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(D) Empirical Results on Turbulence Scaling of Velocity Increments

We shall present here a selection of the empirical studies of inertial-range scaling of velocity

increments by laboratory experiment and numerical simulation. We begin with

* F. Anselmet et al.,“High-order velocity structure functions in turbulent shear

flow,” J. Fluid Mech. 140 63-89(1984)

This paper studied the longitudinal velocity structure functions

p

SE(r) = ([dvL(0)]P) ~ CLes

and found good evidence of derivations from K41 for higher-order values of p. It was historically

important in stimulating a great deal of work to understand the exponents CPL .

i (@)
|
1000 } IR
- R a aiﬁa " . .
+ P .,
500 ¢ 1 .
i
J t
3k
2 | L oxmx s oxwlxox
‘.) 5 a o0 € o0 o o
& ;v ¢ TIT T v g, .
” 1]
1K
0.8
3 2 9 Q320 gpej o
a =~ 2
0.5 7 }'
L
. i
10 107 193
riy

| ! &)
2000 3 i
il e
A (PR
1000 F LA MUY A .
r o e i.'"‘ & +
v o. ! -
s | { . “ .
soaf - ! .
& »
4 ] !
3 i !
2 ez i3 DIpLINILIL L
vi v‘?
4
. i
T
0.8 .Iv-r-a:— T F O ase
:’G‘! h C‘c‘au RD
o5t = ‘
i
{ ‘ ) ,
10 102 162
rin

Ficure [0. Strueture functions of second-, third- and sixth-order multiplied by appropriate powers of r/g, with r/y in the jet: (3,

[(Bupy V] /m) 7

®, (8w VE] (rfmy™3; O, (r/)~%%® (LN with g = 0.2); V, (r/9)~°" (famodel, 4 = 0.2); +. [K(Au)>/ V]

()27 A, (rf 18 @, (/)P {a) B, = 536. (B) R, = 852. The vertical lines ——-— indicate the inertisl-range limits, the vertical
arrow the Taylor microscale, and the double vertical arrow indicates {L.

42



86 F. Anselmet, Y. Gagne, E. J. Hopfinger and R. A. Antonia

n 2 3 4 5 6 7 8 9 10 12 14 16 18
R,=515 071 1 133 — 18 — 2271 — 264 294 332 — —
{duct)

R,=53 07T t 133 154 1.8 206 228 241 260 274 — — ~—
(jet)

R,=852 071 1t 133 165 18 212 222 252 259 284 328 349 3.1
(jet)

TaBLE 2. Values of the exponent {, for2<n < 18
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FioURE 14. Variation of exponent &, as a function of the order n. @, R, = 515 (duct); O, 536;
x , 852. Symbols O, A, ¥V, O are respectively the exponents given by Mestayer (1980); Vasilenko
etal. (1975); Van Atta & Park (1972); and Antonia et ol. (1982a). The solid curve is LN with # = 0.2,
the dotted curve the f-model and the chain-dotted line Kolmogorov’s (1941) model.
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* K. R. Sreenivasan et al., “Asymmetry of velocity increments in fully developed
turbulence and the scaling of low-order moments,” Phys. Rev. Lett. 77 1588-1491

(1996)

These authors considered also absolute longitudinal structure functions
AL
Spt(r) = (|dv(r)P) ~ Oyt
and structure functions for positive and negative parts
5”%(1‘) — |5UL(I')‘2j:6’UL(I‘) Z O

so that vy (r) = duf (r) — Suy (r) and

SE(r) = (Dup ()]F) ~ CE .

Since [([dvr(r)]P)| < (|0vr(x)[P), it is easy to see that
Gl < (¢
The paper reports evidence that

(bl (ol < (b for p> 1.
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FIG. 4. The logarithm of the ratios S4/53, Si /53, and S5 /53
plotted against logr. These ratios appear to scale, albeit in
different ranges of . From top to bottom, the slopes of the
straight line fits and the least square errors are, respectively,
—0.099 = 0.003, —0.098 = 0.004, and —0.070 = 0.002. This
shows that the plus exponent is larger than the minus exponent.
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(a) Low-order scaling exponents for generalized struc-

ture functions compared with g/3 as well as with outcomes of
the intermittency models of [19] and [21]. The inset shows the
scaling of the generalized structure function of order 0.5. The

full line is for the model of Ref. [21].

(b) Comparison of the

plus and minus exponents with those of generalized structure

functions.
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* S. Chen, et al., “Refined similarity hypothesis for transverse structure functions

in fluid turbulence,” Phys. Rev. Lett. 79, 2253-2256(1997).

This paper is one of several papers around 1997 ( see references therein) that studied differences
in scaling of longitudinal and transverse velocity structure functions
([Fvr(r)]P) ~ CT 65 .

The paper reports evidence that
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FIG. 3. Numerical results for the transverse scaling expo-
nents, /! and ., as functions of p. The dotted line is for
the normal scaling relation (K41) and the dashed line is for the
log-Poisson model [10].
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A more recent systematic study of this issue is contained in

* T. Gotoh et al., “Velocity fields statistics in homogeneous steady turbulence ob-

tained using a high-resolution direct numerical simulation,” Phys. Fluids, 14 1065-

1081(2002)
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FIG. 32. Variation of the scaling exponents §]’j and §]{ when R, =460. Sym-
bols are the results of the present DNS, star: g,%, circle: g,f. SL, MF, AA,
and K62 are the curves by She and Lévéque model (Ref. 70), Yakhot's mean
field theory (Ref. 72), Arimitsu and Arimitsu’s generalized entropy theory
with ©=0.25, and K62 with u=0.25, respectively.
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FIG. 33. Comparison of the fourth order ¢}},. R,=381. A horizontal line FLG' 34. Comparison of the fourth order scaling exponents {;, £, , and
indicates 1.28. ’ {5,. R\=460. A horizontal line indicates 1.28.
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There has been much phenomenological work to “fit” the scaling exponents with simple analytic

formulas. For example,

Z. S. She and E. Lévéque, “Universal scaling laws in fully developed turbulence,”

Phys. Rev. Lett. 72 336-339(1994)

argues that

=t +2- 20
This fits the data quite well. (Note in particular that (3L = 1 as required). There are some
interesting physical ideas behind this formula, but no substantial use of the Navier-Stokes
dynamics was made in its derivation. For more about early phenomenological models, consult

the book of U. Frisch!

More use is made of the Navier-Stokes equation in Lagrangian stochastic models, such as

L. Chevillard & C. Meneveau, “Intermittency and university in a Lagrangian model
of velocity gradients in three-dimensional turbulence,” Comptes Rendus Mecanique

335 187-193 (2007). Arxiv.org: physics/0701274

There is, however, no generally accepted theory of any of the scaling exponents for Navier-Stokes

turbulence (except (& = 1 of course!) There is still a big open problem.

Successful analytical calculations have been made in toy models, such as Burgers equation. More
recently, very important results were obtained in the Kraichnan model of random advection.

This work is reviewed in:

G. Falkovich, K. Gawedzki & M. Vergassola, “Particles and fields in fluid turbu-

lence,” Rev. Mod. Phys. 73 913-975 (2001)

In the Kraichnan model successful calculations have been made of scaling exponents (, for
scalar structure functions.
ALL of this work, however, requires the statistical approach, which is outside the scope of this

course.
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(E) The Multifractal Model

We shall now return to an important general explanation/picture of anomalous scaling, the

multifractal model. This framework does not provide a quantitative prediction for scaling

exponents, but it does yield some predictions about the relation of the ¢,’s to other measurable

quantities, as well as some useful insights.

Local Hélder Exponents & Fractal Dimensions

We have defined earlier the notion of Holder continuity with an exponent h at point x. However,
we have not defined the notion of the Holder exponent h(x). Ideally, this should mean something
like

0V (1, %) ~ Vpms ()", with h=h(x) when (<L,
or, more precisely, that

lim, o S = b = h(x)

However, this limit need not exist! Thus, we must follow a similar strategy as far as for the
global scaling exponent ¢, and define

h(x) = liminf, % = limg 0 infjp < %
This is the maximal Holder exponent of v at x, i.e. v is Hoélder continuous with exponent
h = h(x) — e at x for any € > 0 but not with exponent h(x) + ¢ for any ¢ > 0. Just as for
the global scaling exponents (,, we employ definitions like those above under the assumption
that viscosity v — 0 first (before r — 0). Otherwise, we are interested in the value of h

defined by an intermediate asymptotics for some range of length-scales n,(x) < ¢ < L. If

du(r;x) ~ (r - V)v(x) for r < np(x), then
In |6v(r;x)|

W) 1 for r < np(x),

and the infimum over |r| < ¢ is achieved for r 2 n,(x). A little later we shall present some

heuristic estimates of the size of ny(x).
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The above definitions are adequate for 0 < h < 1, but not otherwise. For h > 1, we say that v
is Holder continuous at x with exponent h if v is k-times continuously differentiable

k

[h] = integer part of h
and if
Vkv € C%(x), s = (h) = h — [h] = fractional part of h.

But, for this definition, if A~ > 1, then

v(r;x) = (r-V)v(xy), x. between x and x+r

= Ju(f;x) = O()

Hence, (first-order) increments do not distinguish different values of h! There are various
alternatives that allow one to define Holder exponents for h outside the range 0 < h < 1.

One alternative is to consider higher-order increments *v(r), defined iteratively by

Sv(r;x) = ov(r;x) =v(x+r) —v(x)

Fv(rx) = Flvimx+r) - v x), k>2

For example,
8?v(r;x) = v(x + 2r) + v(x) — 2v(x + 1),
or, perhaps the more symmetrical choice,
d_04v(r;x) =v(x+r)+v(x—r)—2v(x),
by a combination of a forward difference d,v(r;x) = v(x+r) — v(x) and a backward difference
d_v(r;x) = v(x) — v(x — r). It then turns out that, for all » > 0,
v € C'(x) = §Fv(r;x) = O(") for k> [h].

Another possibility is to use wavelet coefficients. Suppose that v, for v =1,---,2% — 1, are
“mother wavelets” and ¢ an associated “scale function” which generate an orthonormal basis
in L2(R%), as

Ynm(x) = 28829, (2Vx — )

and
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¢0,n(x) - ¢(X - n)a

N € N, the scale index
n € Z% the position index

v = 1,---,2¢— 1, the degeneracy index

We may then expand each component of v as
Vg (X) = Zn Blgll)¢0,n (X) + Zan/ Ag\lf)m/wNnV (X)
with
BY _~ . AD

n < v, ¢O,n >y Apnpy =< Vi, UNny >
the wavelet coeflicients of v;. It is known that the wavelet coefficients give “almost” a charac-
terization of C”(x). That is,

i _N(d
VvV € Ch(X) - Sup{’i,n,Visupp(wNnu)SX} ‘A%)HV’ = 0(2 N(2+h)), VN > 1

and, conversely,

sup AD 1= 0@ NEH) YN > 1
{i,n,v: supp(¢ nny) Ox}

= ov(r;x) = O(]r[hln(|i|)).

Here it is assumed that 0 < h < 1 and that 1, are C' and compactly supported. The similar
statement applies for any h > 0, with v — 6%v for k = [s], if one assumes also that 1, € C*+1
such that ¢, has all moments of order less than k + 1 vanishing, i.e.

[ d¥x Py(x)by(x) =0

for any polynomial Py (x) of degree < k. One can therefore also define

oNd/2| 40

SUP{in,v: lo
h(X) = liminf p{%,n,u.supp(wNnu)ax} g2[
N—oo N

This definition has advantages because it also extends to negative Holder singularities. One
could intuitively expect that a power-law blow-up, like

v(x+r1)| ~ (r/L)" for r< L with h<0
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would correspond to v € C"(x), i.e. v belonging to a negative Holder class at x. It can be

shown that this is true if one defines C"(x) to consist of v such that

swp [ 4(g,, | =02 VE)
{i,;n,v: supp(YNny) 3%}

for h > —d. This doesn’t exactly coincide with the standard definition of Holder continuity for

h > 0, but the maximal Hélder exponents h(x) are the same.

References

For characterization of Holder spaces (and, more generally, Besov spaces) by differences:

H. Triebel, Theory of Function Spaces (Birkhauser, 1983), Section 2.5.10-12.

For characterization of Holder spaces (and, more generally, Besov spaces) by wavelet coefficients:
I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992), Chapter 9.
M. Frazier, B. Jawerth & G. Weiss, Littlewood-Paley Theory and the Study of Func-
tion Spaces (American Mathematical Society, Providence, RI, 1991), Ch. 7.

For a discussion of negative Holder singularities, defined by means of wavelet coefficients:

S. Jaffard, “Multifractal formulation for functions, Parts I, II,” STAM J. Math.
Annal., 28(4) 944-970, 971-998(1997).
G. L. Eyink, “Besov spaces and the multifractal hypothesis,” J. Stat. Phys. 78

353-375 (1995).

Last remark: One can similarly define (assuming 0 < h < 1)

In|§ ;
hr(x) = liminf M = longitudinal Hoélder exponent of v at point x
r—0 1H(T/L)
In |6 ;
hr(x) = liminf In |dvr (r; x)| = transverse Holder exponent of v at point x

r—0  In(r/L)

Since [dv(r)|? = |dvp(r)|> + (d — 1)|6vr(r)|?, it is easy to see that h(x) = min{hp(x), hr(x)}.
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Fractal Dimensions

We now consider some of the notions of non-integer dimensionality for sets S c R%. We

first consider the so-called box-counting dimension Dpg(S) (also known as packing dimension,

Minkowski-Bouligand dimension, or simply fractal dimension). If S C R is bounded, let

Ni(S) = numbers of hypercubes in a regular grid of sidelength 27* which intersect S

Figure 1. Ilustration of the box-counting method

Define
_ , 1 o
Dp(S) = limsup z log, Ni(S) = upper fractal dimension
k—o0
Dg(S) = likm inf z logy Ni(S) = lower fractal dimension
—00

so that  Dy(S) < Dp(S).
If D(S) = Dg(S) = Dp, then we say that S has fractal dimension Dp and, in that case,
Ni(S) ~ 2kPs,
Notice that the total number of boxes per unit volume grows as
Ny, ~ 2kd.

Hence, the fraction of boxes intersecting S goes as

Ni(S) ., 9—k(d—Dg(S)) , 9—krp(S)
Ny,
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where

kB(S) =d— Dp(S) = fractal codimension of S.
Remark: Rather than boxes of sidelength 27%  decreasing by factors of 2, one can use any
factor A\ > 1 and sidelengths A~*. In that case, Ni(S) ~ A*P5(5) with the same value Dp(S),
independent of the \ selected.

Example: Consider the middle-thirds Cantor set K = NK,,:

—— ——— K

HH HH HH HH X,

Figure 1. Iterative construction of the Cantor set

Choosing A = 3, we get (by direct counting)
Np(K) = 2F

so that

. logs Ni(K
Da() = Jim WG

k
— lim 10g3(2 )
k—o0 k
— m k -logs(2)

In2 .
= logs(2) = — = 0.6309 - - -
k—o0 k

In3

There are many other important notions of fractal dimensionality, e.g. Hausdorff dimension

Dpg(S). A full discussion of D (S) requires measure theory, but, essentially, the difference is

that it involves covering the set with balls of size < 27% and not just = 2%, so that the number
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of balls required is always fewer (and could be much fewer). Thus,
Dy (S) < Dy(S) < Dy(S).

For a complete discussion of all these matters, see

K. Falconer, Fractal Geometry, Mathematical Foundations and Applications. (John

Wiley & Sons, 1990)

Parisi-Frisch Multifractal Model

We now consider the heuristic explanation given by

G. Parisi & U. Frisch, “On the singularity structure of fully developed turbulence,”
in: Turbulence and Predictability in Geophysical Fluid Dynamics. Proc. Internatl.
School of Physics ‘E. Fermi’, 1983, Varenna, Italy, 84-87, eds. M. Ghil, R. Benzi

and G. Parisi. (North-Holland, Amstordam, 1985)

for the anomalous scaling of structure functions. We assume that the local Holder exponents
h(x) of the velocity v obtained for v — 0 all lie in some range [Amin, Amaz] With 0 < Ry and
Romar < 1. We then set
S(h) = {x: h(x) = h}

and

D(h) = D(S(h)).
Since the argument is just heuristic, we do not state here whether we specify D = Dp, Dy or
some other fractal dimension! Now, by definition of S(h),

|6v (3 x)| ~ vo(F)"
if x is within distance r of the set S(h). The fraction of space on which that occurs can be
estimated as

Fraction(x : dist(x,S(h)) ~ 1) ~ (%)’i(h)

where k(h) = d — D(h) is the fractal codimension of S(h). If the distribution of exponents over
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space has any smooth weight u, then

S = (bvioP)
o [ ) [ G
. 1\

min

0 H L
h

rmin
()

L

2

by steepest descent, or, more precisely,

. In Sp(r
limy 0 ln(Tp/(L)) = Cp

with

— inf h+ k(h
Cp he[hﬂvhm}{p + k(h)}

Example: Burgers equation

There are two Holder exponents
isolated shocks, h =0 with D(0) =0= k(0) =1—-D(0) =1
smooth ramps, h=1 with D(1)=1=k(1)=1-D(1)=0

For other h # 0,1, k(h) = +o0, formally, so that the infimum is taken only over h = 0 or 1:

Cp

inf [ph + k(h
néﬁ),l}[p + k(h)]

= inf{1,p}
p 0<p<l1

1 p>1
The formula works! This is the same answer we obtained before by direct calculation of ¢, for
the Khokhlov sawtooth solution of the Burgers equation. The Burgers solution is an example

of a bifractal field, with just two distinct exponents.
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Going back to the general theory, the relation between ¢, and x(h)
G = inf{ph + s(h)}

is an example of a Legendre transform. E.g. see R. T. Rockafellar, Convex Analysis (Princeton

University Press, 1970) for more discussion. If k(h) is strictly convex (i.e. D(h) is strictly

concave), then the infimum is uniquely achieved for each p at the point h.(p) where

oza‘il{pmn(h)}rh:h*(m = p+ (D))

= K'(he(p)) = —p.

Since p4(h) = —«'(h) is decreasing in h ( by strict convexity of x(h)), the inverse function h.(p)

is well-defined and also decreasing in p. Then

Gp = inf{ph + w(h)} = ph.(p) + £(h«(p)).

But note that, in that case,

¢y dh.(p)
dp

There is a pleasing symmetry that

Furthermore,

k(he(p)) = Cp— ph«(p)
= k(h) = G —p«(h)h

Note that ¢, — ph is concave in p and that
d%[Cp —ph] =hi(p) —h=0
precisely when h,(p) = h or p = p«(h). Thus,
k(h) = Cp.(ny —p+(h)h
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= s%p{Cp—ph} !

The nice symmetry
(p = irﬁf{ph +x(h)} & k(h) = s%p{Cp — ph}

is an example of Legendre duality. If k(h) is not convex, then it can be shown that K(h) =

sup,{(p — ph} is the convex hull of k(h). See Rockafellar (1970).

It was proposed by Parisi-Frisch (1985) to use this inversion formula to extract the (presumed

universal) function x(h) from the data, or, equivalently,

D(h) = int{ph+ (d - )},

the so-called multifractal dimension spectrum. Notice that the domain I = [min, maz] of the

concave function D(h) is just the range of possible slopes of (,, since h = d(,/dp.

This program has been carried out, although the method based on structure functions and their
scaling exponents (, has not proved the most accurate or robust method to determine D(h).

E.g., a wavelet-transform maximum modulus method has been used instead. See

P. Kestener & A. Arneodo, “Generalizing the wavelet-based multifractal formulism
to random vector fields: Application to three-dimensional turbulence velocity and

vorticity data,” Phys. Rev. Lett. 93 044501(2004)

and many references therein. They obtain D(h) spectra of both velocity and vorticity, using
data from a 2563 DNS at Rey = 140. They obtain a most probable h, = h«(0) of about

0.34 £ 0.02, just a little bigger than the K41 value h = 1/3:

58



D,(h+1),D,(h)

Note, finally, that one can define multifractal spectra of other quantities, such as longitudinal
and transverse velocity increments
D(hr) =dim{x : hr(x) = hr}, D(hr)=dim{x: hp(x) = hr},
or even joint spectra for both exponents together
D(hp,hr) =dim{x : hr(x) = hr, hr(x) = hr}.
But I'm not aware of any experimental/numerical results on these. We've seen that p = 0
corresponds to the “most probable” exponent h, with
D(h) =0-hy + (d— (o) = d.
The exponents with h < h, correspond to p > 0, while those with h > h, correspond to negative
p < 0. It is possible, but can be quite tricky, to study structure functions of negative order p.

An alternative approach based on so-called inverse structure functions is useful here:

M. H. Jensen, “Multiscaling and structure functions in turbulence: an alternative

approach,” Phys. Rev. Lett. 83 76-79 (1999)
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