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order of the dissipation wave number k,,. The relative error is
(3.8) T’\’Em(kb,l)/E(de) ~ kD,l//kz ‘

We now assume exponential amplification of the error with a characteristic
time equal to the turn-over time I,/v, in the enstrophy inertial range (roughly
wave number independent); we find that the relative error has become of order
unity after a time ~ ¢, log (1/r) ~t, log (k,/k,,). To this we must add the time
for errors to migrate along the enstrophy inertial range from ki, to k; which
is ~t,1log (k,,/k,). Hence the total predictability time is ~1, log (ky/k,). In
other words, thanks to the spectral gap, the predictability is the same as if
we had a 2-D flow with full resolution of all scales down to the integral scale
of the 3-D turbulence. The increased predictability can be rather important
(days?) if a spectral gap exists at scales ~ 100 km. This, of course, is debatable.
It could be that the gap in the energy spectrum is filled by rare but violent
meteorological events and does not exist in the mean; some increase in the
predictability is then nevertheless expected.

Finally, we observe that coherent structures may play an important part
in the dynamiecs of atmospheric turbulence. If thisisso, predictability estimates
based on turbulence phenomenology (¢ la Kolmogorov) may be very misleading.

We have greatly benefitted from discussions with C. GLOAGUEN (two-
component shell model) and with J. C. AxprE, M. LeSIEUR and O. THUAL
(spectral gap and atmospheric predictability).

APPENDIX

On the singularity structure of fully developed turbulence.

with

G. PARISI

Dipartimento di Fisica, Universita di Roma II « Tor Vergala» - Roma, Ilalia

A simple way of explaining power law structure function is to invoke sin-
gularities of the Ruler equations considered as limit of the Navier-Stokes
equations as the viscosity tends to zero. For Burgers’ equation we know that
such singularities exist (shocks) and that they provide the required explanation
of scaling. For the 2-D Euler equations we know that singularities do not exist
(see, e.g., ref.[26] and references therein). For the 3-D Euler equations
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the numerical evidence is inconclusive [26,31]. MANDELBROT [24, 25] and
others [20] have considered models with singularities concentrated on a set
C R?® having noninteger (fractal) Hausdorff dimension. We shall here show
that the data suggest the existence of a hierarchy of such sets (a « multifractal »).

Since the Navier-Stokes equations (in the zero-viscosity limit) are invariant
under the group of scaling transformations (defined in eq. (2.2)) for any value
of h, singularities of arbitrary exponents (and mixtures thereof) are consistent
with the equations. Specifically, we start with a definition, the velocity field
at a given time v(x) is said to have a singularity of order - > 0 at the point » if

(A.1) lim |v(x) — v(y)|/|x — y|" 0.
a—y
For negative % eq. (A.1) is modified by not subtracting v(y).
We call S(h) the set of points for which the velocity field has a singularity
of order h. It is obvious that

(A.2) S’y o S(h) it W0,

Roughly speaking, S(h) is the region where the velocity field is not an Holder
function of order h. We denote by d(h) the Hausdorff dimension of S(h) (see
ref. [34] and [50] for definitions). It follows from eq. (A.2) that d'(h) > 0;
we also make the concavity assumption d"(h) < 0.

If such singularities exist, then, in the fully developed turbulence regime,
d(h) has a nontrivial dependence on h: different kind of singularities are asso-
ciated with sets having different Hausdorft dimensions. Note that the opposite
phenomenon happens for the solutions of stochastic differential equations
with white noise (like those studied in Jona-Lasinio’s contribution to this
volume): there the one-dimensional trajectories are (with probability one)
Holder functions of order L, so that

(A.3) d(h) = 0(h — %) (0 = step funection) .

Tt is useful to connect the function d(h) with the exponents £, introduced in
eq. (2.4) which control the asymptotic behavicur of the longitudinal structure
functions. We can try to rephrase the previous statements on the Hausdmff
dimensions of S(h) by ,S&ylncr ‘rhat the probability of having |v(x) — v(y)| of

order |x — y|" g — ¥ when |x —y| = 0. We thns arrive

to the follomné ]ntegml 1ep1esentat10n for the moments:

(A.4) o)y ~ [ dughyuers-ao,

where du(h) is a measure concentrated on the region where d(h) > 0.
In the K 41 [18] pieture and in the f-model [20], we have, respectively,

AE l Cz):p/g
(4.5) £y= A(p—3) + 1 (2<1).

Jonsequently we have, respectively,

(A.6)

A(h) = 30(h — 1), K 41,
d(h) = (2 -+ 31)0(h — 1), f-model.
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In more sophisticated models, and also in actual turbulence, according to
ref. [29], £, is a nonlinear function of p. Evaluating the integral (A.4) using
the saddle point method, we easily find

(A7) {,= min, [ph 4+ 3 —d(h)].

We have thus found that £, is the Legendre transform (see ref. [51], sect. 14)
of the codimension (c(h) = 3 — d(h)) of the set S(h). This is assuring that the
convexity properties of £, are automatically preserved by eq. (A.7).

Tf eqs. (A.4) and (A.7) are correct, the dimensions d(h) are experimentally
well-defined quantities: they can be extracted from the £,’s by using the inverse
Legendre transform

(A.8) d(h) = 8 —min, ({,— ph) .

We shall not try to do this using the data displayed in table I, although this
is clearly possible, at least in the range of h for which the value of p minimizing
eq. (8) falls in the experimentally observed interval: it is, however, likely
that d(h) will not be a step function because {, appears to significantly devi-
ate from a linear function of p. The function d(h) is thus nontrivial and sin-
gularities of different kinds, if they exist, are concentrated on sets having
different Hausdorff dimengions.

The function d(h) (or, equivalently, {,) has a clear dynamical meaning
because it contains most of the relevant information on the scaling laws for
fully developed turbulence. It would be rather important to measure ac-
curately d(h) and to find good evidence for its universality, ¢.e. its independence
on the initial conditions and on all the other parameters which should become
irrelevant in the fully developed turbulence regime.

If the multifractal model is basically correct, accurate meagurements of
the £,’s may be quite difficult. Indeed, the structure functions are a mixture
of power laws (eq. (A.4)), so that very small seales (i.e. very high Reynelds
numbers) may be needed before the contribution with the smallest exponent
clearly dominates; where exactly this happens depends on the distribution du(h).

Note that consistency of the multifractal model with the data is by no
means evidence for real singularities of the Fuler equations. There is certainly
more than one way to obtain sealing, otherwise scaling would not be observed
in two dimensions, where singularities are ruled out [26].

We note two interesting consequences of the inversion formula (A.8). First,
it £, vanishes for p — 0, then the weakest singularities, which has the expo-

nent g, are space filling (d = 3). Itis clearly of interest to measure £, for small
noninteger p’s. Second, the multifractal model is not completely consistent

with Kolmogorov’s [23] lognormal model for which {,= p/3 -+ up(3 —p)/18
(@, if it exists, is somewhere between 0.2 and 0.5; see ref. [297). Indeed, with
this choice of £, we find from eq. (A.8) that beyond p,..= 9(2/34)* a negative
dimengion is obtained. Aeccurate meagurements of very-high-order structure
functions are required to test for a possible inconsistency of the multi-
fractal model.

Finally, one may wonder how the above «multifractal » model relates to
the models of ref.[20, 25,34, 52]. In Mandelbrot’s [25, 34, 52] probabilistic
models for the dissipation a random weighting factor W appears at each stage
of the cascade. The case when W has a binomial distribution («absolute
curdling ») corresponds to a single fractal in our approach (it is also equivalent
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to the f-model). For more general W-distributions (« weighted curdling ») one
obtains exponents {, that depend nonlinearly on p like in the multifractal
model. There is a single fractal for the energy dissipation, but it is conceivable
that other fractals will be uncovered by investigating all possible singularities
of the dissipation. Still the multifractal model appears to be somewhat more
restrictive than Mandelbrot’s weighted-curdling model which does include the
lognormal case.
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