Il Elective OLarge-Scale® Equations

and the Turbulent Energy Cascade

(A) Coarse-Graining/Filtering/Mollifying

We have seen that the non-vanishing of turbulent energy dissipation aRe ! " requires
that velocity-gradients |! u| ! " in this limit. But, in that case, the usual formulation

of the Ruid equations as PDEQs with smooth solutions no longer makes sense! To obtain a
dynamical description, we mustregularize those equations. We shall use an approach based on

coarse-graining/pltering/mollifying with a smooth kernel G that satisbes

G(r) # O
G(r) ! Orapidly for |r|!"
drG() = 1

It is also understood that G is centered atr = O:
!
d r G(r) = 0,

and that  d|r|?G(r) $ 1. Other specibc requirements shall be introduced as needed. Set

Gi(r) %! 9G(ri)

so that all of the above properties hold, except that now d?r|r|2G;(r) $ !2.

Using this kernel, now debPne a coarse-grained velocigt length-scale! by
!
w(x)=  dr G (r)v(x +r)

This represents the average velocity of a Ruid OparcelO of sizeat position x. It can also

be called a low-pass blteredvelocity, containing only length-scales> !, or a molliped (i.e.

smoothed) velocity. The corresponding_small-scalé high-pass Pltered velocity is given by
|

Vi(X) % v(x) & @ (x) = &' d G (r)"v(r;x) (1)



where

"v(r;x)= v(x+r)&v(x)

is the velocity-increment across a separation vector at point x

Comments:

# This coarse-graining is similar to that used to derive hydrodynamics from MD. However,

vl
vl

inthat case! ' L, = gradient length S 1 whereas here we have in mind ) L,
# In principle, only coarse-grained Peldsg, (x) are experimentally measurable. Every ex-
periment has some spatial resolution!, such that only averaged properties for length-scales

# | are obtained. The Pne-grained/barebeld v(x) are unobservableobjects corresponding to

a mathematical idealization

v((x)! v(x)as!! O

This idealization is physically unachievable, in the strictest sense, since the hydrodynamic
equations are not valid for! $ $, the mean-free path. In general, @ (x) is a more physical
object and v(x) is an OidealO object which is useful if; ) !) $.

# In physics, the coarse-grained beld is similar to an Oelective block-spinthat appears

in the method of real-space renormalization group (RG). It removes the ultraviolet divergence

associated with blow-up of velocity gradients|! v|[!" as%! 0, since necessarily
1!
Lg(x)= &% dir (! G)i(r) v(x+r)

remains Pnite. This OregularizationO introduces an arbitrary length-scal§ on which no ob-
jective physical fact can depend. Note that coarse-graining is a purely passive operationN
Oremoving oneOs spectaclesONwhich changes no physical process.

The method of bltering is also employed as part of the large-eddy simulatioffLES) mod-

elling technique for turbulent Bow. Here a seminal work is:

M. Germano, OTurbulence: the bltering approach,0 J. Fluid Mech238, 325D336 (1992).






(B) Elective Large-Scale Equations

See also T&L , Section 2.1. Starting with the incompressible Navier-Stokes equations
&v+(va )v=8&! p+ % v+f, | av=0

for the bare/Pne-grained velocity beld, we can derive an equation fow,. Note that

(¢ f)="4
i.e. space-derivatives commute with Pltering. Thus,
&y + ! é.(W)!:&!ﬂ‘l'%W!'Fﬂ_,! ag =0

Debne the turbulent (or Reynolds) stress tensor

Iy = (VV)! & v\ v

so that

&'ﬂg*‘(ﬂgé! )W!+! a, = &! n+%'ﬂ!+q

This is the Oelective equationO for the large-scale velocity. Note that it is not closed.e. !
is not given (in a simple way) as a function ofyg,.

We now wish to estimate the viscous term% w, as small, i.e. to show that it can be
neglected relative to the other terms when%is small or when! is large. To measure OsizeO, we

need the notion of a normof a function f : R4! RY ie. a mappingf +& , f, such that:

() ,f,# Oand,f, =0il f=0

@iy ,"f, =] |a,f, forany real scalar' .

@iy ,f+g9,-, f, +,0, (triangle inequality)



Some common norms are the., norms for p# 1

1
fp% Vol"x If ()P
and forp=+"

B4 % sup|f(x)]
x$V

Note that these satisfy

fop-, f,p for p#p

and

.2 = lim [ f, 5.
# pY%o# P

Some of these have simple meaning

—
i
]

|f|/ where .g/ = 1 e g(x)
% Vv

1f12/ = fims  when.f/ = 0

| [max

=
FH*
|

For more details, see A. N. Kolmogorov & S. U. Fomin,Introductory Real Analysis, Dover, 1975

Now we estimate

!
0

% v (x) = I—A) d?r (* G)i(r)v(x + r) (integration by parts!)

2
Thent
!
%

BB,y - 3 dir |(* G)i(r)|& v(a+ r), p (by triangle inequality)

%
= !—z(const.), V,p

n

using, v(&+ r),p = , Vv, p and assuming that d( |* G(")| < +"

1The OcontinuousO version of the triangle inequality that we use below and repeatedly in these notes is usually

! !
called the Minkowski integral inequality . It states that ! = d%rF (r, 3! p " d ' F(r, 3! p. See G. H. Hardy, J.
E. Littlewood, and G. Pelya, OlnequalitiesO (Cambridge University Press, 1952), Theorem 202, or E. Stein,

OSingular Integrals and Dilerentiability Properties of FunctionsO (Princeton University Press, 1970), ©A.1.



If ,v,p stays Pnite in the limit that %! O, then

lim , % w,, =0l
"%0

Note that energy is given by

E() = 5.v(0).3

SincedE/dt = &%! v,3- 0,,v(t), 2 can only decrease in time. Thus, v(t),2 -, V(to),2 =

initial energy . Thus for decaying turbulenceand p = 2, it is true that , v(t), » must stay Pnite

in the limit as %! 0. Experimental evidence is that, v(t), , stays Pnite for dl p# 1.

Heuristically, we may say that

%U

%o ( 5

We shall see later that

(@ @ o (! é!!(!ﬂ(UTZ

Thus, the viscous term is smaller by a factorg; = =

One of the important terms in the large-scale equation is from the turbulent (or subscale) force

S=&! &,

This can be thought of as an elective Obody-forceO on the large-scales produced by the elimi-

nated subscales. Note that

Prop: The stress ( 1) = (Vivj)1 & @ %; is a symmetric, nonnegative-debnite matrix at

each space-time point &, t).

Proof: Omit ! for simplicity of notation. Clearly,

)i = Vivi &gy

6



is symmetric in i,j . Note also that

)i dr Gi(Vi(x + r)vi (x + 1) & & ()8 (X)

dr Gy (NIvi(x + 1) & )]V} (X + 1) & g (X)]

so that ' ,

& & o & 5

Gagli = drGi(r), glvix+r)&gx) #0

j j
In fact, ); is just the covariance of the random variablev;(x + r) with r distributed according
to the Oprobability densityOG, (r). Thus, ); is the velocity covariance of the Buid parcel of size
I at spacetime point (x, t).

This result is due to Vreman, Geurts & Kuerten, ORealizability conditions for the turbulent

stress tensor in Large Eddy Simulation,O J. Fluid Mech.278, 351-362, 1994.

(C) Energy Balance

See T & L, Sections 3, 1-2; Frisch, Section 2.4.
We have seen that the viscous termP4 w, is negligible is the large-scale elective equation.
Since, i (t),3 -, v(t),3 by convexity, the kinetic energy decays even with Ospectacles o!O!

How? To analyze this question, we must consider energy balance in detail.

Large-Scale Energy Balance

From the equation for v it is easy to derive an evolution equation for the large-scale energy

(per unit mass) |

@)= 5 dx loi(x 0P

and its density

@(x,0= S1oi(x, 0P

One Pnds by straightforward calculus that



&a+! d@+p)o+! 40 &% g]=! o !, &N 0|+ v &

with
9 = @+p)o+! A0&% @
= space transport (Bux) of large-scale energy
(
i (& + @)@ = transport by large-scale advection

(or in detail: ) i &% @ viscous dilusion of large-scale energy

I aw turbulent dilusion of large-scale energy

@, = w &f, = power input from external force into large-scales (per mass)

= % w | = large-scale energy dissipation rate (per unit mass)
!

B (t) d?% #1(x, t) = total energy dissipation (per mass) in the large-scales

%! w(t),3

% . . .
- '—Zo(const.),v(t),g by Minkowski estimate of ! @ = &% ddr (! G)i(r)v(x + r)

& Oas%! 0!

We have assumed here that v (t), 3 stays bounded as%! O.

The important term in the large-scale balance is

" &! v !,

deformation work of the large-scale strain against the small-scale stress

"y > 0=0 large-scale sink; ", < 0=0 large-scale source

Alternative forms:

"!:&Q!I!!



with 8 = 3[(! @)+ (! @)T]= large-scale strain (by symmetry of ! ,); or
"= &! w0
with @, =1, & %tr(! 1)l = deviatoric/traceless part of the stress (by ! a@ =0); or

", = &% :0, (byboth together).
Where does the energy go? To the small scales! Debne

ki (X, 1)

1 L
étr (' 1) = small-scale kinetic energy (per mass)

1 —— 1 i .
= §(|V|2)! & é|\aJ! |2# 0 by positive-debniteness of stress

Note that & = }|@|? so that

1
g+ k = §(|V|2)!

and thus (since dixfdx) = d9xf (x))
! !
dx [& + k]

2
E(t) = total kinetic energy (per mass)

d% |v(x,t)]?

An evolution equation of the following form holds for k; :

&ki+! AF =& vl &+ Q

Recallthat” , = &! @, :!,. Also

* = o(]' v|?), &|! w|?] = viscous energy dissipation in the small-scales

so that # + *, = %' v|?), gives the total dissipation averaged over the region of radius around

X. Note that " | appears with opposite signsn the equations for @ and k; : it tends to act as a



sink for @ and a source fork,. Thus, it transfers energy from large-scales to small-scales. For

this reason, ", is often called (scale-to-scale) energy Rux

We now derive the equation fork;, following Germano (1992). In fact, we derive a more

general evolution equation for! ,. Starting with &Vv; = &(W&)V; & &p + %&vi + fi,

&ViVi = (&Vi)Vj + Vi(&V))
= &w(&Vi)Vj & (&p)Vj + K&vi)v; + Fivi +(i 1 |)
= &&VIVVk & &DY & &PV + p(&v; + & Vi)
+  %EVIV & 2% Vi&V; + TV + TV

Similarly,

&(Byg) = (&9)9 +@i(&Y9)
= [&(B&)% & &)ik & &p+ %6 o + H]g +(i 1 j)
= && (B9 ) & &Dikg +)jkal+ )ik (&) + )jk (&)
& &(pg) & & (pa) + (&9 + &)
+ %E(mY) & 2%&a &9 + (Fy + Fg)

Subtracting the two equations yields an equation for); = Vivj & ¥y .

To express the various terms that appear, we must introduce the generalized central moments

of Germano (usually called cumulants in probability theory, or connected correlation functions
in statistical physics). The nth-order generalized central moment) (f1,...,fn) is dePned as

follows:

g = )(fy)
fafo = ) (f1,f2)+ M3
fafofs = ) (f1,fo,f3)+ M) (f2,f3)+ ) (f1,f3)+ M) (fq,f2) + F4214

and, iteratively,
& P
fi...fn= ) (s Fiw)
Ispj=1  ° !

10



where the sum is over the seP of all partitions | = {i(ll), ceeh ifull)}, . ,{i(lp), . .,i%‘:))} of the set

{1,2,...,n} with P_1 nj = n. We thus see that

fi...fhn=)(f1,...,fn) +terms debned by lower-order cumulant functions

so that we may solve successively to obtain

)(f) = #©
)(f1,f2) = fif2& 8
)(F1.f2,f3) = fafaf3& M) (fo,f3) & 8) (f1,f2) & M) (f1,f2) & 14124
= fifof3& Mfof3 & f 13 & M3 1f 5 + 2141414
and etc.! Note: The Ogeneralized central moments{Xf1,...,f,) are the cumulants of the
random variablesf1(x + r),...,f,(x + r), distributed according to the density G,(r) onr.

The Pnal equation obtained for);j has the form

&)ij + &Jijk = &[Fk)Kk + )kYk]2 production of stress by large-scale straining

+

2)(p,Sj) 2 pressure-strain correlation

& 2%)Vik,Vjk) 2 viscous destruction of stress

+

[)(vi,fj)+ ) (vj,fi)] 2 production of stress by forcing

with vix = i(i:(, etc. and

Jik = )ij B+ ) (P Vi) + ) (P, V) ik + ) (Vi, Vi, Vi) & %3k
where

advective transport of stress

)il B
%3 k

viscous transport of stress
Taking % of the trace of the equation for); gives the equation fork, with
E! _ 1
I0 = ka+)(pvi)+ 5) (Vio Vi Vi)

11



Q = )(vi.fi)

Remark: There is a tempting analogy
TURBULENCE MOLECULAR DYNAMICS
g = %(|w!|2 large-scale kinetic energy 1 %(|v|2 kinetic energy

(k\ small-scale kinetic energy 1 u= (cpT internal energy

For this reason, ", = &% : !, is sometimes called subscale dissipatiofor Osubgrid-scale

dissipationO in LES). Note, however, that3(|v|? + u is conserved, while3(|@|? + (k. is NOT
and, in fact, has the same space integral as total kinetic energ%(lvlz! (For this reason, a
better correspondence isu for molecular dynamics andu# = @, + (k, for turbulence, so that
the total %( @ |2+ @ is conserved.) Furthermore, there is a big separation in scale between the
length L. of variation of v and the mean-free-path$,; of molecules, whose energies (kinetic
+ potential) constitute u. As we discuss in more detail later, this is_nottrue for &,k .

There are some important alternative forms for the energy balances that we now discuss.

Note that

! W!:!!=W!éf!s+! é('|éﬂ|)

Where f = &! & . Thus, we may rewrite the energy balance as
&a+ ! (s +9)o &% a]l=w &°& % w|’+ v &9,

Where w af? is the (negative) power input by the subscale forcef°. Note, however, that this
term is not Galilei invariant N an observer at rest and an observer moving with respect to a
turbulent Buid would disagree about the OdissipationO due to such a term!

Another form of the balance can be written using the turbulent vortex-force

ff=(v3#)&w3#, i =+Kk)(v,, k).
It is not hard to show using! &(w)= v 3 # &! (3|v[?) that
=&l k

12



so that

&W;"‘(‘ﬂ!é! )'ﬂng!v&! ﬁg"‘%'ﬂg"‘ﬂ.

with B, % @ + k, = Oturbulent enthalphyO. Then,

&e+! d(s+ Ao &% a]=v &) &% @|’+ @ &

Estimation of Energy Flux

We have seen that the viscous dissipation in large-scalé$! w,|? is negligible and that the
energy Rux

"= & v !,

must therefore be the main OsinkO term in the large-scale energy balance. We will now estimate

this term. Note that

dr (I G)i(r)v(x +r)

I @ (X)

&
Ly
&

B el I )

dir (1 G) i (NIv(x + r) & v(x)],

n

since dir! G(r)=0.

To get simple estimates, let us assume for the moment thaG is C* with compact support

in the unit ball, e.g. (
_) Nexp[&ﬁ] for |r|- 1

G(r) - )_
0 for otherr

where N = 0.8822 is a normalization factor for dimensiond = 3.

13



Smooth, Compactly-Supported Filter Kernel
s ‘ ‘ ‘ ‘ ‘

$"&#H-

G(r)

We shall remove this restriction later on!

Then, with [A[= | [a %
c_ . ]
! @ (X)[ - F-sup[*v(r;x)| with C=d°(]! G(()
o<

or

w0 = o),

with "v(!;Xx) %sup. |"v(r;x)|. Now we must develop similar estimates for the stres$ ;. For

this purpose, the following formula is crucial

! #l $# $
h(f.g)=  dUr Gi(n)"f()gr)&  dr G (r)"f (r) d?r Gy (r)"g(r)

or

n(f,g)=."f"g /1 &."f /,."g/,

where .4/, denotes average over with respect to G,(r) and "f (r;x) = f(x + r) & f (x), etc.

The above formula will turn out to be absolutely essential for much of our further analysis. It

14



is one of the most useful formulas in the course, which we shall use many times. Amazingly,
it was not discovered in this context until the 19900s [P. Constantin, et. alCommum. Math.
Phys., 165, 207 (1994); G. L. Eyink, J. Stat.Phys., 78, 335 (1995).]

It is easy to verify the formula by substituting the dePnitions of "f , "g and integrating.
Later on, we shall prove a more general formula for all generalized central moments. Applying

this formula to ); = )i(vi,Vvj), we get
1M ()] - dir Gi()I"v(rX) P+ dr Gi(n)]"v(r;x)|
# $ # $,
dir G (r) "v2(;x)+  dIr Gi(r) "v3(!;x)

= 2"v2(!;x),

with  dr G,(r)=1, or,
L(x) = O("v2(!;x)).

Putting the two estimates together gives

"1 Ol - (const.)m.

An estimate of this type was brst derived by Lars Onsager around 1945 and closely related
results were obtained by A. N. Kolomogorov in his famous papers in 1941, using probabilistic
assumptions. The estimate has some important implications that we now discuss.

If v is continuously dilerentiable at point x, then Taylor expansion inr gives

vix+r) = v(x)+(ra )v(xs)
=0 "v(r;x) = (ral )v(xs)
=0 "v(;x) - lasup|]! v(x)|= O(")
X
In that case,
n,3 |
" = Of Vl(')): O(1?)! 0Oas!! 0
%_
Thus, " is too small for! - */]! v|3 to account for a non-vanishing energy dissipation*!

More generally, suppose that

"v(l;x) (I

15



for some O<h < 1. Then,

"vi(1)

==)=0(* Has!! 0ifh> 13

"= 0(

This was brst pointed out by Onsager(1945, 1949). A Ominimal assumptionO is that

() ( (DY

which is the famous prediction of Kolmogorov & Obukhov(1941), Onsager(1945, 1949), and
Heisenberg & von Weizsacker(1948)

This scaling is often explained as the result of Odimensional analysisO, but it has a deeper
dynamic basis. We have already seen thaw cannot remain dilerentiable in the limit that

%! O, if the experiments are correct that
*= %[l v|’/! 0as%! O.

There is a more rebPned result. We say thatv is Helder continuousat point x with exponent

h,O<h< 1,if
I"v(r;x)|- Clr|™  (#

for all |r| <r o and some constantC. If it holds, then "v(!;x) = O(!)". We thus see that

(#) cannot hold with h > 1/ 3 for all x, as%!' O, if the experiments are correct that*! 0

in that limit (Onsager, 1949)

To make this argument a bit more convincing, we should consider the total RBux
!
ddX n |(X) %II !’
v
or, equivalently, the mean RBux over the Bow domain
!

1
Sl = — At (x).
=N 1(X)

16



Then
1 !
L") - = s BT )=

IVl v

and
"!!1_1 'I!vl’forr#l-

To get further estimates, we must recall some basic results for thé& p-norms, the

. . 1
Helder inequality: ,fg,1 - , f,p,0q =
" &

generalized Helder inequality ,’ fi,r - i i
i=1 [

For example, see Kolmogorov & Fomin(1975), or any good textbook on real analysis. Since

"= &g iy,
"!1I’_! ! w!13r1!!13r/2

To simplify notation, set p = 3r or r = p/3, with p# 3. We must bound the terms,! w, p,

11, pr2- Since |
v (x) = &% d (0 G)i(r)"v(r;x),

the triangle inequality gives
I

1!
Lo pe Todir | G V().
Now, let us assume that for some ,, 0<- ;< 1,

(#

V() p- Clr[*

for |r] - ro and some constantC > 0. Then,
!

= A (RN

= C1%'! (substitute ( = 1)

with C'= C dd( |' G(()|&[|?, which is assumed to be bnite. Notice that we have nohad to

assume thatG is compactly supported, but only that it decays rapidly enough for large|(| so

17



that the integral converges. This same approach could have been used earlier for the pointwise
estimates. Thus,

1o, = 0% Y

To estimate , ! 1, ,;» we use the Helder inequality again with
! ! I

) = d3rG!(r)"v(r)"v(r)&. der!(r)"v(r)- dr G, (r)"v(r)

to get, for p# 2,
! !

Api2 - dr Gi(r), "v(r)"v(r), 2+, do Gi(r)"v(r),3
I # $,
- diG(r),"v(r),5+  dUrGi(r),"v(r),p
I # $,0

- ¢ dhG (PP + dNG ()

— 2%
= Cp%%

1] n

where Cp, % C2[ d4(G (O)|(|%® + ( dUG (()|(|**®)], which is assumed to be Pnite (a very

modest requirement onG). Thus,
1!!!p/2:0(!20/(b)1 p#2

and, pnally,

1 p= O L) p# 3,sothat." /! Oas!! Ounless-,- 3 forp# 3.

We note that a function v with

V,p< +

and

' "V(r)! p- (:lrl%b

is called Besov regularwith pth-order Besov exponent - ,. This is an Q. ,-versionO of Helder

continuity. Note that

lim ,"v(r =, "v(r
p%# ’ ()1p ’ ()1#

18



= sup |"v(r;x)|
x$V

Thus, the p!"  limit of Besov regularity corresponds to uniform Helder continuity, i.e.

I"v(r;x)|- C|r|” forall x4V

for [r] - ro. Our previous result thus says that non-vanishing energy dissipation requires

a velocity Peld which is not too regular in the limit %! O, i.e. v may not have - , > % for any

p# 3.

It is more traditional to consider so-called (absolute) structure functions for order p:

Se(r) % .|"v(r)[?/

= ,"v(r).B

with assumed scaling exponent

Sp(1) ( Apts ()% ()

We have written this in a dimensionally correct form with uyms = .|v &. v/|?/Y 2 the root-square

velocity and L a length-scale characteristic of the large-scale production mechanism. Note that
f(z)( o(z) forz' 1

means that limzeof (2)/g (z) = 1. Then (##) implies the previous estimate §) with -, = .p/p.

Our previous result then implies that

/& Ofor!" L,unless.,- §forp# 3

The classical Kolmogorov(1941) theoryassumes that

=P
.p=3 forallp.

Then, using

19



" (Ui,

one gets
Sp(r) ( Cp(*|r|)p’3 forall p,and |r|" L.
Of course, only the inequality ., - p/3, p# 3 is rigorously implied. We shall discuss later the
physical meaning of assuming that., = p/ 3, but essentially, it is a Ouniformity® assumption on
velocity increments |"v (r; x)| which rules out large RBuctuations in values for dilerent x.
Note that the estimate "v(!) ( (*)Y3 is consistent with
SRR

forall ! ' L. Thus, one can explain the observed rate of energy dissipatioh N independent

of viscosity %N by the e#cient transfer of energy down to small-scales where viscosity is

elective. This length-scale is the so-called Kolmogorov (micro) scal€ . It can be obtained as

the length-scale at which
(%R el
We previously estimated the viscous dissipation by therms velocity, but now we have an

improved estimate in terms of velocity increments as

% v 2= O(" L)

Using " = O("v3(!))/' , we get an estimate for/ as the solution of

"v3(/ "v2(/ . .
/()(:% /g):o v & %

Note that this implies that the Oturbulent Reynolds number® Y1 s approximately € 1 for

1 € /. If we now use the K41 (i.e. Kolmogorov 1941) conjecture that'v(/) ( (*/ )Y3, then

*U314I3 L op=0 |/ € off4x! V4

This is dimensionally correct, since f] = L%/T 3,[% = L%/T . The K41 scaling"v(!) ( (*)Y3

is thus expected for a range of length-scales' ! ' L, the so-called inertial (sub)range This

scaling prediction was one of the great early successes of turbulence theory, usually described
in terms of energy spectrak (k) in Fourier space. We do not discuss Fourier spectra here, but

note only the rough equivalencekE (k) ( ("v(!))? with ! ( 1/k.

20



The K41 prediction E (k) ( *%3k' 52 was pbnally veribed in a rather convincing way by

H.L. Grant, R.W. Stewart & A. Moilliet, OTurbulent spectra from a tidal channel,O

J. Fluid Mech., 12, 241-268 (1962).

Their data was presented at a famous meeting in Marseille in 1961, conbrming the predictions
of Kolmogorov twenty years earlier (1941). However, Kolmogorov himself was in attendance ...

and he pointed out di#culties with his previous theory and proposed a OrepnementO !!!

$(k)
(e

L i

—4 i 1
—4 -3 -2 -1
logx
Ficure 12. Seventeen spectra compared to the theories of Kolmogoroff, Heisenberg and
Kovasznay. The straight line has a slope of —$§, the curved solid line is Heisenberg’s theory
and the dashed line is Kovasznay’s theory. Within the square, the observations are too
crowded to display on this scale and they are shown in figure 13.

Nevertheless, the original K41 theory works well forSy(r) with p not too large (p $ 1& 3).

See the plotted data from the 1024 DNS of T.Gotoh:
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2nd-Order Longitudinal Structure Function in the 10248, Re, =460 DNS of Gotoh
10 T T T

structure function Sz(r)
3
T

separation distance r

2nd-Order Transverse Structure Function in the 10243, ReA:tlBO DNS of Gotoh
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structure function Sg(r)

-2 L Il L
1 2 3 4

separation distance r

We also show results for the local slope (r) = dlIn Sy(r)/d (In r), from the 4096 DNS on the

Earth Simulator [Y. Kaneda et al., Phys. Fluids 15 (2): L21- L24 (2003)]
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The inset is the enlargement of the range 46 r// < 500. The straight line shows. (r) = 0.734

We now make a preliminary attempt to answer the question: Is the Ruid approximation valid?

If / is indeed the smallest length-scale in a turbulent Zow, then
|' V| €.

The condition for validity of the hydrodynamic description is that (microscale) Knudsen number

L

be small: ()ﬂ 1

Using

$mi € %lcwith cthe sound speed

e °/§’4*' va L (—2- )3/4|_1/4 with * € Uins
$ Urms L
=0 =L € (- )1/4(U”“S)_ Ma(Re)' V4

Urms L

Thus, the Buid approximation is valid for

Ma ' 1 and/or Re) 1.
This argument goes back to S. Corrsin, OOutline of some topics in homogeneous turbulent
Row,0 J. Geophys. Re$4, 2134-2150(1959). It is important to note that validity of the

Landau-Lifschitz Buctuating hydrodynamics requires the same condition.
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Note that an important distinction is usually made between turbulence and molecular dynamics

due to a presumed separation of scalefboth length and time) in the latter case, but NOT in

the former. In derivations of hydrodynamics from deterministic Boltzmann equation, the sig-
nature of separation of length-scales is that a smooth Ohydrodynamic problgQ(x,t) exists,
so that @, (x,t) $ (a(x,t) for all ! in the range $y ' ! ' L. . The same is true for
gradients ! (a(X,t), time-derivatives &(a(X,t), etc. In the case of Boltzmann equation the
coarse-grained stress tensor has the formi, = (v + PI & /[(! v)+ (! v){]forall ! in the
range$ns * !'' L . The dynamics is the same for all! in this range.

In turbulence, however, all of the quantities such asg, v, I v, etc. change signibcantly
throughout the whole range L+ =)/ ' ! ' L. For example, in K41 theory v, ( (.*/1)Y¥3

and keeps growing ad increases. We say that turbulent Bows have a continuous spectrurof

excitations in the range/ ' ! ' L. Among other things, this means that there is no law of
large numbers in turbulence andw, is RBuctuating, with dynamics that depends stochastically

on unknown subscale modes,. The turbulent subscale stress for/ ' ! L scales as
Ly ( (v ( ()3 (for K41)

and is thus a monotonically increasing function of length-scalé. Moreover, the turbulent stress
is much more essentially stochastic. To see this, note that the turbulent stress at length-scale

I is not uniquely determined from the stress at scald” <! but instead (Germano, 1992):
Liv,v) = (P e(v, )+ L (v, V)

To obtain the stress !, requires knowledge not only of! ;: but also of the velocity beld v
resolved down to length-scald ", which is unknown given only v;.

In fact, however, we shall see that scale-separation is vitiated even in laminar Rows by
thermal Buctuations, so that gradients! @@, (x,t) become!-dependent! In that case, the coarse-
grained stress tensor has the fornT, = (w + P1&/,[(! vi)+(! v)( ]+ ! "with ! "the thermal
noise arising as a central limit theorem correction to the law of large numbers and viscosity,

becomes -dependent. The distinction between turbulent and laminar is no longer so clear-cut.
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