
Status and Interpretation of the Parisi-Frisch Multifractal Model

The Legendre transform

D(h) = infp[ph+ (d� ⇣p)]

always exists and defines a concave function of h. To see the latter, note that for any 0 < � < 1

and h, h0 fixed

[�h+ (1� �)h0]p+ (d� ⇣p) = �[ph+ (d� ⇣p)] + (1� �)[ph0 + (d� ⇣p)]

so that

D(�h+ (1� �)h0) = inf
p
{[�h+ (1� �)h0]p+ (d� ⇣p)}

� � inf
p
[ph+ (d� ⇣p)] + (1� �) inf

p
[ph0 + (d� ⇣p)]

= �D(h) + (1� �)D(h0),

which is the defining property of a concave function.

However, it is not clear which “fractal dimension” of S(h) that it represents (if any) or

that it is even related to the singularity sets S(h) at all! These issues are discussed at some

length in the cited papers of Eyink (1995) and Ja↵ard (1997). In particular, the latter paper

constructs counterexamples, which show that there are multiscaling functions such that D(h)

defined as above from ⇣p does not give any of the common dimensions, such as DH(h), DB(h),

etc., for the singularity sets S(h). Ja↵ard also shows, however, that the Parisi-Frisch formalism

is correct for certain classes of functions, such as self-similar functions. It is not known whether

turbulent velocity fields ( or other turbulent fields) possesses the required properties to justify

the Parisi-Frisch formulism. It is an open mathematical issue.

However, a large number of predictions of the formula

⇣p = infh[ph+ (d�D(h))], (⇤)
are rigorous mathematical facts, even if the entire formula cannot be proved. We summarize

some of these here:
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(1) ⇣p is concave in p

This follows directly from (⇤), but it has been proved rigorously earlier (using the Hölder

inequality)

(2) ⇣p ⇠ phmin + (hmin) + o(1)

This follows from the general theory of Legendre transforms, applied to (⇤). However, we have

already discussed that

�p =
⇣
p

p �! hmin as p ! 1,

as an exact statement. Note that if hmin = 0, then (2) should be interpreted in the sense that

⇣p ⇠ o(p), as p ! 1.

E.g. ⇣p ⇠ p
p, as p ! 1 corresponds to hmin = 0.

(3) DH(h)  infp[ph+ (d� ⇣p)]

This follows from (⇤) if either D(h) = DH(h) or if D(h) = DB(h). However, it can also be

proved to be exactly true, as in Eyink (1995), Ja↵ard (1997). This results is useful because it

shows how to put bounds on the sizes of singularity sets, using the scaling exponents ⇣p.

(4) �p � d
p � �p0 � d

p0 for p � p0.

We first “prove” this inequality using (⇤). Note that
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�p =
⇣
p

p = infh{h+ d�D(h)
p }

so that

�p � d
p = infh{h� D(h)

p }.
Since D(h) � 0, however, we see that this is an increasing (or, at least, non-decreasing) function

of p. Thus, (4) “follows”. In fact, (4) is a rigorous result, although it is usually stated di↵erently

as an embedding theorem for Besov spaces. In the standard language of function spaces, the

embedding theorem states that

Bs0,1
p0 (Rd) ⇢ Bs,1

p (Rd)

for any p � p0 and s � d
p < s0 � d

p0 . For example, see H. Triebel, Theory of Function Spaces

(Birkhäuser, 1983), Section 2.7. It is not hard to show that the above statement is equivalent

to (4) [remembering that �p is the maximal Besov index of order p]. The inequality (4) can

be extremely useful. E.g. it can be employed to show that Leray solutions of INS must satisfy

h|v|3ispace�time < +1 and many other important results.

We have so far considered the geometric version of the Parisi-Frisch multifractal model, but

there is another formulation, the probabilistic version. See Frisch (1995), Section 8.5.4 & 8.6.4

for a detailed discussion. In the probabilistic approach,

⇣Pp = lim inf
r!0

lnE(|�v(r)|p)
ln(r/L)

(⇤)

where E denotes average over a random ensemble. If this ensemble is space/time homogeneous,

then ⇣Pp  ⇣Gp almost surely (i.e. with probability one), where ⇣Gp is the geometric scaling

exponent defined by a space/time average for each individual ensemble realization v. If the

above limit (⇤) exists, then there is a theorem which states that the “scale-r Hölder exponent”

defined by

h(r;x) = ln |�v(r;x)|
ln(r/L)

has the following “large deviations property”

Prob(h(r) ⇡ h) ⇠ ( rL)
P (h)

where
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P (h) = supp[⇣
P
p � ph].

See R.S. Ellis, Entropy, Large Deviations and Statistical Mechanics (Springer, Berlin, 1985).

This function P (h)— the so-called “large-deviations rate function”—corresponds formally to

the codimension G(h) in the geometric approach. However, it need no longer be true that

P (h)  d, i.e. it is possible to have negative “dimensions” DP (h) = d� P (h) < 0!

Multifractal Phenomenology

Of course, as physicists, we don’t need to prove everything! Instead, we can use the multifractal

model as a simple phenomenology from which to derive testable consequences for comparison

with experiments & simulations (e.g. in the spirit of the “constituent quark model” in particle

physics of strong nuclear forces). We shall consider several important predictions of this mul-

tifractal phenomenology in this section. In a later chapter, on Lagrangian dynamics & mixing,

we shall examine more.

One important idea, proposed by

G. Paladin & A. Vulpiani, “Anomalous scaling laws in multifractal objects,” Phys.

Reports 156 (4) 147-225 (1987)

is the notion of a fluctuating cut-o↵ length ⌘h. This is the generalization of Kolmogorov

dissipation length ⌘ to multifractal turbulence with a spectrum of singularities [hmin, hmax],

not just h = 1
3 . In this idea, at every point one balances energy flux and dissipation

⇧`(x) ⇠= ⌫|rv̄`|2 at ` ⇠= ⌘(x)

Using

�u3(`)
`

⇠= ⌫ �u2(`)
`2

one obtains, as before,

`�u(`) ⇠= ⌫,

or, with

�u(`) ⇠ v0(
`

L
)h
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v0L(
`

L
)1+h ⇠= ⌫ =)

` ⇠= L(Re)�
1

1+h ⌘ ⌘h

with Re = v0L/⌫. Thus, the local dissipative cut-o↵ ⌘(x) depends upon the value of the local

Hölder exponent h(x), and ⌘(x) = ⌘h when h(x) = h. For h = 1
3 the above result reduces to

⌘1/3 = L · (Re)�3/4 = ⌘, the K41 value.

This result has several interesting and (in principle) testable consequences. For example, it leads

to the notion of an intermediate dissipation range, as elaborated by U. Frisch & M. Vergassola,

“A prediction of the multifractal model: the intermediate dissipation range,” Europhys. Lett.

14 439-444(1991); see also, U. Frisch (1995), Section 8.5.5.

In this idea, the formula for the structure function Sp(r) = h|�v(r)|pi is altered to

Sp(r) ⇠ up0

Z

{h: ⌘
h

<r}
dµ(h) (

r

L
)ph+(h)

Then, for L � r � ⌘(h⇤(p)),

Sp(r) ⇠ up0(
r
L)

⇣
p

just as before. However, for ⌘(h⇤(p)) � r � ⌘(hmin), we expect that the contribution of h

values from h⇤(p) to h(r/L), given by ⌘(h(r/L)) ⇠ r, will be cut out. Thus,

Sp(r) ⇠ up0(
r

L
)[ph(

r

L

)+(h( r

L

))]

⌘(h(
r

L
)) ⌘ L · (Re)

�1
1+h(r/L) ⇠ r

=) lnSp(r) ⇠= [ph(
r

L
) + (h(

r

L
))] ln(

r

L
)

ln(L/r)

lnRe
=

1

1 + h(r/L)
⌘ ✓

Taking the simultaneous limit Re ! 1, r ! 0 with

✓ = ln(L/r)
lnRe fixed,
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then

lim
Re!1,r!0,✓ fixed

lnSp(r)

lnRe
= �[p · h(p, ✓) + (h(p, ✓)))] · ✓

with

h(p, ✓) =

8
><

>:

h⇤(p) 0  ✓ < (1 + h⇤(p))�1

✓�1 � 1 (1 + h⇤(p))�1  ✓ < (1 + hmin)�1

This is an interesting parameter-free prediction that probes a range of range-scales on the border

of the inertial range and the dissipation range (including scales smaller than the K41 cut-o↵

⌘, if hmin < 1
3 .) Unfortunately, testing this prediction has proved quite challenging, since it is

di�cult for both experiments and simulations to resolve such small length-scales. For a recent

attempt, see

R. Benzi et al., “Inertial range Eulerian and Lagrangian statistics from numerical

simulations of isotropic turbulence,” J. Fluid Mech 653 221–244 (2010)

Another interesting set of predictions, of a similar character, are for velocity-gradient moments

h|rv|pi, or so-called velocity-gradient flatnesses

Fp =
h|rv|pi

h|rv|2ip/2

The key idea here is that of

M. Nelkin, “Multifractal scaling of velocity derivatives in turbulence,” Phys. Rev.

A 42 1226–1229 (1990)

who proposed to estimate

|rv(x)| ⇠ �u(⌘
h

)
⌘
h

⇠ v0
L (Re)

1�h

1+h

at points where h(x) = h. This should happen at a fraction of points of the order of

Fraction ⇠ (⌘hL )(h) ⇠ (Re)
�(h)
1+h

Thus, for Re � 1,

h|rv|pi ⇠ (
v0
L
)p
Z h

max

h
min

dµ(h)Re[
p(1�h)�(h)

1+h

]

⇠ (
v0
L
)pRe�p
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with

�p = suph[
(1�h)p�(h)

1+h ]

Frisch (1995), Section 8.6.5, describes a simple algorithm to determine the exponents �p. Here,

we focus on the important issue whether the multifractal theory is consistent with

⌫h|rv|2i �! " > 0 for Re � 1

which is equivalent to

h|rv|2i ⇠ (v0L )2 ·Re for Re � 1

or �2 = 1. We now show that, in the multifractal model,

�2 = 1 () ⇣3 = 1

This is completely consistent with the Kolmogorov 4/5-law! We establish this result assuming

only that hmin � �1. The proof is then as follows:

0 = �2 � 1 = sup
h
[
2� 2h� (h)

1 + h
� 1]

= sup
h
[
1� 3h� (h)

1 + h
]

() 1� 3h� (h)

1 + h
 0 for all h

and
1� 3h⇤ � (h⇤)

1 + h⇤
= 0 for some h⇤

() 1� 3h� (h)  0 for all h

and 1� 3h⇤ � (h⇤) = 0 for some h⇤

() 0 = sup
h
[1� 3h� (h)]

= 1� inf
h
[3h+ (h)] = 1� ⇣3 QED!

Notice that h⇤ = d⇣
p

dp |p=3 in this argument is the Hölder singularity that contributes all of the

energy dissipation asymptotically in the limit Re ! 1. The experimental/numerical results

show that h⇤ . 1
3 .

This multifractal theory for velocity-gradients and fluctuating cuto↵s is also consistent with

some other exact PDE results, the theorem of Cafarelli, Kohn, Nirenberg (1982) on partial
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regularity of Leray solutions of INS. Those authors showed that the singularity set for Leray

solutions is quite “small” in the precise sense that its (parabolic) Hansdor↵ dimension in space-

time is at most one:

S = spacetime singularity set of INS solution v

DH(S)  1

Furthermore, the “length” of S ( or 1-dimensional Hansdor↵ measure) is zero:

H1(S) = 0.

Finally CKN(1982) showed that v ! +1 approaching the singularity set S in spacetime such

that, essentially,

|v(x, t)| � (const.)
⇢

as (x, t) ! (x⇤, t⇤) 2 S and ⇢2 = |x � x⇤|2 + ⌫|t � t⇤|. In particular, as the singularity at

(x⇤, t⇤) is approached at equal times (t = t⇤), the velocity must blow up like r�1 which is a

Hölder singularity with h = �1. (For more precise statements of this blow-up, see the original

paper of CKN, 1982). We now show that these exact results are consistent with the multifractal

formalism, as described above.

We note that the formula for the fluctuating cuto↵ should more properly be written as

⌘h ⇠ L( Re
Re

c

)
�1
1+h

since the derivation neglected constants of proportionality. The constant Rec has the interpre-

tation of a “critical Reynolds number”. Thus,

Re < Rec and h � �1

=) ⌘h � L

This is consistent with a known rigorous result that the Leray solution of INS is regular ev-

erywhere if the Reynolds number Re is su�ciently small! For example, see O. Ladyzhenskaya,

Mathematical Theory of Viscous Incompressible Flow (Gordon & Breach, 1969). On the other

hand,

Re > Rec =) lim
h!�1

⌘h = 0!
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Thus, a real singularity (⌘h = 0) may occur for Navier-Stokes, but only if there exists an h  �1.

Note that the argument of CKN and that to derive the formula for ⌘h are both based on local

energy balance.

This leads, finally, to the issue of the validity of the macroscopic hydrodynamic description in

terms of INS, based on the multifracl model. Using the formula for ⌘h, it is easy to show that

the result of Corrsin (1959) for K41 generalizes to

⌘
h

`
mf

⇠ (Re)
h

1+h /Ma

Thus, as long as hmin > 0, then ⌘h � `mf for Re � 1 and Ma ⌧ 1. It appears from this

result that the macroscopic hydrodynamic description may break down if hmin < 0. However,

the important result of

J. Quastel & H.-T. Yau, “Lattice gases, large deviations, and the incompressible

Navier-Stokes equations,” Ann. Math. 148 51-108 (1998)

is that (at least for a “toy model” of discrete space and discrete molecular velocities) there is

some Leray solution of INS describing the coarse-grained velocity for Kn ⌧ 1 and Ma ⌧ 1,

even if the Leray solution develops singularities! Since Leray solution are not unique if singular,

molecular details may determine which is the physically correct Leray solution that applies.

Multifractal Model Based on Energy Dissipation

There is another version of the multifractal model based on energy dissipation

" = lim
⌫!0

⌫|rv

⌫ |2

This version arose historically even earlier than the Parisi-Frisch version, in the work of Man-

delbrot, e.g.

B. Mandelbrot, “Intermittent turbulence in self-similar cascades: divergence of high

moments and dimension of the carrier,” J. Fluid Mech. 62 331-358 (1974)

We have already seen that, if v⌫ ! v in spacetime L3, then " = lim⌫!0 |rv

⌫ |2 exists as a

positive measure which assigns a non-negative number to each (measurable) set � ⇢ Rd
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" : � 7�! "(�) � 0,

that is, finally, 2

"(�) =
R
� "(x)ddx

Now suppose that �r(x) is a square of sidelength r centered at x, or a ball of radius r centered

at x. Then we say that the measure " is Hölder continuous with exponent ↵ at point x, if

"(�r(x)) = O(( rL)
↵), r ⌧ L

Similarly, we may define the (maximal) Hölder exponent ↵(x) at point x by

↵(x) = lim inf
r!0

ln "(�r(x))

ln(r/L)
= lim inf

r!0
↵r(x).

Every part of the multifractal model for velocity increments may be carried over, in perfect

analogy, to the dissipation measure. Thus, the fraction of space on which ↵r(x) takes the value

↵ is determined by the codimension (↵) of the set, or, more conventionally, by its negative

f(↵) = �(↵):

Fraction({x : ↵r(x) ⇡ ↵}) ⇠ ( rL)
�f(↵) for r ⌧ L

In that case, one can expect that

< ["(�r)]p > ⇠ h"ip( rL)⌧p for r ⌧ L

with3

⌧p = inf
↵
{↵p� f(↵)},

f(↵) = inf
p
[p↵� ⌧p].

Considerable evidence has been obtained in experiments and simulations for multifractality of

the energy dissipation. See

C. M. Meneveau & K. R. Sreenivasan, “The multifractal spectrum of the dissipation

field in turbulent flows,” Nucl. Phys. B, Proc. Suppl. 2 49-76 (1987)
2
Rigorously, " has only been proved to be a spacetime measure. Thus "(�) should really be interpreted as

averaged over a small time-interval [t� ⌧, t+ ⌧ ] around t.
3
It is worthwhile noting that Mandelbrot (1974) did not introduce either ↵ or f(↵). Instead he employed a

di↵erent notion of “generalized dimensions” defined by D
p

= ⌧
p

/(p� 1) for each p.
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C. M. Meneveau & K. R. Sreenivasan, “The multifractal nature of turbulent energy

dissipation,” J. Fluid Mech. 224 429-484 (1991)

There is also a conjectured relation between the multifractal approaches, the Kolmogorov refined

similarity hypothesis. This subject properly belongs to the statistical approach, so we say only

a few words about it here. The basic paper is

A. N. Kolmogorov, “A refinement of previous hypotheses concerning the local struc-

ture of turbulence in a viscous incompressible fluid at high Reynolds number,” J.

Fluid Mech. 13 82-85(1962)

Kolmogorov proposed that the random variable

Wr(x) ⌘ |�v(r;x)|
["(�

r

(x))r]1/3

conditioned on "(�r(x)) is independent of "(�r(x)) when the “local Reynolds number”Rer(x) ⌘
"(�r(x))1/3r4/3/⌫ is � 1 and has a universal distribution independent of r. In that case, the

RSH implies

h|�v(r)|p | "(�r)i = hW p
r | "(�r)i["(�r)]

p/3

⇡ hW pi["(�r)r]
p/3

for Rer � 1, so that

h|�v(r)|pi = h|�v(r)|p | "(�r)i
⇡ Cp

⌧h
"(�r)

ip/3�
rp/3, Cp = hW pi

⇠ (h"ir)p/3( r
L
)⌧p/3

⇠ up0(
r

L
)⇣p

with

⇣p = p/3 + ⌧p/3

This relation has met with some empirical success (e.g. see Meneveau & Sreenivasan, 1991).

However, many theoretical criticisms have been levelled against the RSH. See Frisch(1995),

Section 8.6.2 for a survey & discussion.
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(F) Scale-Locality Revisited

We are now in a position to review the issue of scale-locality of turbulent energy cascade, in

light of our understanding of intermittency & anomalous scaling. Our previous local-in-space

estimates were subject to a criticism that velocity increments �v(r;x) need not show scaling

behavior locally. In fact, experiments & simulations show that �v(r;x) at a point x tends to

oscillate rather wildly for r ⌧ L and does not show clean scaling. (This is one of the reasons

that more sophisticated methods than structure functions are required to get good estimates

for D(h)-spectra, e.g. the maximum-modulus wavelet method.) However, structure-functions

themselves seem to have very good scaling

Sp(r) = h|�v(r)|pi ⇠ up0(
r
L)

⇣
p

we therefore can obtain more controlled estimates on fractional contibutions by using global Lp

estimates rather than local-in-space estimates; i.e., good estimates hold for quantities such as

k�v̄�(r)k
p

k�v(r)k
p

, � � r or
k�v0

�

(r)k
p

k�v(r)k
p

, � ⌧ r

Let us state a precise result for velocity increments:

Lemma. If v satisfies for some exponent 0 < �p < 1 the scaling law

k�v(r)kp ⇠ r�p as r ! 0

then the velocity increment is IR-local in the Lp-sense: for � � r,

k�v(r)� �v0
�(r)kp = k�v̄�(r)kp = O(r���1) = k�v(r)kp ·O(( r

�)1��
p)

and also UV-local in the Lp-sense: for � ⌧ r,

k�v(r)� �v̄�(r)kp = k�v0
�(r)kp = O(��p) = k�v(r)kp ·O(( �r )

�
p)

The proof is essentially identical to that which we gave before, but replacing local bounds by

global Lp bounds and local Hölder conntinuity by global scaling.

Since quantities such as coarse-grained velocity-gradients D̄`(v) = rv̄` and stress ⌧ `(v,v) can

all be expressed in terms of velocity increments, the basic locality properties extend directly to

them as well. For example, for coarse-grained velocity gradients, with p � 1:
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IR-locality:

kD̄`(v)� D̄`(v0
�)kp = kD̄`(v̄�)kp = O(��

p

�1)

UV-locality:

kD̄`(v)� D̄`(v0
�)kp = kD̄`(v0

�)kp = O( �
�

p

` )

and for subscale stress, with p � 2:

IR-locality:

k⌧ `(v,v)� ⌧ `(v0
�,v)kp/2 = k⌧ `(v̄�,v)kp/2 = O(`�p

+1��
p

�1)

UV-locality:

k⌧ `(v,v)� ⌧ `(v̄�,v)kp/2 = k⌧ `(v0
�,v)kp/2 = O(`�p��p)

Notice that in order to obtain these estimates for the stress we had to use the Hölder inequality

to bound Lp/2 norms by a product of two Lp norms, e.g. k�v(r)�v(r)kp/2  k�v(r)k2p.

These estimates already tell us that the contributions of modes distant in scale — either � � `

or � ⌧ ` — are small and vanish in the limits that `/� ! 0 or �/` ! 0. We can further

estimate the relative contributions, if we know something about the scaling of the main part,

e.g.

h|⌧ `(v,v)|p/2i ⇠ up0(
`
L)

⇢
p/2

Since |⌧ `(v,v)| ⇠ �u2(`) one might expect, heuristically, that

h|⌧ `(v,v)|p/2i ⇠ h�up(`)iup0( `
L)

⇣
p

and, thus,

⇢p/2 = ⇣⇢.

In fact, this relation works quite well. For experimental evidence, see

C. Meneveau & J. O’Neil, “Scaling laws of the dissipation rate of turbulent subgrid-

scale kinetic energy,” Phys. Rev. E 49 2866-2874(1994)

In that case, k⌧ `(v,v)kp/2 ⇠ `2�p , so that one obtains

IR-locality: k⌧ `(v̄�,v)kp/2 ⇠ k⌧ `(v,v)kp/2 ·O(( `
�)1��

p)

UV-locality: k⌧ `(v0
�,v)kp/2 ⇠ k⌧ `(v,v)kp/2 ·O(( �` )

�
p)
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Similar consideration apply to the energy flux

⇧`(v,v,v) = �D̄`(v) : ⌧ `(v,v)

which depends on three velocity modes. Since, heuristically,

⇧` ⇠ �u3(`)
`

we might expect that

h|⇧`|p/3i ⇠ `⌧p/3

with

h|⇧`|p/3i ⇠ h�up(`)i/`p/3 ⇠ `⇣p�
p

3

so that

⌧p/3 = ⇣p � p/3

or

⇣p = p/3 + ⌧p/3

This looks very similar to the result obtained from Kolmogorov RSH, except that here ⌧p/3 is

the scaling of energy flux not volume-integrated energy dissipation. In fact, the above relation

was proposed by Kraichnan as an alternative to Kolmogorov’s relation:

R. H. Kraichnan, “On Kolmogorov’s inertial-range theories,” J. Fluid Mech. 62

305-330 (1974)

This is thus called Kraichnan’s refined similarity hypothesis (RSH). For empirical evidence in

favor of this relation, see

S. Cerutti & C. Meneveau, “Intermittency and relative scaling of subgrid scale

energy dissipation in isotropic turbulence,” Phys. Fluids 10 928-937 (1998)

Q. Chen et al. “Intermittency in the joint cascade of energy and helicity,” Phys.

Rev. Lett. 90 214503 (2003)

This result may also be stated as
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k⇧`kp/3 ⇠ `3�p

�1, p � 3

In that case, we can make similar locality statements about the energy flux itself, such as

IR-locality: k⇧`(v̄�,v,v)kp/3 = k⇧`(v,v,v)kp/3 ·O(( `
�)1��

p)

UV-locality: k⇧`(v0
�,v,v)kp/3 = k⇧`(v,v,v)kp/3 ·O(( �` )

�
p)

In these estimates one might replace any of the three v’s by a v̄� or v0
� and the bound will be

the same. Replacing two or more v’s will lead to even smaller bounds. Particularly interesting

is the case that p = 3, because

| R ddx ⇧`(x)| 
R
ddx|⇧`(x)| = k⇧`k1

bounds the total space-integrated energy flux to small scales. Thus, employing the above bounds

for p = 3 we see that the mean energy flux over the whole domain is dominated by interactions

that are local in scale, as long as

0 < �3 < 1.

This must be true as long as there is a persistent energy cascade at all, since we know that then

�3 ⇠= 1/3.

The estimates for p > 3 give stronger bounds on the scale-nonlocal contributions, showing that

not only average flux is dominated by modes local-in-scale but also pth-order moments of flux

are dominated by local modes. In the limit p ! 1 these estimates become bounds on nonlocal

contributions to flux uniformly in space. However, we know that �p is decreasing and

�p & hmin as p ! 1.

Thus, the IR-bounds become better for larger p, but the UV-bounds become worse. As p ! 1,

the moments h|⇧`|p/3i are more and more dominated by the most singular events for which

transfer is less local. However, it is reassuring that strong forms of scale-locality survive even

in the presence of intense intermittency. For more on this topic, see

G. Eyink, Physica D 207 91-116 (2005)
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