
(B) Dynamics of the Coarse-Grained Vorticity

See T & L, Section 3.3

Since our interest is mainly in inertial-range turbulence dynamics, we shall consider first the

equations of the coarse-grained vorticity. However, it pays to consider a somewhat more general

problem of the dynamics of coarse-grained velocity-gradients. Taking as the starting point the

equation

@tū` + (ū` ·r)ū` = f s` �rp̄` + ⌫4ū` + f̄`

for the coarse-grained velocity, one easily derives, by taking the gradient r with respect to x,

that

DtA` = �A
2

` +H` + Fs
` + ⌫4A` + F`

where

Aij ⌘
@ui
@xj

= velocity-gradient tensor

Hij =
@2p

@xi@xj
= pressure-tension

D`,t = @t + ū` ·rx = material derivative of coarse-grained velocity

(F s
` )ij =

@f s
`i

@xj
= subscale force-gradient

Fij =
@fi
@xj

= external force-gradient (7)

A further simplification can be made if one uses the trace-free condition, tr(A`) = 0, which

implies that

�tr(A
2

` ) + tr(H`) + tr(Fs
`) + tr(F`) = 0

Multiplying by 1/d and subtracting from the previous equation gives

DtA` = �
✓
A

2

` �
1

d
tr(A

2

` )I

◆
+ H̊` + F̊s

` + ⌫4A` + F̊` (8)

where the notation M̊ for a d ⇥ d square matrix M denotes in general the trace-free or

deviatoric part of M, i.e.
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M̊ = M� 1

dtr(M)I

There is a considerable history of phenomenological closure modelling of equation (8), going

back to the seminal work of

P. Vieillefosse, “Local interaction between vorticity and shear in a perfect incom-

pressible flow,” J. Physique (Paris) 43 837-842(1982); “Internal motion of a small

element of fluid in an inviscid flow,” Physica A 125 150-162(1984)

who introduced the simplest approximation of setting ˚̄H` = F̊s
` = ⌫4A` =

˚̄F` = 0, the so-called

Vieillefosse model or restricted Euler model

DtA` = �(A
2

` � 1

dtr(A
2

` )I).

This model has been much studied subsequently, notably by

B. J. Cantwell, “Exact solution of a restricted Euler equation for the velocity gra-

dient,” Phys. Fluids A A 782-793(1992)

who obtained an exact solution in terms of elliptic functions. Many further refinements of this

approach, with models for ⌫4A`, H̊` and (for ` 6= 0) F̊s
` have been proposed. See

C. Meneveau, “Lagrangian dynamics and models of the velocity gradient tensor in

turbulent flows,” Annu. Rev. Fluid Mech. 43 219-245 (2011)

for recent results and a rather complete bibliography of the literature. One of the interesting

results of statistical models of this type is that they naturally predict that

h!̄>
` S`!̄`i > 0

and more refined statistical alignment trends of turbulent velocity gradients, such as the pref-

erential alignment of !̄` with the intermediate strain direction, as observed in DNS by

W. Ashurst, A. Kerstein, R. Kerr and C. Gibson, “Alignment of vorticity and scalar

gradient with strain rate in simulated Navier-Stokes turbulence,” Phys. Fluids 30

2343-2353(1987)
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Thus it seems that we have an explanation of the fundamental observation that h!̄>
` S`!̄`i > 0!

The di�culty is that all of these models make fairly crude and hand-waving approximations

of the unclosed terms, in particular the pressure-Hessian H̊`. While the models seem to make

remarkably good predictions for the statistics of A`, it is not clear that the modelling approxi-

mations yield accurate enough results for H̊` itself (and other unclosed terms). The good news

is that these models suggest that much of the observed features of A` can be understood from

the local self-stretching dynamics contained in the closed term �A
2

` .

The equation for the velocity-gradient can be separated into equations for the symmetric part

DtS` = �[S
2

` +⌦
2

` � 1

dtr(S
2

` +⌦
2

` )] + H̊` +
1

2

(F̊s
` + F̊sT

` ) + 1

2

(F` + F`
>
) + ⌫4S`.

and anti-symmetric part

Dt⌦` = �(S`⌦` +⌦`S`) +
1

2

(F̊s
` � F̊sT

` ) + 1

2

(F` � F`
>
) + ⌫4⌦`.

Although these equations are superficially similar, there are profound di↵erences. For example,

note that the (nasty) pressure-Hessian term is absent from the equation for ⌦`. In fact, the

latter equation is mathematically equivalent to the equation for ū`! It is more commonly written

in terms of the filtered vorticity vector !̄`, using

⌦ij = �1

2

✏ijk!k, !i = �✏ijk⌦jk,

which gives

Dt!̄` = S`!̄` +r⇥ (f s` + f̄`) + ⌫4!̄`,

or

(@t + ū` ·r)!̄` = (!̄` ·r)ū` +r⇥ (f s` + f̄`) + ⌫4!̄` (using ⌦`!̄` = 0!) (9)

or

@t!̄` = r⇥ (ū` ⇥ !̄` + f s` + f̄` � ⌫r⇥ !̄`) (using vector calculus identities) (10)

14



An important feature of this equation is that it has the general conservation form

@t(!̄`)i + @j(⌃`)ji = 0 (11)

where (⌃`)ji = space flux of the ith-component of vorticity in the jth direction

and is an anti-symmetric matric

(⌃`)ij = ū`i!̄`j| {z }
advection of vorticity

� ū`j!̄`i| {z }
stretching of vorticity

+ ⌫(
@!̄`i

@xj
�

@!̄`j

@xi
)

| {z }
viscous di↵usion of vorticity

+ ✏ijk( f s`|{z}
transport of vorticity by turbulent subscale force

+ f̄`|{z}
transport of vorticity by external force

)k (12)

Note that we can replace ✏ijkf s`k with the contribution from the turbulent vortex force

✏ijkfv`k = ⌧`(ui,!j)� ⌧`(uj ,!i)

since the di↵erence, ✏ijk(f s
`k � fv

`k) = �✏ijk@kk`, does not contribute to the divergence @j(⌃`)ji.

Thus, we see that the turbulent term comes from subscale vorticity advection and stretching.

Although (11) has the “form” of a conservation law, it is not a rather unconventional conser-

vation law since, generally,
R
V !d3x = 0!

Indeed, using @j(xi!j) = �ij!j + xi(@j!j)| {z }
=0

= !i, one can see that

R
V !d3x =

R
@V x(! · n̂)dA = 0,

if ! · n̂ = 0 at the surface @V . This will be true if ! is a compactly supported vorticity

distribution away from any boundaries. It will also be true in the presence of boundaries,

since stick boundary conditions on the velocity (u = 0) imply that ! · n̂ = 0, i.e. the normal

component of ! at the boundary vanishes. Thus, the “conserved” quantity
R
V !d3x is trivial!
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A nontrivial quantity is the enstrophy ⌦ = 1

2

R
V |!|2d3x. The local balance equation for large-

scale enstrophy can be obtained from (10), as:

@t(
1

2
|!̄`|2) +r · [

large-scale advection
z }| {
1

2
|!̄`|2ū` +

turbulent di↵usionz }| {
!̄` ⇥ f s` �

viscous di↵usionz }| {
⌫r(

1

2
|!̄`|2) ]

= !̄>
` S`!̄` ; production of large-scale enstrophy by vortex-stretching

+ (r⇥ !̄`) · f s` ; flux of large-scale enstrophy to the small-scales

� ⌫|r!̄`|2 ; viscous dissipation of large-scale enstrophy

+ !̄` · (r⇥ f̄`) ; production of large-scale enstrophy by external force (13)

This does not have the conservation form — even formally — in the limit as ⌫ ! 0 and ` ! 0,

because of the production by vortex-stretching. This balance equation can be written in other,

equivalent forms. For example, replacing f s` ! fv` gives

@t(
1

2
|!̄`|2) + @k[

1

2
|!̄`|2ū`k + !̄`i(⌧`(!i, uk)� ⌧`(!k, ui))� ⌫@k(

1

2
|!̄`|2)]

= !̄>
` S`!̄` + !̄`j,k(⌧`(!j , uk)� ⌧`(!k, uj))� ⌫|r!̄`|2 (14)

Using the relations

@j⌧`(!j , ui) = ⌧`(!j , ui,j) = ⌧`(!j , Sij)

this can also be written as

@t(
1

2
|!̄`|2) + @k[

1

2
|!̄`|2ū`k + !̄`i⌧`(!i, uk)� ⌫@k(

1

2
|!̄`|2)]

= !̄>
` S`!̄` + !̄`i⌧`(!j , Sij) + !̄`i,j⌧`(!i, uj)� ⌫|r!̄`|2 (15)

This is the form considered by T & L, eq. (3.3.36).

A corresponding equation can be written for the small-scale enstrophy ⇣` =
1

2

⌧`(!i,!i) which

takes the form
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@t⇣`+

@k
hlarge-scale advection

z }| {
⇣`ū`k +

small-scale advectionz }| {
1

2
⌧`(!i,!i, uk) +

turbulent di↵usionz }| {
!̄`i⌧`(!k, ui) �

viscous di↵usionz }| {
⌫@k⇣`

i

= ⌧`(Sij ,!i,!j) + ⌧`(!i,!j)Sij + 2⌧`(!i, Sij)!̄j| {z }
vortex stretching involving small-scales

� !̄`i,k(⌧`(!i, uk)� ⌧`(!k, ui))| {z }
flux of enstrophy from large-scales

� ⌫⌧`(!i,k,!i,k)| {z }
viscous destruction of enstrophy

(16)

The term we called “turbulent di↵usion” of the small-scale enstrophy should really be written

!̄`i⌧`(!k, ui) = !̄`i⌧`(!i, uk)| {z }
small-scale advection contribution

+ !̄`i(⌧`(!k, ui)� ⌧`(!i, uk))| {z }
turbulent di↵usion proper

(17)

Where the vortex-force term ⌧`(ui,!j)� ⌧`(uj ,!i) appears above, we could have used also the

subscale force term ✏ijkf s
`k. Other forms of the relation may also be written. For example, again

using the relations

@j⌧`(!j , ui) = ⌧`(!j , ui,j) = ⌧`(!j , Sij),

the small-scale enstrophy balance may be written as

@t⇣` + @k[⇣`ū`,k +
1

2
⌧`(!i,!i, uk)� ⌫@k⇣`]

= ⌧`(Sij ,!i,!j) + ⌧`(!i,!j)S`i,j + ⌧`(!i, Sij)!̄`j

�!̄`i,k⌧`(!i, uk)� ⌫⌧`(!i,k,!i,k) (18)

This is the version presented in T & L , eq.(3.3.38). Note that the production of enstrophy in

the small-scales by flux from the large-scales

�!̄`i,j(⌧`(!i, uj)� ⌧`(!j , ui))

[or the similar term that appears in the T & L versions] is exactly equal and opposite to the

enstrophy flux out of the large-scales in (13). This is very similar to what occurred in the energy

balances. However, we shall see that the enstrophy dynamics is NOT dominated by nonlinear

cascade!
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