
II E!ective ÒLarge-ScaleÓ Equations

and the Turbulent Energy Cascade

(A) Coarse-Graining/Filtering/Mollifying

We have seen that the non-vanishing of turbulent energy dissipation asRe ! " requires

that velocity-gradients |! u| ! " in this limit. But, in that case, the usual formulation

of the ßuid equations as PDEÕs with smooth solutions no longer makes sense! To obtain a

dynamical description, we must regularize those equations. We shall use an approach based on

coarse-graining/Þltering/mollifying with a smooth kernel G that satisÞes

G(r ) # 0

G(r ) ! 0 rapidly for |r | ! "
!

ddr G(r ) = 1

It is also understood that G is centered at r = 0:

!
ddr r G(r ) = 0,

and that
"

ddr |r |2G(r ) $ 1. Other speciÞc requirements shall be introduced as needed. Set

G! (r ) % ! ! dG(r /! )

so that all of the above properties hold, except that now
"

ddr |r |2G! (r ) $ ! 2.

Using this kernel, now deÞne a coarse-grained velocityat length-scale! by

øv! (x) =
!

ddr G ! (r )v (x + r )

This represents the average velocity of a ßuid ÒparcelÓ of size! at position x. It can also

be called a low-pass Þlteredvelocity, containing only length-scales > ! , or a molliÞed (i.e.

smoothed) velocity. The corresponding small-scale/ high-pass Þltered velocity is given by

v "
! (x) % v(x) & øv! (x) = &

!
ddr G ! (r )" v (r ; x) (1)
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where

"v (r ; x) = v(x + r ) & v(x)

is the velocity-increment across a separation vectorr at point x

Comments:

# This coarse-graining is similar to that used to derive hydrodynamics from MD. However,

in that case ! ' L ! = gradient length (= |v |
|! v |

whereas here we have in mind! ) L ! .

# In principle, only coarse-grained Þeldsøv! (x) are experimentally measurable. Every ex-

periment has some spatial resolution! , such that only averaged properties for length-scales

# ! are obtained. The Þne-grained/bareÞeld v(x) are unobservableobjects corresponding to

a mathematical idealization

øv! (x) ! v (x) as ! ! 0

This idealization is physically unachievable, in the strictest sense, since the hydrodynamic

equations are not valid for ! $ $, the mean-free path. In general,øv ! (x) is a more physical

object and v(x) is an ÒidealÓ object which is useful ifL ! ) ! ) $.

# In physics, the coarse-grained Þeld is similar to an Òe!ective block-spinÓthat appears

in the method of real-space renormalization group (RG). It removes the ultraviolet divergence

associated with blow-up of velocity gradients|! v | ! " as %! 0, since necessarily

! øv ! (x) = &
1
!

!
ddr (! G)! (r ) v (x + r )

remains Þnite. This ÒregularizationÓ introduces an arbitrary length-scale!, on which no ob-

jective physical fact can depend. Note that coarse-graining is a purely passive operationÑ

Òremoving oneÕs spectaclesÓÑwhich changes no physical process.

The method of Þltering is also employed as part of the large-eddy simulation(LES) mod-

elling technique for turbulent ßow. Here a seminal work is:

M. Germano, ÒTurbulence: the Þltering approach,Ó J. Fluid Mech.238, 325Ð336 (1992).
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(B) E!ective Large-Scale Equations

See also T&L , Section 2.1. Starting with the incompressible Navier-Stokes equations

&t v + ( v á! )v = &! p + %* v + f , ! áv = 0

for the bare/Þne-grained velocity Þeld, we can derive an equation forøv ! . Note that

(! f )! = ! øf! ,

i.e. space-derivatives commute with Þltering. Thus,

&t øv ! + ! á(vv )! = &! øp! + %* øv! + øf! , ! áøv ! = 0

DeÞne the turbulent (or Reynolds) stress tensor

! ! = (vv )! & øv! øv !

so that

&t øv ! + ( øv ! á! )øv ! + ! á! ! = &! øp! + %* øv! + øf!

This is the Òe!ective equationÓ for the large-scale velocity. Note that it is not closed, i.e. !

is not given (in a simple way) as a function oføv ! .

We now wish to estimate the viscous term%* øv! as small, i.e. to show that it can be

neglected relative to the other terms when%is small or when! is large. To measure ÒsizeÓ, we

need the notion of a normof a function f : Rd ! Rd, i.e. a mapping f +&! , f , such that:

(i) , f , # 0 and , f , = 0 i! f = 0

(ii) , ' f , = |' | á ,f , for any real scalar ' .

(iii) , f + g, - , f , + , g, (triangle inequality)
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Some common norms are theL p norms for p # 1

, f , p %
#

1
V

!

V
ddx |f (x)|p

$1/p

and for p = + "

, f , # % sup
x$ V

|f (x)|

Note that these satisfy

, f , p - , f , p! for p" # p

and

, f , # = lim
p%#

, f , p.

Some of these have simple meaning

, f , 1 = .| f |/ where .g/ =
1
V

!

V
d3x g(x)

, f , 2 =
%

.| f |2/ = f rms when . f / = 0

, f , # = |f |max

For more details, see A. N. Kolmogorov & S. U. Fomin,Introductory Real Analysis, Dover, 1975

Now we estimate

%* øv! (x) =
%
! 2

!
ddr (* G)! (r )v (x + r ) (integration by parts!)

Then1

, %* øv! , p -
%
! 2

!
ddr |(* G)! (r )| á ,v (á+ r ), p (by triangle inequality)

=
%
! 2 (const.), v , p

using , v (á+ r ), p = , v , p and assuming that
"

dd( |* G(" )| < + " .

1The ÒcontinuousÓ version of the triangle inequality that we use below and repeatedly in these notes is usually

called the Minkowski integral inequality . It states that !
!

ddr F (r, á)! p "
!

ddr ! F (r, á)! p. See G. H. Hardy, J.

E. Littlewood, and G. P«olya, ÒInequalitiesÓ (Cambridge University Press, 1952), Theorem 202, or E. Stein,

ÒSingular Integrals and Di!erentiability Properties of FunctionsÓ (Princeton University Press, 1970), ¤A.1.
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If , v , p stays Þnite in the limit that %! 0, then

lim
" % 0

, %* øv! , p = 0 !!!

Note that energy is given by

E(t) =
1
2

, v (t), 2
2

SincedE/dt = &%, ! v , 2
2 - 0, , v (t), 2 can only decrease in time. Thus,, v (t), 2 - , v (t0), 2 =

initial energy . Thus for decaying turbulenceand p = 2, it is true that , v (t), 2 must stay Þnite

in the limit as %! 0. Experimental evidence is that , v (t), p stays Þnite for all p # 1.

Heuristically, we may say that

%* øv! (
%U
! 2

We shall see later that

(øv ! á! )øv ! ( ! á! ! ( ! øp! (
U2

!

Thus, the viscous term is smaller by a factor "
U! = 1

Re!
.

One of the important terms in the large-scale equation is from the turbulent (or subscale) force

f s
! = &! á! !

This can be thought of as an e!ective Òbody-forceÓ on the large-scales produced by the elimi-

nated subscales. Note that

Prop: The stress (! ! )ij = (vi vj )! & øv!i øv!j is a symmetric, nonnegative-deÞnite matrix at

each space-time point (x , t).

Proof: Omit ! for simplicity of notation. Clearly,

) ij = vi vj & øvi øvj

6



is symmetric in i, j . Note also that

) ij =
!

ddr G ! (r )vi (x + r )vj (x + r ) & øvi (x)øvj (x)

=
!

ddr G ! (r )[vi (x + r ) & øvi (x)][vj (x + r ) & øvj (x)]

so that
&

ij

c&
i cj ) ij =

!
ddr G ! (r )

'
'
'
'
'

&

j

cj [vj (x + r ) & øvj (x)]

'
'
'
'
'

2

# 0

In fact, ) ij is just the covariance of the random variablevi (x + r ) with r distributed according

to the Òprobability densityÓG! (r ). Thus, ) ij is the velocity covariance of the ßuid parcel of size

! at spacetime point (x , t).

This result is due to Vreman, Geurts & Kuerten, ÒRealizability conditions for the turbulent

stress tensor in Large Eddy Simulation,Ó J. Fluid Mech.,278, 351-362, 1994.

(C) Energy Balance

See T & L, Sections 3, 1-2; Frisch, Section 2.4.

We have seen that the viscous term%* øv! is negligible is the large-scale e!ective equation.

Since , øv ! (t), 2
2 - , v (t), 2

2 by convexity, the kinetic energy decays even with Òspectacles o!Ó!

How? To analyze this question, we must consider energy balance in detail.

Large-Scale Energy Balance

From the equation for øv ! it is easy to derive an evolution equation for the large-scale energy

(per unit mass)

øE! (t) =
1
2

!
ddx |øv ! (x , t)|2

and its density

øe! (x , t) =
1
2

|øv ! (x , t)|2.

One Þnds by straightforward calculus that
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&t øe! + ! á[( øe! + øp! )øv ! + ! ! áøv ! & %! øe! ] = ! øv ! : ! ! & %|! øv ! |2 + øv! áøf!

with

øJE
! = (øe! + øp! )øv ! + ! ! áøv ! & %! øe!

= space transport (ßux) of large-scale energy,

(or in detail: )

(
))))*

))))+

(øe! + øp! )øv ! = transport by large-scale advection

&%! øe! = viscous di!usion of large-scale energy

! ! áøv ! = turbulent di!usion of large-scale energy

øQ! = øv! áf! = power input from external force into large-scales (per mass)

ø*! = %|! øv ! |2 = large-scale energy dissipation rate (per unit mass)

øE! (t) =
!

ddx ø*! (x , t) = total energy dissipation (per mass) in the large-scales

= %, ! øv ! (t), 2
2

-
%
! 2 (const.), v (t), 2

2 by Minkowski estimate of ! øv ! = & 1
!

"
ddr (! G)! (r )v (x + r )

&! 0 as%! 0 !

We have assumed here that, v (t), 2
2 stays bounded as%! 0.

The important term in the large-scale balance is

" ! = &! øv ! : ! !

= deformation work of the large-scale strain against the small-scale stress

" ! > 0 =0 large-scale sink; "! < 0 =0 large-scale source

Alternative forms:

" ! = & øS! : ! !
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with øS! = 1
2[(! øv ! ) + ( ! øv ! )T ] = large-scale strain (by symmetry of ! ! ); or

" ! = &! øv ! : û! !

with û! ! = ! ! & 1
dtr (! ! )I = deviatoric/traceless part of the stress (by ! áøv! = 0); or

" ! = & øS! : û! ! (by both together) .

Where does the energy go? To the small scales! DeÞne

k! (x , t) =
1
2

tr (! ! ) = small-scale kinetic energy (per mass)

=
1
2

(|v |2)! &
1
2

|øv ! |2 # 0 by positive-deÞniteness of stress! !

Note that øe! = 1
2|øv ! |2 so that

øe! + k! =
1
2

(|v |2)!

and thus (since
"

ddx øf (x) =
"

ddxf (x))

!
ddx [øe! + k! ] =

1
2

!
ddx |v (x, t)|2

= E(t) = total kinetic energy (per mass)

An evolution equation of the following form holds for k! :

&t k! + ! áJE !

! = &! øv : ! ! & *"
! + Q"

!

Recall that " ! = &! øv ! : ! ! . Also

*"
! = %[(|! v |2)! & | ! øv ! |2] = viscous energy dissipation in the small-scales

so that ø*! + *"
! = %(|! v |2)! gives the total dissipation averaged over the region of radius! around

x. Note that " ! appears with opposite signsin the equations for øe! and k! : it tends to act as a
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sink for øe! and a source fork! . Thus, it transfers energy from large-scales to small-scales. For

this reason, " ! is often called (scale-to-scale) energy ßux.

We now derive the equation for k! , following Germano (1992). In fact, we derive a more

general evolution equation for! ! . Starting with &t vi = &(vk&k)vi & &i p + %&2k vi + f i ,

&t vi vj = (&t vi )vj + vi (&t vj )

= &vk(&kvi )vj & (&i p)vj + %(&2
k vi )vj + f i vj + ( i 1 j )

= &&kvi vj vk & &i pvj & &j pvi + p(&i vj + &j vi )

+ %&2k vi vj & 2%&kvi &kvj + f i vj + f j vi

Similarly,

&t (øvi øvj ) = ( &t øvi )øvj + øvi (&t øvj )

= [ &(øvk&k)øvi & &k) ik & &i øp + %* øvi + øf i ]øvj + ( i 1 j )

= &&k(øvi øvj øvk) & &k[) ik øvj + ) jk øvi ] + ) ik (&k øvj ) + ) jk (&k øvi )

& &i (øpøvj ) & &j (øpøvi ) + øp(&i øvj + &j øvi )

+ %&2k (øvi øvj ) & 2%&k øvi &k øvj + ( øf i øvj + øf j øvi )

Subtracting the two equations yields an equation for) ij = vi vj & øvi øvj .

To express the various terms that appear, we must introduce the generalized central moments

of Germano (usually called cumulants in probability theory, or connected correlation functions

in statistical physics). The nth-order generalized central moment ) (f 1, . . . , f n ) is deÞned as

follows:

øf 1 = ) (f 1)

f 1f 2 = ) (f 1, f 2) + øf 1 øf 2

f 1f 2f 3 = ) (f 1, f 2, f 3) + øf 1) (f 2, f 3) + øf 2) (f 1, f 3) + øf 3) (f 1, f 2) + øf 1 øf 2 øf 3

and, iteratively,

f 1 . . . f n =
&

I $P

p,

j =1

) (f
i ( j)
1

, . . . , f
i ( j)
nj

)
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where the sum is over the setP of all partitions I = { i (1)
1 , . . . , i (1)

n1 } , . . . , { i (p)
1 , . . . , i (p)

np } of the set

{ 1, 2, ..., n} with
- p

j =1 nj = n. We thus see that

f 1 . . . f n = ) (f 1, . . . , f n ) + terms deÞned by lower-order cumulant functions

so that we may solve successively to obtain

) (f 1) = øf 1

) (f 1, f 2) = f 1f 2 & øf 1 øf 2

) (f 1, f 2, f 3) = f 1f 2f 3 & øf 1) (f 2, f 3) & øf 2) (f 1, f 2) & øf 3) (f 1, f 2) & øf 1 øf 2 øf 3

= f 1f 2f 3 & øf 1f 2f 3 & øf 2f 1f 3 & øf 3f 1f 2 + 2 øf 1 øf 2 øf 3

and etc.! Note: The Ògeneralized central momentsÓ) (f 1, . . . , f n ) are the cumulants of the

random variables f 1(x + r ), . . . , f n (x + r ), distributed according to the density G! (r ) on r .

The Þnal equation obtained for) ij has the form

&t ) ij + &kJijk = &[øvi,k ) kj + ) ik øvj,k ] 2 production of stress by large-scale straining

+ 2 ) (p, Sij ) 2 pressure-strain correlation

& 2%)(vi,k , vj,k ) 2 viscous destruction of stress

+ [ ) (vi , f j ) + ) (vj , f i )] 2 production of stress by forcing

with vi,k = #vi
#xk

, etc. and

Jijk = ) ij øvk + ) (p, vi )" jk + ) (p, vj )" ik + ) (vi , vj , vk) & %)ij,k

where

) ij øvk = advective transport of stress

%)ij,k = viscous transport of stress

Taking 1
2 of the trace of the equation for ) ij gives the equation fork, with

J E !

i = køvi + ) (p, vi ) +
1
2

) (vk , vk , vi )
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Q" = ) (vi , f i )

Remark: There is a tempting analogy

TURBULENCE : MOLECULAR DYNAMICS

øe! = 1
2( |øv ! |2 large-scale kinetic energy 1 1

2( |v |2 kinetic energy

(k ! small-scale kinetic energy 1 u = (cP T internal energy

For this reason, " ! = & øS! : ! ! is sometimes called subscale dissipation(or Òsubgrid-scale

dissipationÓ in LES). Note, however, that 1
2( |v |2 + u is conserved, while1

2( |øv ! |2 + (k ! is NOT

and, in fact, has the same space integral as total kinetic energy12( |v |2! (For this reason, a

better correspondence isu for molecular dynamics and øu&
! = øu! + (k ! for turbulence, so that

the total 1
2( |øv ! |2 + øu&

! is conserved.) Furthermore, there is a big separation in scale between the

length L ' of variation of v and the mean-free-path$mf of molecules, whose energies (kinetic

+ potential) constitute u. As we discuss in more detail later, this is nottrue for øe! , k! .

There are some important alternative forms for the energy balances that we now discuss.

Note that

! øv ! : ! ! = øv ! áf s
! + ! á(! ! áøv ! )

Where f s
! = &! á! ! . Thus, we may rewrite the energy balance as

&t øe! + ! á[(øe! + øp! )øv ! & %! øe! ] = øv! áf s
! & %|! øv ! |2 + øv! á øf ! .

Where øv! áf s
! is the (negative) power input by the subscale forcef s

! . Note, however, that this

term is not Galilei invariant Ñ an observer at rest and an observer moving with respect to a

turbulent ßuid would disagree about the ÒdissipationÓ due to such a term!

Another form of the balance can be written using the turbulent vortex-force

f v
! = (v 3 # )! & øv! 3 ø# ! , f v

!i = +ijk ) ! (vj , , k ).

It is not hard to show using ! á(vv ) = v 3 # & ! ( 1
2|v |2) that

f s
! = f v

! & ! k!
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so that

&t øv ! + ( øv ! á! )øv ! = f v
! & ! øh! + %* øv! + øf!

with øh! % øp! + k! = Òturbulent enthalphyÓ. Then,

&t øe! + ! á[(øe! + øh! )øv ! & %! øe! ] = øv! áf v
! & %|! øv ! |2 + øv! áf!

Estimation of Energy Flux

We have seen that the viscous dissipation in large-scale%|! øv ! |2 is negligible and that the

energy ßux

" ! = &! øv ! : ! !

must therefore be the main ÒsinkÓ term in the large-scale energy balance. We will now estimate

this term. Note that

! øv ! (x) = &
1
!

!
ddr (! G)! (r )v (x + r )

= &
1
!

!
ddr (! G)! (r )[v (x + r ) & v(x)],

since
"

ddr ! G(r ) = 0.

To get simple estimates, let us assume for the moment thatG is C# with compact support

in the unit ball, e.g.

G(r ) =

(
)*

)+

N exp[& 1
(1! r 2) ] for |r | - 1

0 for other r

where N .= 0 .8822 is a normalization factor for dimensiond = 3.
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! !"# ! ! ! $"# $ $"# ! !"#
$

$"$#

$"!

$"!#

$"%

$"%#

$"&

$"&#

$"'

$"'#

r

G
(r

)

Smooth, Compactly-Supported Filter Kernel

We shall remove this restriction later on!

Then, with |A | =
. -

ij |aij |2,

|! øv ! (x)| -
C
!

sup
r<!

|" v (r ; x)| with C =
!

dd( |! G(( )|

or

! øv ! (x) = O(
"v(! ; x)

!
)

with "v(! ; x) % supr<! |" v (r ; x)|. Now we must develop similar estimates for the stress! ! . For

this purpose, the following formula is crucial

) ! (f, g ) =
!

ddr G ! (r )"f (r )"g(r ) &
#!

ddr G ! (r )"f (r )
$ #!

ddr G ! (r )"g(r )
$

or

) ! (f, g ) = . "f "g / ! & . "f / ! . "g/ !

where .á./ ! denotes average overr with respect to G! (r ) and "f (r ; x) = f (x + r ) & f (x), etc.

The above formula will turn out to be absolutely essential for much of our further analysis. It
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is one of the most useful formulas in the course, which we shall use many times. Amazingly,

it was not discovered in this context until the 1990Õs [P. Constantin, et. al.Commum. Math.

Phys., 165, 207 (1994); G. L. Eyink, J. Stat.Phys., 78, 335 (1995).]

It is easy to verify the formula by substituting the deÞnitions of "f , "g and integrating.

Later on, we shall prove a more general formula for all generalized central moments. Applying

this formula to ) !ij = ) ! (vi , vj ), we get

|! ! (x)| -
!

ddr G ! (r )|" v (r ; x)|2 +
#!

ddr G ! (r )|" v (r ; x)|
$2

-
#!

ddr G ! (r )
$

"v2(! ; x) +
#!

ddr G ! (r )
$2

"v2(! ; x)

= 2 "v2(! ; x),

with
"

ddr G ! (r ) = 1 , or,

! ! (x) = O("v2(! ; x)) .

Putting the two estimates together gives

|" ! (x)| - (const.)
"v3(! ; x)

!
.

An estimate of this type was Þrst derived by Lars Onsager around 1945 and closely related

results were obtained by A. N. Kolomogorov in his famous papers in 1941, using probabilistic

assumptions. The estimate has some important implications that we now discuss.

If v is continuously di!erentiable at point x, then Taylor expansion in r gives

v(x + r ) = v(x) + ( r á! )v (x$)

=0 "v (r ; x) = ( r á! )v (x$)

=0 "v(! ; x) - ! ásup
x

|! v (x)| = O(! )

In that case,

" ! = O(
"v3(! )

!
) = O(! 2) ! 0 as! ! 0

Thus, " ! is too small for ! -
%

*/ |! v |3 to account for a non-vanishing energy dissipation*!

More generally, suppose that

"v(! ; x) ( ! h
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for some 0< h < 1. Then,

" ! = O(
"v3(! )

!
) = O(! 3h! 1) as ! ! 0 if h > 1/ 3

This was Þrst pointed out by Onsager(1945, 1949). A Òminimal assumptionÓ is that

"v(! ) ( (*! )1/ 3,

which is the famous prediction of Kolmogorov & Obukhov(1941), Onsager(1945, 1949), and

Heisenberg & von Weizs¬acker(1948)

This scaling is often explained as the result of Òdimensional analysisÓ, but it has a deeper

dynamic basis. We have already seen thatv cannot remain di!erentiable in the limit that

%! 0, if the experiments are correct that

* = %.| ! v |2/ ! 0 as%! 0.

There is a more reÞned result. We say thatv is H¬older continuousat point x with exponent

h, 0 < h < 1, if

|" v (r ; x)| - C|r |h (#)

for all |r | < r 0 and some constantC. If it holds, then "v(! ; x) = O(! )h. We thus see that

(#) cannot hold with h > 1/ 3 for all x , as %! 0, if the experiments are correct that * ! 0

in that limit (Onsager, 1949)

To make this argument a bit more convincing, we should consider the total ßux

!

V
ddx " ! (x) % " ! ,

or, equivalently, the mean ßux over the ßow domain

." ! / =
1

|V |

!

V
d3x " ! (x).
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Then

|. " ! /| - .| " ! |/ =
1

|V |

!

V
d3x |" ! (x)| = , " ! , 1,

and

, " ! , 1 - , " ! , r for r # 1.

To get further estimates, we must recall some basic results for theL p-norms, the

H¬older inequality: , fg , 1 - , f , p, g, q,
1
p

+
1
q

= 1

generalized H¬older inequality: ,
n,

i =1

f i , r -
n,

i =1

, f i , pi ,
n&

i =1

1
pi

=
1
r

, r # 1

For example, see Kolmogorov & Fomin(1975), or any good textbook on real analysis. Since

" ! = &! øv ! : ! ! ,

, " ! , r - , ! øv ! , 3r , ! ! , 3r/ 2

To simplify notation, set p = 3 r or r = p/ 3, with p # 3. We must bound the terms , ! øv ! , p,

, ! ! , p/ 2. Since

! øv ! (x) = &
1
!

!
ddr (! G)! (r )" v (r ; x),

the triangle inequality gives

, ! øv ! , p -
1
!

!
ddr |(! G)! (r )|, " v (r ), p.

Now, let us assume that for some- p, 0 < - p < 1,

, " v (r ), p - C|r |%p (#)

for |r | - r 0 and some constantC > 0. Then,

, ! øv ! , p -
C
!

!
ddr |(! G)! (r )| á |r |%p

= C"! %p! 1 (substitute ( =
r
!
)

with C" = C
"

dd( |! G(( )|á |( |%p , which is assumed to be Þnite. Notice that we have nothad to

assume thatG is compactly supported, but only that it decays rapidly enough for large |( | so
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that the integral converges. This same approach could have been used earlier for the pointwise

estimates. Thus,

, ! øv ! , p = O(! %p! 1)

To estimate , ! ! , p/ 2 we use the H¬older inequality again with

! ! =
!

d3r G! (r )" v (r )"v (r ) &
!

ddrG ! (r )" v (r )
!

ddrG ! (r )" v (r )

to get, for p # 2,

, ! ! , p/ 2 -
!

ddr G ! (r ), " v (r )"v (r ), p/ 2 + ,
!

ddr G ! (r )" v (r ), 2
p

-
!

ddrG ! (r ), " v (r ), 2
p +

#!
ddrG ! (r ), " v (r ), p

$2

- C2

/ !
ddrG ! (r )|r |2%p +

#!
ddrG ! (r )|r |%p

$2
0

= Cp! 2%p

where Cp % C2[
"

dd(G (( )|( |2%p + (
"

dd(G (( )|( |2%p)], which is assumed to be Þnite (a very

modest requirement onG). Thus,

, ! ! , p/ 2 = O(! 2%p), p # 2

and, Þnally,

, " ! , p = O(! 3%p! 1), p # 3, so that . " ! / ! 0 as ! ! 0 unless- p - 1
3 for p # 3.

We note that a function v with

, v , p < + "

and

, "v (r ), p - C|r |%p

is called Besov regularwith pth-order Besov exponent - p. This is an ÒL p-versionÓ of H¬older

continuity. Note that

lim
p%#

, "v (r ), p = , "v (r ), #

18



= sup
x$ V

|"v (r ; x)|

Thus, the p ! " limit of Besov regularity corresponds to uniform H¬older continuity, i.e.

|" v (r ; x)| - C|r |%" for all x 4 V

for |r | - r 0. Our previous result thus says that non-vanishing energy dissipation requires

a velocity Þeld which is not too regular in the limit %! 0, i.e. v may not have - p > 1
3 for any

p # 3.

It is more traditional to consider so-called (absolute) structure functions for order p:

Sp(r ) % .|"v (r )|p/

= , "v (r ), p
p

with assumed scaling exponent. p

Sp(r ) ( Apup
rms (

|r |
L

)&p (##)

We have written this in a dimensionally correct form with urms = .| v &. v /| 2/ 1/ 2 the root-square

velocity and L a length-scale characteristic of the large-scale production mechanism. Note that

f (z) ( g(z) for z ' 1

means that limz% 0 f (z)/g (z) = 1. Then ( ##) implies the previous estimate (#) with - p = . p/p .

Our previous result then implies that

. " ! / &! 0 for ! ' L , unless. p - p
3 for p # 3

The classical Kolmogorov(1941) theoryassumes that

. p = p
3 for all p.

Then, using
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* ( u3
rms
L ,

one gets

Sp(r ) ( Cp(*|r |)p/ 3 for all p, and |r | ' L .

Of course, only the inequality . p - p/ 3, p # 3 is rigorously implied. We shall discuss later the

physical meaning of assuming that. p = p/ 3, but essentially, it is a ÒuniformityÓ assumption on

velocity increments |"v (r ; x)| which rules out large ßuctuations in values for di!erent x.

Note that the estimate "v(! ) ( (*! )1/ 3 is consistent with

. " ! / ( 'v 3(! )
! ( *

for all ! ' L . Thus, one can explain the observed rate of energy dissipation* Ñ independent

of viscosity % Ñ by the e#cient transfer of energy down to small-scales where viscosity is

e!ective. This length-scale is the so-called Kolmogorov (micro) scale/ . It can be obtained as

the length-scale at which

" ! ( %|! øv ! |2

We previously estimated the viscous dissipation by therms velocity, but now we have an

improved estimate in terms of velocity increments, as

%|! øv ! |2 = O( "'v 2(! )
! 2 )

Using " ! = O("v3(! )) /! , we get an estimate for/ as the solution of

"v3(/ )
/

(= %
"v2(/ )

/ 2 =0 "v(/ )/ (= %

Note that this implies that the Òturbulent Reynolds numberÓ 'v (! )!
" is approximately (= 1 for

! (= / . If we now use the K41 (i.e. Kolmogorov 1941) conjecture that"v(/ ) ( (*/ )1/ 3, then

*1/ 3/ 4/ 3 (= %=0 / (= %3/ 4*! 1/ 4

This is dimensionally correct, since [*] = L 2/T 3, [%] = L 2/T . The K41 scaling "v(! ) ( (*! )1/ 3

is thus expected for a range of length-scales/ ' ! ' L, the so-called inertial (sub)range. This

scaling prediction was one of the great early successes of turbulence theory, usually described

in terms of energy spectraE(k) in Fourier space. We do not discuss Fourier spectra here, but

note only the rough equivalencekE (k) ( ("v(! )) 2 with ! ( 1/k.
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The K41 prediction E(k) ( *2/ 3k! 5/ 3 was Þnally veriÞed in a rather convincing way by

H.L. Grant, R.W. Stewart & A. Moilliet, ÒTurbulent spectra from a tidal channel,Ó

J. Fluid Mech., 12, 241-268 (1962).

Their data was presented at a famous meeting in Marseille in 1961, conÞrming the predictions

of Kolmogorov twenty years earlier (1941). However, Kolmogorov himself was in attendance ...

and he pointed out di#culties with his previous theory and proposed a ÒreÞnementÓ !!!

256 H .  L. Grant, R. W .  Stewart and A .  Moilliet 

E 

FIGURE 11. Calculated values of the quantity h" as a function 
of the rate of dissipation of energy. 

log 2 

FIGURE 12. Seventeen spectra compared to the theories of Kolmogoroff, Heisenberg and 
Kovasznay. The straight line has a slope of - 9, the curved solid line is Heisenberg's theory 
and the dashed line is Kovasznay's theory. Within the square, the observations are too 
crowded to display on this scale and they are shown in figure 13. 
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Nevertheless, the original K41 theory works well forSp(r ) with p not too large (p $ 1 & 3).

See the plotted data from the 10243 DNS of T.Gotoh:
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We also show results for the local slope. (r ) = d ln S2(r )/d (ln r ), from the 40963 DNS on the

Earth Simulator [Y. Kaneda et al., Phys. Fluids 15 (2): L21- L24 (2003)]
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The inset is the enlargement of the range 40< r// < 500. The straight line shows. (r ) = 0 .734.

We now make a preliminary attempt to answer the question: Is the ßuid approximation valid?

If / is indeed the smallest length-scale in a turbulent ßow, then

L ' = |v |
|! v |

(= / .

The condition for validity of the hydrodynamic description is that (microscale) Knudsen number

be small: ( mf

) ' 1

Using

$mf
(= %/cwith c the sound speed

/ (= %3/ 4*! 1/ 4 (= (
%

urms
)3/ 4L 1/ 4 with * (=

u3
rms

L

=0
$mf

/
(= (

%
urms L

)1/ 4(
urms

c
) = Ma(Re)! 1/ 4

Thus, the ßuid approximation is valid for

Ma ' 1 and/or Re ) 1.

This argument goes back to S. Corrsin, ÒOutline of some topics in homogeneous turbulent

ßow,Ó J. Geophys. Res.,64, 2134-2150(1959). It is important to note that validity of the

Landau-Lifschitz ßuctuating hydrodynamics requires the same condition.
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Note that an important distinction is usually made between turbulence and molecular dynamics,

due to a presumed separation of scales(both length and time) in the latter case, but NOT in

the former. In derivations of hydrodynamics from deterministic Boltzmann equation, the sig-

nature of separation of length-scales is that a smooth Òhydrodynamic proÞleÓ( a(x, t) exists,

so that ø( a,! (x , t) $ ( a(x , t) for all ! in the range $mf ' ! ' L ' . The same is true for

gradients ! ( a(x , t), time-derivatives &t ( a(x , t), etc. In the case of Boltzmann equation the

coarse-grained stress tensor has the formT ! = ( vv + PI & / [(! v ) + ( ! v )( ] for all ! in the

range $mf ' ! ' L ' . The dynamics is the same for all! in this range.

In turbulence, however, all of the quantities such asøv! , v "
! , ! øv ! , etc. change signiÞcantly

throughout the whole range (L ' =) / ' ! ' L . For example, in K41 theory v "
! ( (. */ ! )1/ 3

and keeps growing as! increases. We say that turbulent ßows have a continuous spectrumof

excitations in the range / ' ! ' L . Among other things, this means that there is no law of

large numbers in turbulence andøv! is ßuctuating, with dynamics that depends stochastically

on unknown subscale modesv "
! . The turbulent subscale stress for/ ' ! ' L scales as

! ! ( ("v(! )) 2 ( (. */ ! )2/ 3 (for K41)

and is thus a monotonically increasing function of length-scale!. Moreover, the turbulent stress

is much more essentially stochastic. To see this, note that the turbulent stress at length-scale

! is not uniquely determined from the stress at scale! " < ! but instead (Germano, 1992):

! ! (v , v ) .= (! ! ! (v , v )) ! + ! ! (v ! ! , v ! ! )

To obtain the stress ! ! requires knowledge not only of! ! ! but also of the velocity Þeld v ! !

resolved down to length-scale! ", which is unknown given only v ! .

In fact, however, we shall see that scale-separation is vitiated even in laminar ßows by

thermal ßuctuations, so that gradients ! ø( a,! (x , t) become! -dependent! In that case, the coarse-

grained stress tensor has the formT ! = ( vv + PI & / ! [(! v ! )+( ! v ! )( ]+ ! " with ! " the thermal

noise arising as a central limit theorem correction to the law of large numbers and viscosity/ !

becomes! -dependent. The distinction between turbulent and laminar is no longer so clear-cut.

24


