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This paper investigates the nature and the possible effects of thermal
agitation in ordinary fluids and in plasmas. The spectra of the velocity
fluctuations and of the magnetic field fluctuations are obtained under the
assumption of incompressibility. The amplification of thermal Huctu:}-
tions in shear flows is studied by referring to the theory of hydrodynamic
stability. The results suggest that amplified thermal agitation may cause
turbulent transition in many common situations. The amplification of
thermal fluctuations may also be important in a fully developed turbulent

flow.

I. Introduction

The object of this study is to clarify the relation between turbulence
and thermal agitation. By turbulence, we mean the random motion of
a fluid. It is generally regarded as a macroscopic phenomenon. By
thermal agitation we mean the directly observable aspects of thermal
motion which have a random character.

To be more specific, we must distinguish the various manifestations
of the thermal motion of molecules and atoms. It is well known that
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molecular processes are the cause of pressure forces and viscous stresses
These quantities are generally regarded as macroscopic and free from
fluctuations, within certain limits. It is also well known that molecular
processes are the cause of fluctuating forces. FFor instance, a particle
immersed in a fluid shows a permanent agitation (the so-called Brownian
motion). Another example is given by celectrical resistors which always
show spontancous voltage fluctuations (the so-called Nyquist noise).
These molecular processes and fluctuating forces are neither macroscopic
nor microscopic. T'hey belong to an intermediate range where molecular
disorder produces random collective motions of all scales. We shall use
the name “thermal agitation’ in connection with this kind of motion
and attempt to clarify the relation with turbulence.

It is worth noticing that electrical engineers long ago recognized the
importance of thermal agitation in tubes, solid state devices, and ordinary
resistors. Anyone tuning a frequency-modulation radio receiver hears a
frying noise between the various stations—it is caused by thermal
agitation. This noise cannot be explained by the equations of Kirchoff
or Maxwell. It corresponds to the low frequency end of a very wide
spectrum  of electronic fluctuations. In practice, this noise limits the
sensitivity of radio receivers and it also acts as initial perturbation when-
ever a circuit becomes electrically unstable.

An excellent example is furnished by the most sensitive receiver—the
super-regenerative circuit. It consists of a circuit, say tuned at 30 mega-
cycles and periodically allowed to become unstable, say every tenth
microsccond. Each time it becomes unstable, thermal agitation triggers
a burst of 30-Mc oscillation. 'The bursts have no phase relations since
thermal noise is highly randomized. When a weak signal is received,
it can act as initial perturbation and trigger several successive bursts.
The bursts are then exactly synchronized. The presence or absence of
the signal can be detected by comparing the phases of successive bursts,
and it is obvious that to be detected, the signal must somehow rise
above the thermal noise.

Since thermal agitation can influence electric systems at the rate of
10 decisions per second, it may also have important but yet unknown
effects on fluid flows. For the purpose of collecting evidence of such
interactions, we have attempted to treat the problem in the language
of the continuum theory, rather than in that of statistical mechanics.

The presence of fluctuations in all dissipative systems is assured by
the so-called fluctuation-dissipation theorem [Callen et al. (2, 3)]. In
order to avoid abstract concepts, we do not invoke this theorem in

this report. Furthermore, it is not clear how the theorem applies to
nonlinear systems in nonequilibrium.
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T'he presence of fluctuations has a direct bearing on the question of
how far the continuum theory does apply. In isotropic turbulence we
found experimental evidence that the third derivative of the fluid
velocity with respect to a space coordinate cannot be clearly separated
from thermal agitation [Betchov (/)]. Since the vorticity equation
contains derivatives of this order, it seems that thermal fHuctuations
should also contribute to this equation.

After this description of our objectives and method of approach, we
must warn thereader that he shall encounter several heuristic assumptions.
Clearly, the conclusions will rest on the validity of these assumptions.

Il. Viscous and Incompressible Fluids

A. Brownian Motion and the Equations of Navier-Stokes

If a small particle is floating in a fluid, in the absence of external forces,
it is well known that it presents an agitated motion. The averaged energy,
per degree of freedom of the particle is  #7". This is called the Brownian
motion, and its molecular origin has been studied in detail (Einstein,
Perrin, Uhlenbeck, etc.)

On the other hand, we consider that the motion of viscous fluids is
governed by the equations of Navier and Stokes where the pressure
and the viscous stresses are the only recognized effects of molecular
agitation. These equations, however, cannot predict the Brownian
motion. In the absence of external forces, they always lead to complete
dissipation of the energy. Therefore a study of fluid flow and of thermal
agitation must begin by a modification of the basic equations. We shall
confine our attention to incompressible flows and write the following
equations (with summation over repeated indices):

L SO LU WSRLIE 2.1)
ct R p Ox;
L (2.2)
ox;

is a random vector that we shall name the kinematic noise.

where n;
acoustical fluctuations, we shall assume

Since we are not interested in

M 0 (2.3)

ox;

It is now evident that »; will always maintain a certain agitation in



310 R. BETCHOV

the fluid. In a closed vessel, after the initial eddies have been dissipated
we can use the following linearized equations:

n

; (2.4)

where we have dropped the pressure term since 2p = 0.

B. The Spectrum of the Kinetic Noise

In order to determine the spectrum of #n; we must consider the equi-
partition of energy. In a system having a finite number of degrees of
freedom, this task is simple. For a fluid, we must somehow consider
an infinity of degrees of freedom, and we shall proceed as follows. We

define the “measurablc” velocity v, as the average of u; over a box of
J J
dlmCHSlOﬂS 111[42143, that is

vy = (Ll g™ (L” fL“ [LW u; dx?®

(2.5)
Y TLyye ¥ —Ly/e Y —Lyyy

We can regard the quantities L, as the dimensions of an anemometer

or a suspended particle used to trace the flow. We define the correlation
tensor of u; as

Hyg(€, 7 | u) = (u(x + £, t + 7) uy(x, 1)) (2.6)

where the brackets indicate an ensemble average or any acceptable
substitute. We define the spectral tensor of u; as

1

bl @ |1) = 5 [ e, 7 | u) einerion ags dn (2.7)

where the limits of integration, when not shown, are always infinity.
It is also helpful to define ordinary Fourier transforms by assuming

that u; vanishes outside of a large vessel of dimensions X,X,X; and a
large time interval D.

This leads to

Pilor @ | ) = 2717; [ i, 0y esmr-iot axs ar (2.8)

with the relation

P, w | u) = @p(— a, — w | u) (2.9)
The following equation can be demonstrated

XXX, D

il o [0 9B e 1) = TEEDT (0 [ 1) 8o+ B) B+ ) (2.10)
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The Fourier transform of 2,, from Eqgs. (2.5) and (2.8) now becomes

sin oy L,/2 sin ayLy/2 sin ayly/2 @11

P @ [ 0) = o | ) TGS SO S Cas

Using some condensed notation, we use Eq. (2.10) and write

sin «l/2 \“6”
Pl @ | 0) = bl @ | 1) (752 2.12)

This simply means that the averaging process truncates the spectrum
near ol. = 7. From the flow equations (2.4), we derive a relation
between the spectra of u; and of n;:

A | n

pule o | ) = Sl e]?) 2.13)

veat + w?
We are now ready to introduce the assumption of equipartition of energy.
We shall now specify that, for any size of the box L,L,L; we have

% p LL,L, (ov;> = 3 kT (2.14)

This equation can be justified by considering the average velocity
of N molecules moving at random with a mean kinetic energy & k7.
The square of this averaged velocity is proportional to N !, and there-
fore the kinetic energy of the averaged motion is simply 4 k7. This
corresponds to the equation

bo [ A4 L0 B oty 9
By virtue of the equation
i (S’_;‘l) db=m (2.16)
and by assuming that Eq. (2.15) applies to any box, one finds:
¢:;$ ¥ (1“:1) T (237)'3 k{‘ 1R

It is now appropriate to assume that the spectrum of n; is isotropic,
and we write:

¢kl = 1./0(,“2 F(a,w) [Bkl = a(:_za“[] (218)

This leads from Eq. (2.17) to

Fa, w) w3 kT
1 4 (w/va?)? (voz2 ) 1673 p al2
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This relation cannot hold unless F is a function of w/va? alone. We
shall now assume that F is constant. This is equivalent to saying that,
for sufficiently low frequencies, the spectrum of n; is .wl?ite. If we
suppose that #; is the sum of brief uncorrelated impulses, it follows that
I is independent of w. Therefore, it appears that we must recognize
something else about 7, besides the equipartition of energy. This
difficulty can be avoided by using directly the fluctuation-dissipation
theorem [Callen et al. (2, 3), also Rytov (6)].

The integration of Eq.(2.19) is now immediate, and it leads to the
spectrum of kinetic noise

3 % kT N o oy
b, w | 1) = 2m)i o i [b/‘-z = ‘_](;{;‘l] (2.20)

C. Kinetic Fluctuations

Some insight on the fluctuations can be gained by defining another
vector by the relation

= 2
n; = v V?*w,

(2.21)
The spectrum of w; is given by

— Xy

w— = ] (2.22)

5 L iT
b, o | w) = BRY o [5

As long as the inertial forces are unimportant it follows from Eq. (2.4)
that u; = w,;. When the frequency becomes comparable with va?, the
fluid no longer responds to the noise w;, as shown by the following
equation obtained from Eqgs. (2.13) and (2.21):

e, w | 1) = b, w | w)

e (2.23)

Thus, the inertia cuts off the response of the fluid to thermal collisions

with a band width of about w = -+ 7/2va® If we now average over a

box L* we find that it introduces a wave number cutoff near ol. — =
We therefore can write

+7/2vo? kT

+n/L
(o) ~ j Lda3 b | w) dos ~ 377 (2.24)
—n/

—n/2va®

Thus w; indicates the velocity fluctuations as long as inertia and space

average are unimportant. With a “viscous” frequency cutoff, it leads
simply to our basic assumption of equipartition.
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The vorticity of the fluid can be introduced and for isotropic motion

one has simply
S 73 N kl [8,‘,,¥ ("‘/.-f}l/“‘:)]
b, w | curl u) - @F v 1 F (@ (2.25)

This means that the spectrum of the vorticity fluctuations is constant
as long as inertia is negligible. It also signifies that there is no such
thing as an irrotational flow.

It is also easy to show that the averaged vorticity of a box corresponds
to a rotational random motion of the fluid element, with energy & AT

about any axis of rotation.

D. Fluctuations in a Shear Flow

In a shear flow the fluid is no longer in thermodynamic equilibrium,
since mechanical energy is constantly transformed into heat. If we
separate the fluid velocity into a mean motion U,(x) and a small fluctua-
tion u,(x, t), the linearized equations of motion are

ou; : u; oU; 1 op

— w2 - U A i R < < 2.26

ot g [ E oxy, } ox;, “r p Ox; ] " ( )
Lpay 00 04 (2.27)
P ox; 0x

The bracket indicates the terms due to coupling with the mean flow.
It is tempting to assume that z, is the same as previously, but it is by
no means certain that the presence of shear leaves 7, unchanged. Let
us consider a Couette flow along the x axis, with dU/dy = G. A small
fluid particle at the origin is subject to shear stresses o, because every
exchange of molecules across a face dxdz contributes a momentum of
the order of GA where X is the mean free path. Since G is constant,
there is no net force on the particle. However, these exchanges also
produce a net torque on the particle, and somehow the stresses o,
appear and exactly balance this torque. This presence of stresses oy,
cannot be explained unless the molecular velocity distribution is not
exactly Maxwellian. This implies a modification of n; which could
affect primarily the spectral components of low frequency and low
wave number. For lack of better knowledge, we shall assume that n;
is the same as in the condition of thermodynamical equilibrium.

E. Dynamic Response of a Shear Flow

If n; is known, the fluctuations can be determined, at least in a statis-
tical sense. The first step would be to solve the homogeneous form of
Eq. (2.26), that is, for n; = 0. It is well known that these equations
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sometimes are unstable. Thus, a laminar boundary layer is stable as
long as the Reynolds number Re = Ug@*/v is less than some critical
value, say Re, = 700. Beyond a certain distance from the leading edge,
the flow is unstable and the perturbations grow exponentially. It is
therefore essential to understand how the noise will trigger these unstable
modes of motion. The study of simpler systems suggests that, when
the flow changes from stable to unstable condition, it gathers the effects
of the forcing function during a transit time 7. This is discussed in
an appendix (see Section 1V). Once the flow has become unstable, the
perturbations grow as long as the linearized equations (2.26) are valid.
There is some evidence that the growth of large perturbations is no
longer exponential, but another phenomenon soon appears: transition
to turbulent flow.

The points of greatest interest to us are that a shear low somehow
becomes very sensitive to small perturbations and that they may have
cumulative effects.

An essential property of a laminar shear flow is that the coupling
with the mean flow tends to oppose the inertia effects. Energy is fed
from the mean flow to the perturbations. Thus, in place of a frequency
cutoff determined by the viscosity, we can expect a cutoff near some
higher frequency, such as U,/6* where U, is a free-stream velocity
and 8* a characteristic length. Broadly speaking, a shear flow is more
ready to respond to fluctuating forces than a fluid at rest or a fluid in
uniform motion. Another essential feature of boundary layer flows is
that the viscous stresses are generally small but all important because
they control the rate of growth or decay of the perturbations. This
does not apply to jets and wakes where the inviscid flow is unstable.

In the absence of more precise ways of predicting the response of
shear flows to fluctuating forces, we shall make the assumption that the
“viscous” band-width va® must be replaced by a broader ‘““inertial”
bandwidth of the order of U,/&*.

We shall not take the transit time 7', into consideration on the ground
that it has the same effects as a broader bandwidth. Thus our “inertial”’
bandwidth includes also the effects of transit processes.

By analogy with Eq. (2.24), we can now estimate the fluctuations in a
box of dimension 6* with an “inertial” bandwidth:

7/ 6
{vw ~ f

—n/8* —nUqy/26"

nU,y/26* kT U,d*
do® f 2

bl @ | w) dow ~ o 8 *('IT‘ (2.28)
The fluid simply responds to a broader spectrum of the forcing function
than in the absence of shear.
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F. Transition in a Boundary Layer

I.et us consider a simple perturbation in a laminar boundary layer
along a flat plate, from the point x, where the motion becomes unstable
to some location x. If B(x) gives the rate of growth of a perturbation,
we have

Uy = ul exp 2 1 dx (2.29
l o/ .

«

where u, plays the role of an initial perturbation. The integral [f dx
has been evaluated by A. M. O. Smith et al. (8, 9) between x, and the
point at which turbulence appears. He studied a variety of flows and
found that it amounts to ¢°, that is, a factor of about 10%?. This permits
us to evaluate the magnitude of the perturbations caused by thermal
agitation, just prior to turbulent transition. In air, at normal conditions,
we find in cgs units:

@y _2x 107 (2.30)

772 I %2
l’n Uub

With U, = 15 m/sec and Re = 700, this leads to 8* = 0.07 ¢cm and
preturbulent fluctuations of 1.79,. This level of velocity fluctuations is
large enough to suggest that thermal agitation can cause turbulence,
when the other causes of disorder have been sufficiently reduced. This
would explain the relative constance of the factor e’.

The preturbulence fluctuations would be larger if we h
that the sensitive portion of the layer is smaller than 5*. In this respect
the role of the critical layer should be scrutinized.

The assumption of an enlarged bandwidth can be abandoned and
replaced by the effects of the transit time 7. From the results of Shen
(7), reproduced in Lin (5), we have found for ad* = 0.2 that at the
beginning of instability, dB/dRe is of the order of 2 > 107°U,/8™. From

the relation

ad assumed

x = 1.7 (22" 2.31
B = LT 7, J (2.31)
one arrives at:
glie o Dio (2.32)
dx % '
and from Egs. (2.4-2.8) one finds:
(2.33)

wT, ~ 400
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This leads to initial perturbations of about the same size than with the
assumption of inertial bandwidth. If transit and inertial bandwidth are

both contributing, the preturbulence perturbations are of the order of
309% of the free stream velocity, a very large figure.

G. Transition in a Jet

Let us consider a jet of air of diameter d — 0.5 cm and velocity

Uy = 30 cm/sec as could be produced by a burning cigarette. The
Reynolds number is about Re -

= 100 and a value of about 4 is sufficient
for unstable behavior. Taking d® as the sensitive volume and U,/d as

the cutoff frequency (or some effect of transit), we find for the initial
velocity fluctuations

RT _, Ud ] 5 -
uﬁ:Td “‘—v~:: 2.4 %< 10 8 cm? sec ®

(2.34)

The rate of growth is much larger than in boundary layers because of
the absence of solid walls. It can be estimated at B = 0241

The amplification necessary to produce fluctuations of 19, of the
free-stream velocity is about €%3, and this is reached at a distance of

about 20 cm. This suggests that thermal agitation could be the cause
of very familiar forms of turbulence.

H. Transition in a Turbulent Flow

Let us consider homogeneous, isotropic, and incompressible turbu-
lence with eddies of size d = 2 cm and eddy velocities of the order of
Uy, =5 cm/sec. This corresponds to a rather low eddy Reynolds
number of the order of 70. Locally, the flow will produce highly un-
stable three-dimensional shear flows, and we can expect amplification

of the thermal motion. If the initial perturbations are given by a relation
such as

=5 s Ud (2.35)
p v

it is easy to find that an amplification of e!2 will produce new eddies
as large as the original eddies. If the rate of growth is of the order of
d~', this requires such a long time that the turbulence would decay
before the amplification is performed. However, if the big eddies are
sustained by some external process, such as a gross instability, we can

expect a steady supply of completely random fluctuations, emerging
out of the kinetic noise w;.
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For larger eddy Reynolds numbers, the amplification required for a
similar effect is much larger but since it may be furnished in several
stages, the basic idea can still be used. Thus, the cascade of energy
from large eddies to small eddies is perhaps associated with the constant
build up of unpredictable new eddies, out of the thermal agitation.

It has been observed by D. Coles (4) and independently by J. Laufer
(private communication) that turbulence can stop as rapidly as it can
appear. Such behavior supports the view that thermal motion may
have something to contribute to the theory. Indeed if the amplification
mechanism is turned off, the random motion will stop just as rapidly
as it appears when the amplification is applied. The forcing functions
n,; can be regarded as a time-reversible phenomena, and it is only the
viscous stresses which bear the mark of irreversibility.

11l. Incompressible and Conductive Fluids

A. Electric Noise

It is well known that every fluid or solid conductor of electricity is
also the source of spontaneous voltage fluctuations. From the point of
view of magnetohydrodynamics, this means that the magnetic field &;
fluctuates constantly and that the equipartition of energy must be
extended to the magnetic energy density § ph;h;. In magnetohydro-
dynamics, we use the following incompressible equations,

czli u;, (Z’[’— —~ hy, Qui e 5 2h, = m, (3.1)
ot oxy, L Oxy Qo
Bhy _ i (3.2)
ox;

where we have added a new term m; that we shall call the magnetic
noise.

In a fluid at rest, these equations reduce to diffusion equations, and
the procedure to determine the spectrum of m; is exactly the same as
for the kinetic noise, since the equations have exactly the same form.
We therefore write directly:

I ot 3 . X )
Prio, @ | m) = (27)4 7‘«; 7 [81.-1 o ] (3.3)

Indeed, the roles of 4;, u, and 1/uc are equivalent to those of u;, p, and v.
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By proper use of the relations

cutl = | (3.4)
T =il (3.5)
one can obtain the spectrum of the electric field:
M 3 ILI [8r — (o a,/o[“')J
Pilen w | B) = (2m)* o 1 + pow?/ad - o8]

B. The Nyquist Noise

It is not too difficult to show that these fluctuations of the electric
field give exactly the Nyquist noise. Considering a conductor of size
Ly\LylLy, the E; component must be averaged over a cross section L,L,
and integrated along the center line. This gives the potential difference
V as:

IaoLs s e
v=l, I I Bt 6.7

It is necessary to assume that we are interested only in the low frequency

components of E,, say in the range | w | << 27f. One is then led to the
result

’ 4L, kT
(V2 = T“IL “G_f (3.8)
213

In the developments, the following relation is useful:

| Py 1~ f;q dod = § [ F(o) do? (3.9)

Since Ly/oL,Ly is simply the ohmic resistance R, of the sample, Eq. (3.8)
corresponds to the Nyquist formula:

(V® = 4 R, kT f (3.10)
If the voltage fiuctuations are observed with an ideal instrument and

with a cubic sample of material, the conductive cutoff must be considered
and one obtains
5 &m? kT
<.V>;’ Tlf(;(;)ia (311)
By using large samples of good conductors and instruments responding
up to 10 Mc, one should be able to observe this effect of the frequency

cutoff.
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C. Fluctuations in a Sheared Plasma Flow

In a plasma flow, and with all the limitations inherent in the MHD
approach, we can expect the presence of kinetic and magnetic noise,
and the occurrence of instabilities, involving both the kinematic and the
magnetic modes. This creates a problem of great difficulty. Let us try
to make a crude guess, in the case of fluctuations corresponding to a
sensitive volume of 1 cc, at a temperature of 10° Kelvin, with an ampli-
fication in amplitude of 10%. We use a formula such as

hg= = d?K (3.12)
}L
where K is a magnetic Reynolds number or some kind of transit time.
With K of the order of 103, we find magnetic fluctuations of the order
of 3 gauss. Assuming a proton density of the order of 10'¢ per cc, the
same example leads to velocity fluctuations of the order of 30 cm/sec.

IV. Variable Damping and Transit Time
The response of a system of variable damping to random impulses
can be examined by reference to a simple model. We are particularly
interested in the behavior of the system as the damping changes from
positive to negative values. This initiates a divergent solution, with an
initial amplitude determined by the random impulses.

Iet us consider an oscillator where the dependent v
function of the time ¢ satisfying the equation

ariable f 1s a

Wt Gk 207 kD) G 1 j=n) (4.1
where w is constant, & is a given function of 2, and 7 is a random function
consisting of uncorrelated positive and negative pulses. There are N
pulses per second, each with a short duration 7. The time integral
over a single pulse gives its strength a. For wr <1, the spectrum of »
is constant and equal to

¢ (w | n) = Na* (4.2)
The damping & is a slowly varying function of z. The solution corres-
ponding to a single impulse occurring at time 7 = § is therefore
f=0 if t <8
t
f=awexp [~ w [ kD) ] sinw(t —s5) it (4.3)
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This assumes that f and df/dt start from zero at ¢+ = — oo, and it also
assumes that £ is less than unity. The responses to single impulses
can be superposed to form the response to the noise since the equation
is linear. Because the impulses are uncorrelated, their effect on the
amplitude of f will add quadratically. With the angular brackets indicating
an ensemble average or some acceptable substitute, we have therefore

(B> = Natw? f iw exp [_ 2w f ' k(r) dr] ds (4.4)

If k varies from some positive value for ¢ - -0 to some negative value
for £ >~ 0 with a zero at t = 0, the largest contribution to the integral
of Eq. (4.4) comes from the vicinity of  — 0. We can define the time 7"
by the following relation

e iw exp [20 [ " k() ar| s (4.5)

If ¢ is sufficiently large, T approaches a limit 7', independent of ¢, since
the integral in 7 becomes very negative. We also define the “equivalent”’
single perturbation

fe=2(w|n)e* T, (4.6)

We can now rewrite Eq. (4.4) as

P = LfZexp [~ D f ; k(r) dr] (4.7)

It indicates that the amplitude at a time such that & is already sufficiently
negative can be viewed as the result of a single pulse at ¢ = 0, with
a factor 1/2 coming from the mean square of the sine wave encountered
in Eq. (4.3). It is not surprising to find f2 proportional to ¢(w | #) but
the role of 7', needs further clarification.

Let us assume that k is very large for ¢ — 0, that k& is zero for 0 < ¢
< Ty, and that k = — | for ¢ > 0. The pulses occurring prior to ¢t = 0
have no effect on f(#). Each pulse occurring when £ is zero simply switches
on a sine wave of frequency w. At ¢ = T, the solution is a sum of Ny
sine waves of random phases and equal amplitudes. From this time on,
the amplitude will grow exponentially, with new contributions as new
pulses occur. In the interval 0 < ¢ < 7, the solution accumulates the
effects of single pulses and the real explosive growth does not begin
until time ¢ = T).

From Eq. (4.5) we find 7', ~ T}, and all the general features of the
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model are easily identified in Eq. (4.6). It can also be shown that
Eq. (4.6) is valid if ¢(w | n) is a slowly varying function of w.

It therefore seems appropriate to call 7', the transit time, since it
represents the time during which the system, at zero damping, would
collect the appropriate amount of “energy.” We also remark that the
integral occurring in Eq. (4.7) plays exactly the role of the amplification
factor studied by A. M. O. Smith.

Finally, a useful formula can be obtained by considering the case
where dk/dt is almost constant. From Eq. (4.5) one finds

- () =
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