resolution ` ! 0, the experimentalist

could attempt to verify the validity of conservation of circulations.

Now let us consider the order of magnitude of various terms in the circulation balance. First,

f s,v` = O( �u
2
(`)
` )

as we have seen before, so that

I

C
`

(t)
f s,v` (t) · dx = O(

�u2(`)

`
· L(C`(t))) (36)

where L(C) is the length of the rectifiable curve C. Note that C`(t) is rectifiable when the start-

ing loop C is so, since ū` is smooth and generates a flow of volume-preserving di↵eomorphisms,

which carries a rectifiable loop to another rectifiable loop.
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Now consider the viscous term

�⌫r⇥ !̄` = ⌫4ū` = O(⌫�u(`)
`2

) = O( �u
2
(`)
` Re�1

` )

with Re` ⌘ `�u(`)/⌫. Thus,

�⌫

I

C
`

(t)
(r⇥ !̄`) · dx = O(

�u2(`)

`
L(C`(t)) ·Re�1

` ) (37)

which is much smaller than the turbulent force term for Re` � 1. Thus, we have some theo-

retical support to the idea that the viscous term is negligible. In particular, it vanishes in the

limit as ⌫ ! 0 with ` fixed.

Now consider the contribution from the body force fB. To get the best estimate, it is helpful

to transform this term using Stokes Theorem:

I

C
`

(t)
f̄B` (t) · dx =

I

minimal surface spanning C
`

(t)
(r⇥ f̄B` ) · dA (38)

We have used the freedom in choosing the surface which spans the loop C`(t) to select the one

of minimal area. It follows from the work of

J. Douglas, “Solution of the problem of Plateau,” Trans. Ann. Math. Soc. 33

263-321(1931)

that such a minimal spanning surface S exists for any closed simple curve C not necessarily

even rectifiable. [For this work, Douglas won the first Fields Medal in 1936!] Thus,

I

C
`

(t)
f̄B` (t) · dx = O(||r⇥ f̄B` ||1A(S

min
` (t))) (39)

Note that r⇥ f̄B` = (r⇥ fB)` so that ||r⇥ f̄B` ||1  ||r⇥ fB||1. Let us assume further that

fB(x, t) =

Z

|k|< 2⇡
L

f̂B(k, t)eik·x (40)

so that

||r⇥ fB||L1  2⇡

L
||f̂B||L1 = O(

1

L
) (41)
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for some large L of the order of the integral length. Thus, we see that ||r⇥ f̄B` ||1 is bounded,

independent of `, and quite small.

On the contrary, the term

�`(C, t) ⌘ �
I

C
`

(t)
fv,B` (t) · dx = O(

�u2(`)

`
L(C`(t))) (42)

may diverge in the limit as ` ! 0! This term represents the torque around the loop C`(t)

imposed by the subscale force f s` [or fv` ]. For example, in K41 theory,

�u(`) ⇠ ("`)1/3 =) �u2
(`)
` ⇠ (")2/3`�1/3 ! 1, as ` ! 0

More generally, if u has Hölder exponent h

�u(`) ⇠ `h =) �u2
(`)
` ⇠ (const.)`2h�1

which only needs to vanish if h > 1

2

. This seems to have been first observed by

G. L. Eyink, “Turbulent cascade of circulations,” C. R. Physique, 7 449-455(2006)

Since there seem to be many points in a turbulent flow with h < 1/2 (in particular, the most-

probable value h⇤ ⇠= 1/3),we see that f s` diverges as ` ! 0 for a large number of points!

Furthermore, it is believed that a loop C(t) advected by such a rough velocity field becomes

fractal with (Hausdor↵) dimension D > 1. For example, see

F. C. G. A. Nicolleau & A. Elmaihy, “Study of the development of three-dimensional

sets of fluid particles and iso-concentration fields using kinematic simulations,” J.

Fluid Mech. 517 229-249 (2004)

and many references therein. Note that

N`(C(t)) ⇠= L(C
`

(t))
`

where N`(C(t)) is the number of balls of radius ` required to cover C(t). thus,

N`(C(t)) ⇠ (L0
` )D, as ` ! 0

and
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L(C`(t)) ⇠ `(L0
` )D ⇠ `1�D, as ` ! 0

This also diverges as ` ! 0 since a fractal curve with D > 1 is non-rectifiable and has infinite

length. Note, however, that S
min

` (t) has finite area, so that A(S
min

` (t)) is constant for ` ⌧ L
0

.

We thus see that the dominant term in the circulation balance is

�`(C, t) = �
I

C
`

(t)
fv,B` (t) · dx = O(�u2(`)(

L
0

`
)D) (43)

as ` ! 0, which leads to the distinct possibility that �`(C, t) diverges in the limit. Of course, the

RHS above is just a big-O bound or upper bound. There is the possibility of large cancellations

in the integral over C`(t), which could prevent divergence or even — in principle — allow

�`(C, t) to vanish in the limit ` ! 0. To address this issue, we consider numerical results from

S. Chen et al., “Is the Kelvin Theorem Valid for High Reynolds Number Turbulence?” PRL

97: 144505 (2006):

(a) PDF of the circulation flux for loops with radius R = 64 and for cuto↵ wave

numbers k
c

= ⇡/` with ` < R.

(b) The rms value of the circulation flux as a function of k
c

for various loop sizes R.

The inset plots the plateau rms value versus R.

Thus, we see that

�`(C, t) 9 0 as ` ! 0!

The e↵ects of the subscale force are persistent as ` ! 0. There is no conservation of circulations

for fixed ` as ⌫ ! 0, although the e↵ects of viscosity indeed become negligible in that limit.
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Even as ` ! 0 after having taken ⌫ ! 0 first, the e↵ects of the subscale force term does not

disappear! This casts doubt on the arguments of Taylor, Tennekes & Lumley, and others that

appeal to conservation of circulations in explaining turbulent dynamics.

Similar results hold for the fine-grained circulation balance:

d

dt

I

C(t)
u(t) · dx =

I

C(t)
[�⌫r⇥ ! + fB] · dx (44)

There is no subscale force, but now the viscous force fvis⌫ = �⌫r ⇥ ! is large! This may be

estimated as

fvis

⌫ = O(⌫ �u(⌘
h

)

⌘2
h

) = O(⌫u0
L2 (

⌘
h

L )h�2) = O(⌫u0
L Re

2�h

1+h )

since ⌘h/L ⇠ (Re)�1/(1+h) in the multifractal phenomenology. Then

fvis

⌫ = O(
u2
0
L Re

1�2h
1+h )

at a point with Hölder exponent h. This diverges as Re ! 1 unless h > 1

2

!!

We see thus also that the fine-grained circulations will not be conserved in a turbulent flow,

even in the limit as ⌫ ! 0 (at least not in the conventional sense.) This was appreciated, to

some extent, by G. I. Taylor. For example, he wrote

“when !2 has increased to some value which depends on viscosity, it is no longer

possible to neglect the e↵ects of viscosity in the equation for the convervation

of circulation.”

- G. I. Taylor & A. E. Green (1937)

In a laminar flow, these e↵ects will became negligible in the limit as ⌫ ! 0, but in a turbulent

flow they persist even in the inviscid limit.
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The conclusion is that there is no length-scale in a turbulent flow at which circulations are

conserved, for individual loops. In the inertial-range, the circulations are not conserved because

of the subscale force terms fv,s` . In the dissipation range, the circulations are not conserved

because of the viscous force fvis⌫ . At every length-scale, the circulations must be expected to

change substantially in time and not to be conserved, as has often been assumed. This casts

doubt on the standard arguments of Taylor, Tennekes & Lumley, etc. for growth of !2(t), for

positivity of !iSij!j , etc. which depend on conservation of circulations. Is there any way to

see how these arguments might be somehow valid?

Recent fundamental progress on this question has come from an important mathematical result:

P. Constantin & G. Iyer, “A stochastic Lagrangian representation of the three-

dimensional incompressible Navier-Stokes equations,” Commun. Pure Appl. Math.

Vol. LXI, 03300345 (2008)

These authors have shown that there is a beautiful generalization of the Kelvin Theorem on

conservation of circulations which applies to the incompressible Navier-Stokes equation. They

show that circulations are conserved even for ⌫ > 0, not deterministically but in a precise

stochastic sense! To state their result, one must consider an ensemble of stochastic Lagrangian

flows

ex(⌧ |a, t), generated by SDE’s

dex = u(ex, ⌧)d⌧ +
p
2⌫dfW(⌧), ex(t) = a (45)

where fW(⌧) is a d-dimensional vector Brownian motion. For a given velocity field u(x, t) in

spacetime, this stochastic equation may be solved both forward and backward in time. Suppose

that we consider a specific closed, rectifiable loop C at time t and generate the stochastic

Lagrangian flows backward in time. Define the ensemble of loops generated by advecting this

fixed loop C backward in time by

eC(⌧) = ex(C, ⌧), ⌧ < t. (46)
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The figure below represents this infinite ensemble of loops with three typical samples:STOCHASTIC FLUX FREEZING AND MAGNETIC DYNAMO PHYSICAL REVIEW E 83, 056405 (2011)

start

transport

average

FIG. 3. (Color) Illustration of the stochastic Lundquist formula.
Three stochastic Lagrangian trajectories running backward in time
from a common point are shown in red, green, and blue. Starting
field vectors, represented by correspondingly colored arrows, are
transported along the trajectories, stretched, and rotated to the
common final point. These are then averaged to give the resultant
magnetic field at that point, indicated by the black arrow.

three stochastic trajectories generated numerically from the
turbulence database together with the starting magnetic field
vectors B0, indicated by arrows at the starting locations ã(t0).
The next step is to transport each of the field vectors in
the usual “frozen-in” fashion along the stochastic Lagrangian
trajectories to the final space-time point (x,t). The result is an
ensemble of field vectors B̃ at that point, stretched and rotated
by the flow. These are illustrated in Fig. 3 (middle) by the
collection of three arrows at (x,t), obtained by transporting
the three initial vectors. In the usual deterministic Lundquist
formula, there would be just one trajectory and one vector B̃
at the final point, which would give the desired magnetic field.
Now, however, as the final step, one must average over the
ensemble of random vectors B̃ in order to obtain the resultant
magnetic field B(x,t). This is illustrated by the black arrow
in Fig. 3 (bottom). In contrast to the previous transport step,
which preserved line topology (in each individual realization),
the final averaging step resistively “glues” the transported lines
together and changes the magnetic field-line topology.

There is an elegant reformulation of the stochastic
Lundquist formula that must be mentioned here, both because
of its conceptual simplicity and also because of its potentially
greater generality (see next section). Consider any smooth,
oriented surface S at final time t. Then, the formula (32)
may integrated in x over the surface S, with respect to
the vector area element dA(x) = dx × dx, and the ensemble
average and surface integration interchanged on the right-hand
side. Because the expression under the overbar is the one
that appears in the usual Lundquist formula, the standard

FIG. 4. (Color) Illustration of the stochastic Alfvén theorem.
Shown are three members (red, green, and blue) of the infinite
ensemble of loops obtained by stochastic advection of a loop C

(black) at time t backward in time to t0. The average of the magnetic
flux through the ensemble of loops is equal to the magnetic flux
through C.

multivariable calculus manipulations convert this into a surface
integral over ã(S,t), with the surface S randomly advected
backward in time to the initial time t0. As before, ã(·,t) =
x̃−1(·,t) is the “back-to-label map” for the stochastic forward
flow. The result is the following stochastic Alfvén theorem:

∫

S

B(x,t)·dA(x) =
∫

ã(S,t)
B0(a)·dA(a), t > t0. (33)

This result generalizes a previous theorem [45] to compressible
plasmas. Equation (33) expresses the conservation of magnetic
flux on average, as illustrated in Fig. 4. An initial loop C,
boundary of the surface S, is shown there in black. This is
stochastically advected backward in time to give an infinite
ensemble of loops at the initial time t0. These are represented
by the three colored loops. The ensemble average of the
magnetic flux through the collection of loops at the initial
time t0 is equal to the magnetic flux through the loop C at the
final time t.

The stochastic Alfvén theorem is an example of what
is called a “martingale property” in probability theory. The
magnetic flux through each advected loop at the earlier time
t0 is unequal to the magnetic flux through C at time t.
Nevertheless, the mean flux remains the same. Note that this
result implies an irreversibility or an “arrow of time” since
it only holds for backward stochastic advection of loops.
Backward-in-time is the causal direction, since the magnetic
flux at the present must be obtained as an average of past values
and not of future values. If we assumed a “forward martingale”
property, then we would obtain instead the magnetic induction
equation (26) with a negative resistivity term −λ△B. Note,
in fact, that the stochastic Alfvén theorem (backward in time)
is mathematically equivalent to the usual resistive induction
equation (25) or (26) [45].

B. High-Reynolds-number limit

We now consider the limit of large kinematic and magnetic
Reynolds numbers. For simplicity, we shall assume that Prm =
ν/λ remains fixed as ν,λ → 0.

Consider the Feynman-Kac formula (27). By a naive
application of the Laplace method, one would assume that
the path integral collapses to a single deterministic trajectory
as λ → 0, with rms fluctuations of order (λt)1/2 for small
but nonzero λ. This is precisely the heuristic estimate of
line slippage made by Kulsrud [2], which was quoted in the
Introduction. This estimate is rigorously correct if the velocity

056405-9

FIGURE. Shown are three members (red, green, and blue) of the infinite ensemble of loops

obtained by stochastic advection of a loop C (black) at time t backward in time to ⌧ < t.

Constantin & Iyer (2008) have proved the following beautiful result: the spacetime velocity

field u(x, t) is a smooth solution of the incompressible Navier-Stokes equation if and only if

I

C
dx · u(x, t) =

I

eC(⌧)
dx · u(x, ⌧) (47)

for all rectifiable loops C and times ⌧ < t, where the overline (· · ·) denotes average over the

ensemble of Brownian motions. Thus, circulations are statistically conserved backward in time3!

Note that this result implies an “arrow of time.” The statistical conservation law would hold

forward in time instead for solutions of the negative-viscosity Navier-Stokes equation (which is

well-posed only solved backward in time for given final conditions).

Formally, the stochastic Kelvin Theorem for incompressible Navier-Stokes equations reduces

to the standard Kelvin Theorem for incompressible Euler equations in the limit as ⌫ ! 0. This

is rigorously true if the Euler solution remains smooth in the limit. We shall return to the

question how this conservation law behaves in high-Reynolds-number turbulent flow when we

study turbulent Lagrangian dynamics in the next chapter.

3In probabilistic terminology, the stochastic process of circulations is a backward martingale.
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