
Solutions to Midterm Exam 553.481/681
Spring Semester 2024

Problem 1. IEEE floating-point arithmetic has levels of precision beyond single and double. All of these in
standard layout have the first bit for the sign, the next r bits for the stored exponent SE, and the final p bits for
the fraction F . The stored exponent is the true exponent E plus the bias, SE = E + B, where B = 2r−1 − 1. In
particular, the following precision levels exist:

quadruple: r = 15, p = 112
octuple: r = 19, p = 236

In hexadecimal format, quadruple-precision numbers are thus represented by strings of 32 hexadecimal digits,
whereas octuple-precision numbers are represented by strings of 64 hexadecimal digits.

Consider the following two IEEE octuple-precision numbers in hexadecimal format:

(i) 40000921fb54442d18469898cc51701b839a252049c1114cf98e804177d4c762

(ii) bffff6a09e667f3bcc908b2fb1366ea957d3e3adec17512775099da2f590b066

(a) Round both of these numbers to quadruple precision (in binary arithmetic or equivalently in hexadecimal) and
give for both the hexadecimal representation of the IEEE quadruple-precision number in standard layout.

(b) Round both of the quadruple-precision numbers in (a) to double precision (once again in binary or hexadecimal
arithmetic) and give for both the hexadecimal representation of the IEEE double-precision number in standard
layout.

(c) Find the decimal representation of the double-precision numbers in (b) to 16 significant figures. You may use
hex2num in Matlab to check your answer, but explain independently how you arrive at your answers.

Solution: (a) First, for (i), the hexadecimal digits 40000 when converted to binary give 01000000000000000000.
Since the first digit is 0, the sign is positive. The remaining digits 1000000000000000000 correspond exactly to the
bias B plus 1, so that E = 1. This same exponent may be represented in quadruple precision by 100000000000000 so
that the sign and exponent are represented by 0100000000000000 which converts to 4000 in hexadecimal.

The fraction may be rounded to 921fb54442d18469898cc51701b8 since the next digit 3 is smaller than 8. Thus, we
obtain altogether

4000921fb54442d18469898cc51701b8

Second, for (ii), the hexadecimal digits bffff when converted to binary give 10111111111111111111. Since the first
digit is 1, the sign is negative. The remaining digits 0111111111111111111 correspond exactly to the bias B, so that
E = 0. This same exponent may be represented in quadruple precision by 011111111111111 so that the sign and
exponent are represented by 1011111111111111 which converts to bfff in hexadecimal.

The fraction may be rounded to 6a09e667f3bcc908b2fb1366ea95 since the next digit 7 is smaller than 8. Thus, we
obtain altogether

bfff6a09e667f3bcc908b2fb1366ea95

(b) The rounding to double precision is very similar. First, for (i), the hexadecimal digits representing the sign and
stored exponent become 400, while the fraction is rounded to 921fb54442d18 since the next digit is 4 and smaller than
8. Thus, we obtain altogether

400921fb54442d18

Second, for (ii), the hexadecimal digits representing the sign and stored exponent become bff, while the fraction is
rounded to 6a09e667f3bcd since the next digit was 9 and thus the final c had to be rounded up to d. Thus, we obtain
altogether

bff6a09e667f3bcd

(c) We can get the decimal values from the following script

1 a=10;b=11;c=12;d=13;e=14;f=15;
2

3 SE=polyval([4 0 0],16)
4 if SE<2ˆ11
5 E=SE-1023
6 sign=1;
7 else
8 E=SE-(1023+2048)
9 sign=-1;

10 end
11

12 F=polyval(fliplr([9 2 1 f b 5 4 4 4 2 d 1 8]),1/16)/16
13

14 pi2=sign*(1+F)*2ˆE
15

16 SE=polyval([b f f],16)
17 if SE<2ˆ11
18 E=SE-1023

1

19 sign=1
20 else
21 E=SE-(1023+2048)
22 sign=-1
23 end
24

25 F=polyval(fliplr([6 a 0 9 e 6 6 7 f 3 b c d]),1/16)/16
26 nsqrt22=sign*(1+F)*2ˆE

Applying this code, we obtain:

(i) For 400921fb54442d18 the decimal representation 3.141592653589793, which is a double-precision approximation
to the number π.

(ii) For bff6a09e667f3bcd the decimal representation −1.414213562373095, which is a double-precision approximation
to the number −

√
2.

2

Problem 2. Continuous functions on the closed interval [a, b] can be assigned a norm

‖f‖ = max
x∈[a,b]

|f(x)|

and we then say that a sequence {fn} of such functions converges to a function f, or f = limn→∞ fn, if and only if

lim
n→∞

‖fn − f‖ = 0.

(a) If I(f) =
∫ b

a
f(x) dx is the Riemann integral, then show that

|I(f)| ≤ (b− a) · ‖f‖.

(b) Is integration well-posed for continuous functions on the closed interval [a, b]? In other words, is there a
well-posed output I(f) for input f?

(c) Consider the specific sequence of continuous functions fn(x) := 1
n sin(n2x) on the interval [0, 2π]. Show that

limn→∞ fn = 0. Is it true as well that limn→∞ f ′n = 0? Explain your answer.

(d) If we consider functions on the closed interval [a, b] with a continuous derivative, then is differentiation well-
posed for the stated norm? In other words, is there a well-posed output D(f) = f ′ for input f?

Solution: (a) We see from the triangle inequality for Riemann integrals I(f ; a, b) =
∫ b

a
f(x) dx that

|I(f ; a, b)| =

∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx ≤ ‖f‖
∫ b

a

dx = (b− a) · ‖f‖.

(b) Well-posedness means that I(f ; a, b) must exist, be unique, and be continuous in the data. By the usual theory
of Riemann integration, I(f ; a, b) exists and is unique for any continuous function f on [a, b]. Continuity in the data f
follows from

|I(fn; a, b)− I(f ; a, b)| =

∣∣∣∣∣
∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(fn(x)− f(x)) dx

∣∣∣∣∣ ≤ (b− a)‖fn − f‖,

by part (a).

Note also by (a) that
|I(f ; a, b)− I(f ; an, b)| = |I(f ; a, an)| ≤ |an − a| · ‖f‖

so that I(f ; a, b) is continuous in the lower endpoint a. A similar argument gives continuity in the upper exponent b.

Thus, integration is well-posed.

(c) For the given function ‖fn‖ = 1
n → 0 as n→∞ and thus fn → 0. On the other hand, f ′n(x) = n cos(n2x) so that

‖f ′n‖ = n→∞ as n→∞. Thus, f ′n 6→ 0.

(d) Part (c) provides an example for which fn → 0 but D(fn) 6→ 0 = D(0). Thus, differentiation is not continuous in
the data, in the specified sense, and thus it is not well-posed.

More generally, for any continuously differentiable function f, we can define fn(x) := f(x)+ 1
n sin(n2x) and then fn → f

but D(fn) 6→ D(f).

3

Problem 3. Consider the following function

g(x) := x− 2f(x)f ′(x)

∆(x)
, ∆(x) := 2(f ′(x))2 − f(x)f ′′(x) (∗)

such that the iteration xn+1 = g(xn) locally converges to x∗ satisfying f(x∗) = 0.

(a) Show that this iteration has at least cubic order of convergence when f ′(x∗) 6= 0 and when f ∈ C4 near x∗.

(b) Write a code to implement iteration with the function (*), taking care to minimize the number of floating
point operations in each iteration.

(c) Use your code to solve numerically for a root of the function f(x) = ex − 3x starting with x0 = 2 and
TOL = 10−15. Compare with the Newton method for the same x0 and TOL, both in terms of the number of
iterations and the wall clock time required. In particular, calculate the ratio of the wall clock times for the two
methods and explain this ratio quantitatively.

(d) Repeat part (c) for the function f(x) = E1(x)− x. Note that

E1(x) :=

∫ ∞
x

e−t

t
dt

and this function can be evaluated with the Matlab function expint. In order to explain the ratio of clock times
quantitatively, you will need to estimate the amount of time to evaluate the function f(x) versus the time to
evaluate f ′(x) or f ′′(x).

Solution: (a) The iteration function g defines Halley’s method for root-finding. Using ∆(x) = 2(f ′(x))2 − f(x)f ′′(x),
its first derivative is given by

g′(x) = 1− 2(f ′(x))2

2(f ′(x))2 − f(x)f ′′(x)
− f(x)

d

dx

[
2f ′(x)

∆(x)

]
= −f(x)f ′′(x)

∆(x)
− f(x)

d

dx

[
2f ′(x)

∆(x)

]
Since ∆(x∗) = 2(f ′(x∗))

2 6= 0, we get from f(x∗) = 0 that g′(x∗) = 0.

Next we calculate

g′′(x) = −f
′(x)f ′′(x)

∆(x)
− f(x)

d

dx

[
f ′′(x)

∆(x)

]
− f ′(x)

[
2f ′′(x)

∆(x)
− 2f ′(x)∆′(x)

∆2(x)

]
− f(x)

d2

dx2

[
2f ′(x)

∆(x)

]
with

∆′(x) = 4f ′(x)f ′′(x)− f ′(x)f ′′(x)− f(x)f ′′′(x) = 3f ′(x)f ′′(x)− f(x)f ′′′(x).

Thus,

g′′(x∗) = −3f ′(x∗)f
′′(x∗)

∆(x∗)
+

2(f ′(x∗))
2∆′(x∗)

∆2(x∗)

= −3f ′′(x∗)

2f ′(x∗)
+

3f ′′(x∗)

2f ′(x∗)
= 0.

since ∆′(x∗) = 3f ′(x∗)f
′′(x∗). It follows that Halley’s method has at least cubic rate of convergence.

(b) A Matlab script to carry out Halley’s method as xn+1 = xn− 1
f′(xn)
f(xn)

− f′′(xn)

2f′(xn)

, with three multiplications per iteration,

is the following:

1

2 function [x,k,err]=halley(f,Df,DDf,x,tol,itmax)
3

4 k=0;
5 if x 6= 0
6 xold=0;
7 else
8 xold=1;
9 end

10

11 err=abs(x-xold);
12

13 while err>tol*max(abs(x),1.0)
14 if k+1>itmax
15 break
16 end
17 if f(x)==0
18 break
19 end
20 xold=x;
21 y=f(x);
22 yp=Df(x);
23 ypp=DDf(x);
24 Ly=yp/y;
25 Ly2=ypp/yp/2;
26 x=x-1/(Ly-Ly2);
27 k=k+1;
28 err=abs(x-xold);
29 end
30

31 end

4

(c) A Matlab script to find the root by each of the methods and to time them is the following:

1 f=@(x) exp(x)-3*x;
2 Df=@(x) exp(x)-3;
3 DDf=@(x) exp(x);
4

5 tol=1e-15;
6 itmax=100;
7 x0=2;
8

9 [xH,kH,errH]=halley(f,Df,DDf,x0,tol,itmax)
10 [xN,kN,errN]=newton(f,Df,x0,tol,itmax)
11

12 NTRY=1e4;
13 timeN=0;
14 timeH=0;
15 for ii=1:NTRY
16

17 tic
18 [xH,kH,errH]=halley(f,Df,DDf,x0,tol,itmax);
19 timeH=timeH+toc;
20 tic
21 [xN,kN,errN]=newton(f,Df,x0,tol,itmax);
22 timeN=timeN+toc;
23

24 end
25

26 ratioHN=timeH/timeN

The root is x∗ = 1.512134551657843 and 4 iterations are required by the Halley method, while 6 iterations are required
by Newton. We find also that the ratio of wall clock times is nearly equal to 1. This is easy to understand because each
of the three functions f(x), f ′(x), f ′′(x) are almost the same and require about the same time to compute. Since the
Halley method uses 3 function evaluations per iteration, it required a total of 12 function evaluations. Likewise, the
Newton method uses 2 function evaluations per iteration, so that it also required a total of 12 function evaluations.

(d) A Matlab script to find the root by each of the methods and to time them is the following:

1 f=@(x) expint(x)-x;
2 Df=@(x) -exp(-x)./x-1;
3 DDf=@(x) exp(-x).*(1+x)./x./x;
4

5

6 tol=1e-15;
7 itmax=100;
8 x0=2;
9

10 [xH,kH,errH]=halley(f,Df,DDf,x0,tol,itmax)
11 [xN,kN,errN]=newton(f,Df,x0,tol,itmax)
12

13 NTRY=1e4;
14 timeN=0;
15 timeH=0;
16 for ii=1:NTRY
17

18 tic
19 [xH,kH,errH]=halley(f,Df,DDf,x0,tol,itmax);
20 timeH=timeH+toc;
21 tic
22 [xN,kN,errN]=newton(f,Df,x0,tol,itmax);
23 timeN=timeN+toc;
24

25 end
26

27 ratioHN=timeH/timeN

The root is x∗ = 0.527612347201742 and 4 iterations are required by the Halley method, while 7 iterations are required
by Newton. We find also that the ratio of wall clock times is approximately 0.62. To understand this ratio, we time
the function evaluations with the script

1 NTRY=1e4;
2 timeF=0;
3 timeDF=0;
4 for ii=1:NTRY
5

6 tic
7 y=f(x0);
8 timeF=timeF+toc;
9 tic

10 yp=Df(x0);
11 timeDF=timeDF+toc;
12

13 end
14

15 ratioFDF=timeF/timeDF

which shows that evaluating f(x) requires a time about 20 times longer than the time to evaluate f ′(x) or f ′′(x). These
results will depend on which Matlab version or other programming language is used. We can therefore estimate in
Matlab2018b that the time ratio is given by

4(20 + 2)

7(20 + 1)

.
= 0.6.

5

Gregory Eyink

