
(D) Empirical Results on Turbulence Scaling of Velocity Increments

We shall present here a selection of the empirical studies of inertial-range scaling of velocity

increments by laboratory experiment and numerical simulation. We begin with

? F. Anselmet et al.,“High-order velocity structure functions in turbulent shear

flow,” J. Fluid Mech. 140 63-89(1984)

This paper studied the longitudinal velocity structure functions

SL
p (r) = h[�vL(r)]pi ⇠ CL

p `
⇣L
p

and found good evidence of derivations from K41 for higher-order values of p. It was historically

important in stimulating a great deal of work to understand the exponents ⇣Lp .
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? K. R. Sreenivasan et al., “Asymmetry of velocity increments in fully developed

turbulence and the scaling of low-order moments,” Phys. Rev. Lett. 77 1588-1491

(1996)

These authors considered also absolute longitudinal structure functions

SAL
p (r) = h|�vL(r)|pi ⇠ CAL

p `⇣
AL

p

and structure functions for positive and negative parts

�u±L (r) =
|�v

L

(r)|±�v
L

(r)
2 � 0

so that �vL(r) = �u+L (r)� �u�L (r) and

S±
p (r) = h[�u±L (r)]pi ⇠ C±L

p `⇣
±L

p .

Since |h[�vL(r)]pi|  h|�vL(r)|pi, it is easy to see that

⇣AL
p  ⇣Lp .

The paper reports evidence that

⇣Lp ⇠= ⇣AL
p

⇠= ⇣�L
p < ⇣+L

p for p > 1.
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FIG. 3. The ratio S2
q ⇤S1

q plotted against r in log-log coordi-
nates. Note that the ratio is less than unity for all r when q , 1
and greater than unity when q . 1. As argued in the text, this
is consistent with ramplike structures in the velocity trace. The
bump in high-order moments is weaker for simulations data.

for all r, which is precisely Eq. (4) inferred for the ramp

model. This does not appear to be a coincidence. The

physical interpretation of Du1
r is that it corresponds to

regions of acceleration while Du2
r corresponds to regions

of deceleration, just as for the long and short legs of the

ramp structure, respectively.

A second point to note is that all curves for q . 1
show, by and large, a decreasing trend with increasing

r. If there were power laws to these curves, one may

conclude that the scaling exponents for the plus structure

functions are larger than for the minus structure functions.

It is difficult to quantify this feature because of the

uncertainty in identifying the scaling region precisely.

Some additional information can be had by plotting the

ratios Sq⇤S
q⇤2
2 , S1

q ⇤S
q⇤2
2 , and S2

q ⇤S
q⇤2
2 against logr. This

is shown in Fig. 4 for q � 4. The scaling region in each
of these plots is somewhat different. However, if we use

those regions, we note that the minus exponent is almost

identically equal to that for the full structure function,

whereas the plus exponent is larger than the minus

exponent. Simulations data confirm this observation

qualitatively.

FIG. 4. The logarithm of the ratios S4⇤S2
2 , S2

4 ⇤S2
2 , and S1

4 ⇤S2
2

plotted against logr. These ratios appear to scale, albeit in
different ranges of r. From top to bottom, the slopes of the
straight line fits and the least square errors are, respectively,
20.099 6 0.003, 20.098 6 0.004, and 20.070 6 0.002. This
shows that the plus exponent is larger than the minus exponent.

This conclusion is also apparent in the ESS plots;

here, one plots the qth order structure function against

the third-order structure function and determines scaling

exponents. Our experience is that ESS in this form

does not work to well for the pipe flow, consistent

with our previous experience in another shear flow

[15]. However, if the third-order structure function is

replaced by the generalized third-order structure function

(following Ref. [12]), there is much more convincing

scaling, for which the plus exponent is, as already

noted, larger than the minus exponent. Numerical data

are in agreement. We have refrained from giving the

precise exponents because the latter procedure cannot be

justified easily. It would be most desirable to confirm

these conclusions at higher Reynolds numbers. The

atmospheric data available to us (Rl � 2000, see [15]),
for which the convergence is reasonably satisfactory for

the fourth order, corroborate the basic conclusion.

The results so far suggest that there is a basic difference

between the plus and minus parts of the velocity incre-

ments. The Kolmogorov law is an expression of part of

this fundamental difference. The negative part becomes

more dominant with the moment order and overwhelms

the positive part asymptotically. Two related pieces of

evidence presented in earlier work are worth recalling:

(a) The odd exponents of high-order structure functions

consistently lie above a smooth curve that can be drawn

through even-order exponents [15]; in particular, they are

different for the classical and generalized structure func-

tions (Table I, Ref. [4]). (b) The ratio j⌅Dun
r ⇥j⇤⌅jDur jn⇥

is comparable to unity for large odd n (Table II, Ref. [4]).

Whether the emphasis on these differences will lead us to a

better theoretical understanding of inertial scaling remains

to be seen.
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FIG. 5. (a) Low-order scaling exponents for generalized struc-ture functions compared with q!3 as well as with outcomes ofthe intermittency models of [19] and [21]. The inset shows thescaling of the generalized structure function of order 0.5. Thefull line is for the model of Ref. [21]. (b) Comparison of theplus and minus exponents with those of generalized structurefunctions.
As already remarked, the present work reveals somecorrespondence with the ramp model for the velocity,and draws attention to a change in behavior of thestructure functions at q ! 1. This naturally suggests apotential connection to the work recently carried out forrandomly forced Burger’s equation [16], for turbulencewithout pressure [17], and for passive scalars advectedby a rapidly varying velocity field [18]; these papersshow that the scaling exponents transition from a regularbehavior for small q to an anomalous behavior forlarge q. While there have been many measurements ofexponents for large q, no such measurements exist forlow q below unity. Here, we have obtained low-orderscaling exponents (q as low as 0.25) for Sq"r# as well asthe positive and negative structure functions. Figure 5(a)shows the simulations data. The inset is an example of theplots from which these exponents have been determined.Both experiment and simulations yield nearly identicalresults. The exponents vary linearly with q for low-order moments, but are measurably different from q!3expected from Kolmogorov’s universality [1]. Instead,they agree well with the refined similarity hypothesis [19]if one takes a value of 0.25 for the intermittency exponent[20], and with the intermittency model of Ref. [21]. Inthe limit q ! 0, the intermittency models just consideredyield exponents about 10% different from q!3.

The fact that some intermittency models agree with mea-sured exponents for q both below and above unity suggeststhat the exponents possess no transitional behavior envis-aged in Refs. [16–18]. This is so even though the plusand minus structure functions themselves show a changein behavior at q ! 1 (see Fig. 3). Figure 5(b) shows thatthe exponents for the generalized structure functions arenot too different from those for the plus and minus struc-ture functions (although, in general, the minus exponentsare the largest and the plus exponents are the smallest).We have benefited enormously from discussions withVadim Borue, Leo Kadanoff, Robert Kraichnan, MarkNelkin, Evgeny Novikov, Sasha Polyakov, GustavoStolovitzky, Akiva Yaglom, and Victor Yakhot. Thework was supported by the Air Force Office of ScientificResearch, and K.R.S. was supported at the Institute forAdvanced Study by the Sloan Foundation.
[1] A. N. Kolmogorov, C.R. Acad. Sci. USSR 30, 299 (1941).[2] The inertial range is intermediate between the dissipativeand the large scale turbulence.[3] A. N. Kolmogorov, C.R. Acad. Sci. USSR 32, 16 (1941).[4] S. I. Vainshtein and K. R. Sreenivasan, Phys. Rev. Lett.73, 3085 (1994).[5] S. I. Vainshtein, K.R. Sreenivasan, R. T. Pierrehumbert,V. Kashyap, and A. Juneja, Phys. Rev. E 50, 1823 (1994).[6] H. G. E. Hentschel and I. Procaccia, Physica D 8, 435(1983).[7] Briefly, "q 2 1#Dq is the scaling exponent for the qthpower of a measure distributed on a set.[8] S. Chen and X. Shan, Comput. Phys. 6, 643 (1992).[9] F. Anselmet, Y. Gagne, E. J. Hopfinger, and R.A. Anto-nia, J. Fluid Mech. 140, 63 (1984).[10] J. Laufer, NACA Tech. Rep. 1174 (1954).[11] The basis for the procedure is the Kolmogorov equation[3] derived for globally homogeneous and isotropic tur-bulence. It appears that the requirement of global homo-geneity can be relaxed [see, U. Frisch, Turbulence: TheLegacy of A.N. Kolmogorov (Cambridge University Press,Cambridge, 1995), Sect. 6.2], but the effects of stronganisotropy remain unclear.[12] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F.Massaioli, and S. Succi, Phys. Rev. E 48, R29 (1993).[13] N. Cao, S. Chen, and Z.-S. She, Phys. Rev. Lett. 76, 3711(1996).[14] A. S. Monin and A.M. Yaglom, Statistical Fluid Mechan-ics: Mechanics of Turbulence (M.I.T. Press, Cambridge,MA, 1975), Vol. 2.[15] G. Stolovitzky and K.R. Sreenivasan, Phys. Rev. E 48,R33 (1993).[16] A. Chekhlov and V. Yakhot, Phys. Rev. E 52, 5681(1995).[17] A. Polyakov, Phys. Rev. E 52, 6138 (1995).[18] V. Yakhot, Phys. Rev. E (to be published).[19] A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).[20] K. R. Sreenivasan and P. Kailasnath, Phys. Fluids A 5,512 (1993).[21] Z.-S. She and E. Leveque, Phys. Rev. Lett. 72, 336 (1994).1491
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? S. Chen, et al., “Refined similarity hypothesis for transverse structure functions

in fluid turbulence,” Phys. Rev. Lett. 79, 2253-2256(1997).

This paper is one of several papers around 1997 ( see references therein) that studied di↵erences

in scaling of longitudinal and transverse velocity structure functions

h[�vT (r)]pi ⇠ CT
p `

⇣T
p .

The paper reports evidence that

⇣Tp < ⇣Lp .
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FIG. 1. Flatness of velocity increments, SL
4 !r"#SL

2 !r"2 and

ST
4 !r"#ST

2 !r"2, as functions of r .

structure functions. We employ the numerical data from

simulations of isotropic turbulence, carried out using 5123

mesh points in a periodic box; a statistically steady state

was obtained by forcing low Fourier modes. For details,

see the paper cited first in [8]. The Taylor microscale

Reynolds number Rl ! 216, which is close to the limit of
the current computational capability. Averages over ten

large-eddy turnover times were used in the data analysis.

Figure 1 shows the flatnesses of longitudinal and trans-

verse velocity increments as functions of r . For all val-
ues of r except perhaps those comparable to the box size,
the velocity increment along the transverse direction has a

larger flatness, suggesting that the transverse velocity in-

crement is more intermittent [14]. This shows that signifi-

cantly more averaging is required for transverse quantities

than for longitudinal quantities.

In Fig 2, the transverse structure functions ST
p !r" are

plotted as functions of r for p ! 2, 4, 6, 8, 10. An inertial-
range power-law scaling can be identified for 0.2 # r #
0.6 (the whole box size being 2p). This is also the scaling
range determined [16] from Kolmogorov’s 4#5 law for the
third-order structure function [17].

The exponents z T
p , determined by least-squares fits

within the inertial range just mentioned, are plotted in

Fig. 3. The use of the extended self-similarity (ESS)

technique [18] yields very similar results [19]. The re-

sults for z L
p , obtained earlier [20], have also been plot-

ted for comparison. These results demonstrate that while

both exponents show considerable anomaly due to inter-

mittency effects (as evidenced by the deviation from the

dotted line given by K41), the transverse exponents are

systematically smaller than the longitudinal ones for p .
3. Typical scaling exponents for ST

p are z T
2 ! 0.71 6

0.04, z T
4 ! 1.25 6 0.067, z T

6 ! 1.63 6 0.079, and z T
8 !

1.87 6 0.078. While the longitudinal exponents agree

quite well with existing scaling models [9,10,21], the dif-

ference between the transverse exponents and the models

FIG. 2. The transverse structure functions ST
p !r" as functions

of r for p ! 2, 4, . . . , 10.

increases with p. For brevity, we show only a comparison
with the log-Poisson model [10], which is typical.

If the scaling exponents for longitudinal and transverse

structure functions are different, it is clear that Eq. (1), now

known to be valid for the former, cannot be valid for the

latter; some modification will therefore be required. One

possibility suggests itself from kinematic considerations.

Recall from the second reference of [6] that RSH may

be expected because the longitudinal velocity increment

dur is an integral over the separation distance r of the
velocity derivative ≠u#≠x, whose square is one of

the components of the energy dissipation. In a similar

way, the transverse structure function dyr is the integral

of ≠y#≠x, which is one of the two terms of the vorticity
component vz ! ≠y#≠x 2 ≠u#≠y. It is reasonable to

FIG. 3. Numerical results for the transverse scaling expo-
nents, z T

p and z L
p , as functions of p. The dotted line is for

the normal scaling relation (K41) and the dashed line is for the
log-Poisson model [10].
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A more recent systematic study of this issue is contained in

? T. Gotoh et al., “Velocity fields statistics in homogeneous steady turbulence ob-

tained using a high-resolution direct numerical simulation,” Phys. Fluids, 14 1065-

1081(2002)

pressure structure function !("rp)2#!!(p(x"r)#p(x))2#
through the Poisson kernel.43,71,75,76 This relation may serve

as a constraint among the three structure functions at the

fourth order, but it is not restrictive in the sense that there is

no direct relation between S4
L , S4

T , and S2,2
M .54,72,77,78 Nelkin

argued that the pressure spectrum can be expressed in terms

of the dissipation spectrum E$(k)!4%k2F &!$x$x"r#' , the
enstrophy spectrum E((k)!4%k2F &!(x(x"r#' , and the
spectrum of the product of the enstrophy and dissipation

EM(k)!4%k2F &!$x(x"r#' . He suggested that the three ex-
ponents are equal in the limit of high Reynolds

numbers.71,76,87 However, the exponents in the spectra &for
example, )$ in E$(k)!C$$̄2k#1(kL)#)$

' are not necessar-
ily equal to those of S4

L(r), S4
T(r), or S2,2

M (r). The former are

the spectra of the dissipation range quantities, while the latter

are the fourth order correlations of inertial range quantities.

The DNS values of the scaling exponents are *4
T!1.27,

*2,2
M !1.28, and *4

L!1.29 for R+!460 which are obtained by
averaging over the scaling range. The difference between

these values is within 3%. Figures 33 and 34 show the varia-

tion of the fourth order scaling exponents with separation

distance for two Reynolds numbers. At the high end of the r

range, the difference between the exponents is less. Although

it is again difficult to draw definite conclusions from the

figures, it seems that the differences between the three scal-

ing exponents decrease with the Reynolds number.71

For higher order moments p$4, there are no simple
equations to directly relate the longitudinal and transverse

structure functions. A dynamical equation relates different

types of structure functions at various orders.54,72,77,78 L’vov

et al. have pointed from the view point of the irreducible

representation of the rotation symmetry group that the longi-

tudinal and transverse structure functions must have the

same asymptotic scaling exponents for infinite Reynolds

number, but different exponents can be observed when the

scaling range is not long enough.39 He et al. discussed that

the scaling exponents for locally averaged enstrophy and dis-

sipation are equal for infinite Reynolds number, but may be

different for finite Reynolds number.40 From this argument,

they suggested that the scaling exponents for the longitudinal

and transverse structure functions are also equal at infinite

Reynolds numbers. Zhou and Antonia suggested that the dif-

ference ,*p!*p
L#*p

T vanishes at sufficiently large Reynolds

numbers.37 However, the present data indicate that the differ-

ence ,*p for R+!381 and 460 is larger than the value ,*p
extrapolated from the experimental data. The exponents in

Table III and Fig. 32 are average values over the entire scal-

ing range and indicate *p
T%*p

L for p$4. The overall trend of
the local scaling exponents within the scaling range suggests

that the rate of the increase of *p
T with respect to the order is

slower than that of *p
L &fact -6.'. Although the asymptotic

state is beyond the scope of the present DNS study, the above

observations and facts suggest that *p
T is smaller than *p

L

when p$4. If some portion of this difference at higher or-
ders arises from the insufficient degree of isotropy, a longer

time average would provide insights into this problem. If

other portion of the difference comes from the insufficient

length of the scaling range, it is necessary to extend farther

the scaling range even when we use the invariant scalar func-

FIG. 32. Variation of the scaling exponents *p
L and *p

T when R+!460. Sym-
bols are the results of the present DNS, star: *p

L , circle: *p
T . SL, MF, AA,

and K62 are the curves by She and Lévêque model -Ref. 70., Yakhot’s mean
field theory -Ref. 72., Arimitsu and Arimitsu’s generalized entropy theory
with )!0.25, and K62 with )!0.25, respectively.

FIG. 33. Comparison of the fourth order *2,2
M . R+!381. A horizontal line

indicates 1.28.

FIG. 34. Comparison of the fourth order scaling exponents *4
L , *4

T , and

*2,2
M . R+!460. A horizontal line indicates 1.28.
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tudinal and transverse structure functions must have the
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number, but different exponents can be observed when the

scaling range is not long enough.39 He et al. discussed that
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sipation are equal for infinite Reynolds number, but may be

different for finite Reynolds number.40 From this argument,

they suggested that the scaling exponents for the longitudinal

and transverse structure functions are also equal at infinite

Reynolds numbers. Zhou and Antonia suggested that the dif-

ference ,*p!*p
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T vanishes at sufficiently large Reynolds

numbers.37 However, the present data indicate that the differ-

ence ,*p for R+!381 and 460 is larger than the value ,*p
extrapolated from the experimental data. The exponents in

Table III and Fig. 32 are average values over the entire scal-

ing range and indicate *p
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L for p$4. The overall trend of
the local scaling exponents within the scaling range suggests

that the rate of the increase of *p
T with respect to the order is
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L &fact -6.'. Although the asymptotic

state is beyond the scope of the present DNS study, the above

observations and facts suggest that *p
T is smaller than *p

L

when p$4. If some portion of this difference at higher or-
ders arises from the insufficient degree of isotropy, a longer

time average would provide insights into this problem. If

other portion of the difference comes from the insufficient
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L , *4

T , and
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M . R+!460. A horizontal line indicates 1.28.
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T vanishes at sufficiently large Reynolds
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ing range and indicate *p
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L for p$4. The overall trend of
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that the rate of the increase of *p
T with respect to the order is
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L &fact -6.'. Although the asymptotic

state is beyond the scope of the present DNS study, the above
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ders arises from the insufficient degree of isotropy, a longer

time average would provide insights into this problem. If

other portion of the difference comes from the insufficient
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There has been much phenomenological work to “fit” the scaling exponents with simple analytic

formulas. For example,

Z. S. She and E. Lévêque, “Universal scaling laws in fully developed turbulence,”

Phys. Rev. Lett. 72 336-339(1994)

argues that

⇣Lp = p
9 + 2� 2(23)

p/3.

This fits the data quite well. (Note in particular that ⇣L3 = 1 as required). There are some

interesting physical ideas behind this formula, but no substantial use of the Navier-Stokes

dynamics was made in its derivation. For more about early phenomenological models, consult

the book of U. Frisch!

More use is made of the Navier-Stokes equation in Lagrangian stochastic models, such as

L. Chevillard & C. Meneveau, “Intermittency and university in a Lagrangian model

of velocity gradients in three-dimensional turbulence,” Comptes Rendus Mecanique

335 187-193 (2007). Arxiv.org: physics/0701274

There is, however, no generally accepted theory of any of the scaling exponents for Navier-Stokes

turbulence (except ⇣L3 = 1 of course!) There is still a big open problem.

Successful analytical calculations have been made in toy models, such as Burgers equation. More

recently, very important results were obtained in the Kraichnan model of random advection.

This work is reviewed in:

G. Falkovich, K. Gawȩdzki & M. Vergassola, “Particles and fields in fluid turbu-

lence,” Rev. Mod. Phys. 73 913-975 (2001)

In the Kraichnan model successful calculations have been made of scaling exponents ⇣n for

scalar structure functions.

ALL of this work, however, requires the statistical approach, which is outside the scope of this

course.
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(E) The Multifractal Model

We shall now return to an important general explanation/picture of anomalous scaling, the

multifractal model. This framework does not provide a quantitative prediction for scaling

exponents, but it does yield some predictions about the relation of the ⇣p’s to other measurable

quantities, as well as some useful insights.

Local Hölder Exponents & Fractal Dimensions

We have defined earlier the notion of Hölder continuity with an exponent h at point x. However,

we have not defined the notion of the Hölder exponent h(x). Ideally, this should mean something

like

|�v(r,x)| ⇠ vrms(
`
L)

h , with h = h(x) when `⌧ L,

or, more precisely, that

limr!0
ln |�v(r,x)|
ln(r/L) = h ⌘ h(x)

However, this limit need not exist! Thus, we must follow a similar strategy as far as for the

global scaling exponent ⇣p and define

h(x) = lim infr!0
ln |�v(r;x)|
ln(r/L) = lim`!0 inf |r|<`

ln |�v(r;x)|
ln(r/L) .

This is the maximal Hölder exponent of v at x, i.e. v is Hölder continuous with exponent

h = h(x) � " at x for any " > 0 but not with exponent h(x) + " for any ✏ > 0. Just as for

the global scaling exponents ⇣p, we employ definitions like those above under the assumption

that viscosity ⌫ ! 0 first (before r ! 0). Otherwise, we are interested in the value of h

defined by an intermediate asymptotics for some range of length-scales ⌘h(x) ⌧ ` ⌧ L. If

�u(r;x) ' (r ·r)v(x) for r . ⌘h(x), then

ln |�v(r;x)|
ln(r/L) ' 1 for r . ⌘h(x),

and the infimum over |r| < ` is achieved for r & ⌘h(x). A little later we shall present some

heuristic estimates of the size of ⌘h(x).
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The above definitions are adequate for 0 < h < 1, but not otherwise. For h > 1, we say that v

is Hölder continuous at x with exponent h if v is k-times continuously di↵erentiable

k = JhK = integer part of h

and if

rk
v 2 Cs(x), s = ((h)) = h� JhK = fractional part of h.

But, for this definition, if h > 1, then

�v(r;x) = (r ·r)v(x⇤), x⇤ between x and x+ r

=) �u(`;x) = O(`)

Hence, (first-order) increments do not distinguish di↵erent values of h! There are various

alternatives that allow one to define Hölder exponents for h outside the range 0 < h < 1.

One alternative is to consider higher-order increments �kv(r), defined iteratively by

�1v(r;x) = �v(r;x) = v(x+ r)� v(x)

�kv(r;x) = �k�1
v(r;x+ r)� �k�1

v(r;x), k � 2

For example,

�2v(r;x) = v(x+ 2r) + v(x)� 2v(x+ r),

or, perhaps the more symmetrical choice,

���+v(r;x) = v(x+ r) + v(x� r)� 2v(x),

by a combination of a forward di↵erence �+v(r;x) = v(x+r)�v(x) and a backward di↵erence

��v(r;x) = v(x)� v(x� r). It then turns out that, for all h > 0,

v 2 Ch(x) () �kv(r;x) = O(`h) for k � JhK.

Another possibility is to use wavelet coe�cients. Suppose that  ⌫ for ⌫ = 1, · · · , 2d � 1, are

“mother wavelets” and � an associated “scale function” which generate an orthonormal basis

in L2(Rd), as

 Nn⌫(x) = 2dN/2 ⌫(2Nx� n)

and
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�0,n(x) = �(x� n),

N 2 N, the scale index

n 2 Zd, the position index

⌫ = 1, · · · , 2d � 1, the degeneracy index

We may then expand each component of v as

vi(x) =
P

n

B(i)
n

�0,n(x) +
P

Nn⌫ A
(i)
Nn⌫ Nn⌫(x)

with

B(i)
n

=< vi,�0,n >,A(i)
Nn⌫ =< vi, Nn⌫ >

the wavelet coe�cients of vi. It is known that the wavelet coe�cients give “almost” a charac-

terization of Ch(x). That is,

v 2 Ch(x) =) sup{i,n,⌫: supp( 
Nn⌫

)3x} |A(i)
Nn⌫ | = O(2�N( d2+h)), 8N � 1

and, conversely,

sup
{i,n,⌫: supp( 

Nn⌫

)3x}
|A(i)

Nn⌫ | = O(2�N( d2+h)), 8N � 1

=) �v(r;x) = O(|r|h ln( 2

|r|)).

Here it is assumed that 0 < h < 1 and that  ⌫ are C1 and compactly supported. The similar

statement applies for any h > 0, with �v ! �kv for k = JsK, if one assumes also that  ⌫ 2 Ck+1,

such that  ⌫ has all moments of order less than k + 1 vanishing, i.e.
R
ddx Pk(x) ⌫(x) = 0

for any polynomial Pk(x) of degree  k. One can therefore also define

h(x) = lim inf
N!1

sup{i,n,⌫:supp( 
Nn⌫

)3x} log2[2
Nd/2|A(i)

Nn⌫ |]
�N

This definition has advantages because it also extends to negative Hölder singularities. One

could intuitively expect that a power-law blow-up, like

|v(x+ r)| ⇠ (r/L)h for r ⌧ L with h < 0
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would correspond to v 2 Ch(x), i.e. v belonging to a negative Hölder class at x. It can be

shown that this is true if one defines Ch(x) to consist of v such that

sup
{i,n,⌫: supp( 

Nn⌫

)3x}
|A(i)

Nn⌫ | = O(2�N( d2+h))

for h > �d. This doesn’t exactly coincide with the standard definition of Hölder continuity for

h > 0, but the maximal Hölder exponents h(x) are the same.
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Last remark: One can similarly define (assuming 0 < h < 1)

hL(x) = lim inf
r!0

ln |�vL(r;x)|
ln(r/L)

= longitudinal Hölder exponent of v at point x

hT (x) = lim inf
r!0

ln |�vT (r;x)|
ln(r/L)

= transverse Hölder exponent of v at point x

Since |�v(r)|2 = |�vL(r)|2 + (d� 1)|�vT (r)|2, it is easy to see that h(x) = min{hL(x), hT (x)}.
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Fractal Dimensions

We now consider some of the notions of non-integer dimensionality for sets S ⇢ Rd. We

first consider the so-called box-counting dimension DB(S) (also known as packing dimension,

Minkowski-Bouligand dimension, or simply fractal dimension). If S ⇢ Rd is bounded, let

Nk(S) = numbers of hypercubes in a regular grid of sidelength 2�k which intersect S

Figure 1. Illustration of the box-counting method

Define

DB(S) = lim sup
k!1

1

k
log2Nk(S) = upper fractal dimension

DB(S) = lim inf
k!1

1

k
log2Nk(S) = lower fractal dimension

so that DB(S)  DB(S).

If DB(S) = DB(S) = DB, then we say that S has fractal dimension DB and, in that case,

Nk(S) ⇠ 2kDB .

Notice that the total number of boxes per unit volume grows as

Nk ⇠ 2kd.

Hence, the fraction of boxes intersecting S goes as

N
k

(S)
N

k

⇠ 2�k(d�D
B

(S)) ⇠ 2�k·
B

(S)
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where

B(S) = d�DB(S) = fractal codimension of S.

Remark: Rather than boxes of sidelength 2�k, decreasing by factors of 2, one can use any

factor � > 1 and sidelengths ��k. In that case, Nk(S) ⇠ �kDB

(S) with the same value DB(S),

independent of the � selected.

Example: Consider the middle-thirds Cantor set K = \Kn:

Figure 1. Iterative construction of the Cantor set

Choosing � = 3, we get (by direct counting)

Nk(K) = 2k

so that

DB(K) = lim
k!1

log3Nk(K)

k

= lim
k!1

log3(2
k)

k

= lim
k!1

k · log3(2)
k

= log3(2) =
ln 2

ln 3
.
= 0.6309 · · ·

There are many other important notions of fractal dimensionality, e.g. Hausdor↵ dimension

DH(S). A full discussion of DH(S) requires measure theory, but, essentially, the di↵erence is

that it involves covering the set with balls of size  2�k and not just = 2k, so that the number
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of balls required is always fewer (and could be much fewer). Thus,

DH(S)  DB(S)  DB(S).

For a complete discussion of all these matters, see

K. Falconer, Fractal Geometry, Mathematical Foundations and Applications. (John

Wiley & Sons, 1990)

Parisi-Frisch Multifractal Model

We now consider the heuristic explanation given by

G. Parisi & U. Frisch, “On the singularity structure of fully developed turbulence,”

in: Turbulence and Predictability in Geophysical Fluid Dynamics. Proc. Internatl.

School of Physics ‘E. Fermi’, 1983, Varenna, Italy, 84-87, eds. M. Ghil, R. Benzi

and G. Parisi. (North-Holland, Amstordam, 1985)

for the anomalous scaling of structure functions. We assume that the local Hölder exponents

h(x) of the velocity v obtained for ⌫ ! 0 all lie in some range [hmin, hmax] with 0 < hmin and

hmax < 1. We then set

S(h) = {x : h(x) = h}
and

D(h) = D(S(h)).
Since the argument is just heuristic, we do not state here whether we specify D = DB, DH or

some other fractal dimension! Now, by definition of S(h),
|�v(r;x)| ⇠ v0(

r
L)

h

if x is within distance r of the set S(h). The fraction of space on which that occurs can be

estimated as

Fraction(x : dist(x,S(h)) ⇠ r) ⇠ ( rL)
(h)

where (h) = d�D(h) is the fractal codimension of S(h). If the distribution of exponents over
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space has any smooth weight µ, then

Sp(r) = h|�v(r)|pi
⇠

Z h
max

h
min

dµ(h)
h
v0(

r

L
)h
ip

(
r

L
)(h)

⇠ up0

Z h
max

h
min

dµ(h) (
r

L
)ph+(h)

⇠ up0(
r

L
)⇣p

by steepest descent, or, more precisely,

limr!0
lnS

p

(r)
ln(r/L) = ⇣p

with

⇣p = inf
h2[h

min

,h
max

]
{ph+ (h)}

Example: Burgers equation

There are two Hölder exponents

isolated shocks, h = 0 with D(0) = 0 =) (0) = 1�D(0) = 1

smooth ramps, h = 1 with D(1) = 1 =) (1) = 1�D(1) = 0

For other h 6= 0, 1,(h) = +1, formally, so that the infimum is taken only over h = 0 or 1:

⇣p = inf
n2{0,1}

[ph+ (h)]

= inf{1, p}

=

8
><

>:

p 0  p < 1

1 p � 1

The formula works! This is the same answer we obtained before by direct calculation of ⇣p for

the Khokhlov sawtooth solution of the Burgers equation. The Burgers solution is an example

of a bifractal field, with just two distinct exponents.
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Going back to the general theory, the relation between ⇣p and (h)

⇣p = inf
h
{ph+ (h)}

is an example of a Legendre transform. E.g. see R. T. Rockafellar, Convex Analysis (Princeton

University Press, 1970) for more discussion. If (h) is strictly convex (i.e. D(h) is strictly

concave), then the infimum is uniquely achieved for each p at the point h⇤(p) where

0 =
@

@h
{ph+ (h)}|h=h⇤(p) = p+ 0(h⇤(p))

=) 0(h⇤(p)) = �p.

Since p⇤(h) = �0(h) is decreasing in h ( by strict convexity of (h)), the inverse function h⇤(p)

is well-defined and also decreasing in p. Then

⇣p = inf
h
{ph+ (h)} = ph⇤(p) + (h⇤(p)).

But note that, in that case,

d⇣p
dp

= h⇤(p) + [p+ 0(h⇤(p))]| {z }
=0

dh⇤(p)

dp

= h⇤(p) !

There is a pleasing symmetry that

p⇤(h) = �d
dh(h) & h⇤(p) =

d⇣
p

dp

Furthermore,

(h⇤(p)) = ⇣p � ph⇤(p)

=) (h) = ⇣p⇤(h) � p⇤(h)h

Note that ⇣p � ph is concave in p and that

d
dp [⇣p � ph] = h⇤(p)� h = 0

precisely when h⇤(p) = h or p = p⇤(h). Thus,

(h) = ⇣p⇤(h) � p⇤(h)h
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= sup
h
{⇣p � ph} !

The nice symmetry

⇣p = inf
h
{ph+ (h)} & (h) = sup

h
{⇣p � ph}

is an example of Legendre duality. If (h) is not convex, then it can be shown that (h) =

supp{⇣p � ph} is the convex hull of (h). See Rockafellar (1970).

It was proposed by Parisi-Frisch (1985) to use this inversion formula to extract the (presumed

universal) function (h) from the data, or, equivalently,

D(h) = inf
p
{ph+ (d� ⇣p)},

the so-called multifractal dimension spectrum. Notice that the domain I = [hmin, hmax] of the

concave function D(h) is just the range of possible slopes of ⇣p, since h = d⇣p/dp.

This program has been carried out, although the method based on structure functions and their

scaling exponents ⇣p has not proved the most accurate or robust method to determine D(h).

E.g., a wavelet-transform maximum modulus method has been used instead. See

P. Kestener & A. Arneodo, “Generalizing the wavelet-based multifractal formulism

to random vector fields: Application to three-dimensional turbulence velocity and

vorticity data,” Phys. Rev. Lett. 93 044501(2004)

and many references therein. They obtain D(h) spectra of both velocity and vorticity, using

data from a 2563 DNS at Re� = 140. They obtain a most probable h⇤ = h⇤(0) of about

0.34± 0.02, just a little bigger than the K41 value h = 1/3 :
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!!q" # $C0 $ C1q$ C2q2=2;

D!h" # C0 $ !h% C1"2=2C2:
(7)

Both fields are found singular almost everywhere: Cv
0 #

$!v!q# 0" #Dv!q# 0" # 3:02& 0:02 and C!
0 # 3:01&

0:02. The most frequent Hölder exponent h!q # 0" #
$C1 [corresponding to the maximum of D!h"] takes the
value $Cv

1 ’ $C!
1 % 1 # 0:34& 0:02. Indeed, this esti-

mate is much closer to the K41 prediction h # 1=3 [1]
than previous experimental measurements (h #
0:39& 0:02) based on the analysis of longitudinal veloc-
ity fluctuations [19]. Consistent estimates are obtained for
C2 [which characterizes the width of D!h"]: Cv

2 #
0:049& 0:003 and C!

2 # 0:055& 0:004. Note that these
values are much larger than the experimental estimate
C2 # 0:025& 0:003 derived for 1D longitudinal velocity
increment statistics [19]. Actually they are comparable to
the value C2 # 0:040 extracted from experimental trans-
verse velocity increments [19(b)].

To conclude, we have generalized the WTMM method
to vector-valued random fields. Preliminary applications
to DNS turbulence data have revealed the existence of an
intimate relationship between the velocity and vorticity
3D statistics that turn out to be significantly more inter-
mittent than previously estimated from 1D longitudinal

velocity increments statistics. This new methodology
looks very promising to many extents. Thanks to the
SVD, one can focus on fluctuations that are locally con-
fined in 2D (mini"i # 0) or in 1D (the two smallest "i are
zero) and then simultaneously proceed to a multifractal
and structural analysis of turbulent flows. The investiga-
tion along this line of vorticity sheets and vorticity fila-
ments in DNS is in current progress.

We are very grateful to E. Lévêque for allowing us to
have access to his DNS data and to the CNRS under GDR
turbulence.
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Phys. J. B 16, 549 (2000); (c) J. Delour, J. F. Muzy, and
A. Arneodo, Eur. Phys. J. B 23, 243 (2001).

FIG. 4. Multifractal analysis of Lévêque DNS velocity (!)
and vorticity (') fields (d # 3, 18 snapshots) using the ten-
sorial 3D WTMM method; the symbols (") correspond to a
similar analysis of vector-valued fractional Brownian motions,
BH#1=3. (a) log2Z!q; a" vs log2a; (b) h!!q; a" vs log2a and
hv!q; a" $ log2a vs log2a; the solid and dashed lines correspond
to linear regression fits over 21:5"W & a & 23:9"W . (c) !v!q",
!!!q", and !B1=3 !q" vs q; (d) Dv!h% 1", D!!h" vs h; the dashed
lines correspond to log-normal regression fits with the parame-
ter values Cv

2 # 0:049 and C!
2 # 0:055; the dotted line is the

experimental singularity spectrum (C$vk
2 # 0:025) for 1D lon-

gitudinal velocity increments [19].

VOLUME 93, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S week ending
23 JULY 2004

044501-4 044501-4

Note, finally, that one can define multifractal spectra of other quantities, such as longitudinal

and transverse velocity increments

D(hL) = dim{x : hL(x) = hL}, D(hT ) = dim{x : hT (x) = hT },
or even joint spectra for both exponents together

D(hL, hT ) = dim{x : hL(x) = hL, hT (x) = hT }.
But I’m not aware of any experimental/numerical results on these. We’ve seen that p = 0

corresponds to the “most probable” exponent h⇤ with

D(h⇤) = 0 · h⇤ + (d� ⇣0) = d.

The exponents with h < h⇤ correspond to p > 0, while those with h > h⇤ correspond to negative

p < 0. It is possible, but can be quite tricky, to study structure functions of negative order p.

An alternative approach based on so-called inverse structure functions is useful here:

M. H. Jensen, “Multiscaling and structure functions in turbulence: an alternative

approach,” Phys. Rev. Lett. 83 76-79 (1999)
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