Problem 1. (a) For (i) write \(y_{n+1} = y_n + h\lambda y_n = (1 + \lambda h)y_n \). With \(y_0 = 1 \) we have \(y_n = (1 + \lambda h)^n \). For (ii) note that \(y_n \) converges to 0 if and only if \(-1 < 1 + \lambda h < 1\) or \(-2 < \lambda h < 0\). For (iii) write \(y_n(t) = (1 + \lambda t/n)^n = \exp(n \log(1 + \lambda t/n)) \). By Taylor’s theorem for any \(x \), \(\log(1 + x) = x - x^2/2(1 + x)^2 \) for some \(\xi \in [0,x] \). Thus

\[
\exp\left(n \log \left(1 + \frac{\lambda t}{n}\right)\right) = \exp \left(\lambda t - \frac{\lambda^2 t^2}{2n(1+\xi)^2}\right) \to \exp(\lambda t),
\]

or in other words, with \(y(t) = \exp(\lambda t) \) we have \(y_n(t) \to y(t) \). Now write the series expansion

\[
\exp \left(\frac{\lambda t}{n}\right) = 1 + \frac{\lambda t}{n} + \frac{\lambda^2 t^2}{2n^2} + O(n^{-3}),
\]

so that

\[
1 + \frac{\lambda t}{n} = \exp \left(\frac{\lambda t}{n}\right) - \frac{\lambda^2 t^2}{2n^2} + O(n^{-3})
\]

\[
= \exp \left(\frac{\lambda t}{n}\right) \left[1 - \frac{\lambda^2 t^2}{2n^2} \exp \left(-\frac{\lambda t}{n}\right) + O(n^{-3})\right]
\]

\[
= \exp \left(\frac{\lambda t}{n}\right) \left[1 - \frac{\lambda^2 t^2}{2n^2} (1 + O(n^{-1})) + O(n^{-3})\right]
\]

\[
= \exp \left(\frac{\lambda t}{n}\right) \left[1 - \frac{\lambda^2 t^2}{2n^2} + O(n^{-3})\right].
\]

Then

\[
y_n(t) - y(t) = \left(1 + \frac{\lambda t}{n}\right)^n - \exp(\lambda t)
\]

\[
= \exp(\lambda t) \left[1 - \frac{\lambda^2 t^2}{2n^2} + O(n^{-3})\right]^n - \exp(\lambda t)
\]

\[
= \exp(\lambda t) \exp \left(n \log \left(1 - \frac{\lambda^2 t^2}{2n^2} + O(n^{-3})\right)\right) - \exp(\lambda t)
\]

\[
= \exp(\lambda t) \exp \left(-\frac{\lambda^2 t^2}{2n} + O(n^{-2})\right) - \exp(\lambda t)
\]

\[
= \exp(\lambda t) \left(1 - \frac{\lambda^2 t^2}{2n} + O(n^{-2})\right) - \exp(\lambda t)
\]

\[
= -\frac{\lambda^2 t^2}{2n} \exp(\lambda t) + O(n^{-2}).
\]

For (iv) write \(\delta'(t) = \lambda \delta(t) + \lambda^2 \exp(\lambda t)/2 \). This is a 1st-order nonhomogeneous linear ODE, so we use the method of variation of parameters to obtain the general solution \(\delta(t) = c \exp(\lambda t) + \lambda^2 t \exp(\lambda t)/2n + O(n^{-2}) \), where \(\delta(0) = 0 \) lets us pick \(c = 0 \). Evidently \(-\delta(t)h + O(h^2) = -\lambda^2 t^2 \exp(\lambda t)/2n + O(n^{-2}) \).

(b) For (i) write \(k_1 = f(t_n, y_n) = \lambda y_n \) and \(k_2 = f(t_n + h, y_n + h k_1) = \lambda (1 + \lambda h) y_n \). Then

\[
y_{n+1} = y_n + \frac{h}{2} (k_1 + k_2) = \left(1 + \lambda h + \frac{\lambda^2 h^2}{2}\right) y_n.
\]

With \(y_0 = 0 \) we thus have have \(y_n = (1 + \lambda h + \lambda^2 h^2/2)^n \). For (ii) the sequence \(y_n \) converges only if \(-1 < 1 + \lambda h + \lambda^2 h^2/2 < 1\) or \(-1 < 1/2 + (1 + \lambda h)^2/2 < 1\), meaning \(-2 < \lambda h < 0\). For (iii) write the series expansion
\[
\exp \left(\frac{\lambda t}{n} \right) = 1 + \frac{\lambda t}{n} + \frac{\lambda^2 t^2}{2n^2} + \frac{\lambda^3 t^3}{6n^3} + O(n^{-4}).
\]

This gives
\[
1 + \frac{\lambda t}{n} + \frac{\lambda^2 t^2}{2n^2} = \exp \left(\frac{\lambda t}{n} \right) - \frac{\lambda^3 t^3}{6n^3} + O(n^{-4}) = \exp \left(\frac{\lambda t}{n} \right) \left(1 - \frac{\lambda^3 t^3}{6n^3} + O(n^{-4}) \right),
\]
where as before we use \(\exp(-\lambda t/n) = 1 + O(n^{-1})\). We finish our argument in a similar manner
\[
y_n(t) - y(t) = \left(1 + \frac{\lambda t}{n} + \frac{\lambda^2 t^2}{2n^2} \right)^n - \exp(\lambda t)
\]
\[
= \exp(\lambda t) \left[\left(1 - \frac{\lambda^3 t^3}{6n^3} + O(n^{-4}) \right)^n - \exp(\lambda t) \right]
\]
\[
= \exp(\lambda t) \exp \left(n \log \left(1 - \frac{\lambda^3 t^3}{6n^3} + O(n^{-4}) \right) \right) - \exp(\lambda t)
\]
\[
= \exp(\lambda t) \exp \left(-\frac{\lambda^3 t^3}{6n^3} + O(n^{-3}) \right) - \exp(\lambda t)
\]
\[
= \exp(\lambda t) \left(1 - \frac{\lambda^3 t^3}{6n^3} + O(n^{-3}) \right) - \exp(\lambda t)
\]
\[
= -\frac{\lambda^3 t^3}{6n^3} \exp(\lambda t) + O(n^{-3}).
\]

For (iv) write \(\delta'(t) = \lambda \delta(t) + \lambda^3 \exp(\lambda t)/6\). We solve this in an identical manner to find the general solution \(\delta(t) = c \exp(\lambda t) + \lambda^3 t \exp(\lambda t)/6\), where \(y(0) = 0\) gives us \(c = 0\). We find that \(-\delta(t)h^2 + O(h^3) = -\lambda^3 t^3 \exp(\lambda t)/n^2 + O(n^{-3})\), as desired.

Problem 2.

(a) Write the truncation error

\[
T_n = y(t_n + h) - y(t_n) - h [\gamma_1 K_1 + \gamma_2 K_2 + \gamma_3 K_3].
\]

If \(T_n = O(h^4)\) then \(\tau_n = T_n/h = O(h^3)\). We’ll thus try to find conditions for the former. First note the series expansion \(y(t_n + h) - y(t_n) = y'(t_n)h + y''(t_n)h^2/2 + y'''(t_n)h^3/6 + O(h^4)\). We find that
\[
y' = f
\]
\[
y'' = f_t + y' f_y = f_t + f_y f
\]
\[
y''' = f_{tt} + y' f_{ty} + f_{ty} f + y'' f_y + f_{tt} f_y + f_{ty} f_y = f_{tt} + 2 f_t f + f_{yy} f^2 + f_{ty} f + f_y f.
\]

Series expand the \(K_i\) to obtain
\[
K_1 = f
\]
\[
K_2 = f + \alpha_2 h f_t + \beta_{21} h f_y K_1 + \alpha_2^2 h^2 f_{tt}/2 + \alpha_2 \beta_{21} h^2 f_y K_1 + \beta_{21}^2 h^2 f_{yy} K_2^2/2 + O(h^3)
\]
\[
= f + (\alpha_2 f_t + \beta_{21} f_y)h + (\alpha_2^2 f_{tt}/2 + \alpha_2 \beta_{21} f_y f + \beta_{21}^2 f_{yy} f^2/2)h^2 + O(h^3)
\]
\[
K_3 = f + \alpha_3 h f_t + (\beta_{31} K_1 + \beta_{32} K_2) h f_y + \alpha_3^2 h^2 f_{tt}/2 + \alpha_3 (\beta_{31} + \beta_{32} K_2) h^2 f_y
\]
\[
+ (\beta_{31} K_1 + \beta_{32} K_2)^2 h^2 f_{yy}/2 + O(h^3)
\]
\[
= f + (\alpha_3 f_t + (\beta_{31} + \beta_{32} f_y) f + (\alpha_3 \beta_{31} + \beta_{32}^2 f_y^2/2) f + \alpha_3^2 f_{tt}/2
\]
\[
+ \alpha_3 \beta_{31} \beta_{32} f_{ty} f + (\beta_{31} + \beta_{32})^2 f_{yy} f^2/2) h^2 + O(h^3).
\]

Plug \(y', y'', y''', K_1, K_2, K_3\) into \(T_n\) with our series expansion to find the coefficient on \(h\) to be
\[
f - \gamma_1 f - \gamma_2 f - \gamma_3 f,
\]
on \(h^2\) to be
\[\frac{1}{2} - \gamma_2 \alpha_2 - \gamma_3 \alpha_3 \] \quad f_t + \left[\frac{1}{2} - \gamma_2 \beta_{21} - \gamma_3 (\beta_{31} - \beta_{32}) \right] f_y f, \]

and on \(h^3 \) to be
\[
\frac{1}{6} - \frac{1}{2} (\gamma_2 \alpha_2^2 + \gamma_3 \alpha_3^2) \right] f_{tt} + \left[\frac{1}{3} - (\gamma_2 \alpha_2 \beta_{21} + \gamma_3 \alpha_3 (\beta_{31} + \beta_{32})) \right] f_y f
\]
\[
+ \left[\frac{1}{6} - \frac{1}{2} (\gamma_2 \beta_{21}^2 + \gamma_3 (\beta_{31} + \beta_{32})^2) \right] f_{yy} f^2 + \left[\frac{1}{6} - \gamma_3 \alpha_2 \beta_{32} \right] f_t f_y + \left[\frac{1}{6} - \gamma_3 \beta_{32} \beta_{21} \right] f_y f^2. \]

All coefficients must vanish in order for \(T_n \) to be \(O(h^4) \), universally for any choice of \(f \). In other words, for \(\tau_n \) to be \(O(h^3) \) the following are collectively necessary and sufficient:

\[
\begin{align*}
\gamma_1 + \gamma_2 + \gamma_3 &= 1 \\
\gamma_2 \alpha_2 + \gamma_3 \alpha_3 &= 1/2 \\
\gamma_2 \beta_{21} + \gamma_3 (\beta_{31} + \beta_{32}) &= 1/2 \\
\gamma_2 \alpha_2^2 + \gamma_3 \alpha_3^2 &= 1/3 \\
\gamma_2 \alpha_2 \beta_{21} + \gamma_3 \alpha_3 (\beta_{31} + \beta_{32}) &= 1/3 \\
\gamma_2 \beta_{21}^2 + \gamma_3 (\beta_{31} + \beta_{32})^2 &= 1/3 \\
\gamma_3 \alpha_2 \beta_{32} &= 1/6 \\
\gamma_3 \beta_{32} \beta_{21} &= 1/6.
\end{align*}
\]

(b) Plugging into (1) we find the conditions are satisfied, and thus the Runge–Kutta method with these specific parameters is of 3rd order.

(c) See Program 1 for our implementation of \texttt{rk3.m}. See Program 2 for our solution to the given IVP. Below we summarize our findings. By inspection we see that errors decrease approximate as \(h^3 \), in agreement with our work above.

<table>
<thead>
<tr>
<th>Increments</th>
<th>Runge–Kutta</th>
<th>Exact</th>
<th>Error</th>
<th>Log-Error Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6.5251</td>
<td>6.5809</td>
<td>0.055776</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>6.572</td>
<td>6.5809</td>
<td>0.008873</td>
<td>2.6515</td>
</tr>
<tr>
<td>16</td>
<td>6.5796</td>
<td>6.5809</td>
<td>0.0012506</td>
<td>2.8275</td>
</tr>
<tr>
<td>32</td>
<td>6.5807</td>
<td>6.5809</td>
<td>0.00016592</td>
<td>2.9141</td>
</tr>
<tr>
<td>64</td>
<td>6.5809</td>
<td>6.5809</td>
<td>2.1366 \times 10^{-6}</td>
<td>2.9571</td>
</tr>
<tr>
<td>128</td>
<td>6.5809</td>
<td>6.5809</td>
<td>2.7107 \times 10^{-9}</td>
<td>2.9785</td>
</tr>
<tr>
<td>256</td>
<td>6.5809</td>
<td>6.5809</td>
<td>3.4137 \times 10^{-9}</td>
<td>2.9893</td>
</tr>
<tr>
<td>512</td>
<td>6.5809</td>
<td>6.5809</td>
<td>4.2831 \times 10^{-8}</td>
<td>2.9946</td>
</tr>
<tr>
<td>1024</td>
<td>6.5809</td>
<td>6.5809</td>
<td>5.3638 \times 10^{-9}</td>
<td>2.9973</td>
</tr>
<tr>
<td>2048</td>
<td>6.5809</td>
<td>6.5809</td>
<td>6.7109 \times 10^{-10}</td>
<td>2.9987</td>
</tr>
</tbody>
</table>

Problem 3. (a) See Program 3 for our solution. Below we summarize our findings.

<table>
<thead>
<tr>
<th>Increments</th>
<th>Heun</th>
<th>Exact</th>
<th>Error</th>
<th>Log-Error Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2.2978</td>
<td>2.301</td>
<td>0.0032256</td>
<td>–</td>
</tr>
<tr>
<td>200</td>
<td>2.2996</td>
<td>2.301</td>
<td>0.0013997</td>
<td>1.2044</td>
</tr>
<tr>
<td>400</td>
<td>2.3004</td>
<td>2.301</td>
<td>0.000060822</td>
<td>1.2025</td>
</tr>
<tr>
<td>800</td>
<td>2.3007</td>
<td>2.301</td>
<td>0.00026449</td>
<td>1.2014</td>
</tr>
<tr>
<td>1600</td>
<td>2.3009</td>
<td>2.301</td>
<td>0.00011506</td>
<td>1.2008</td>
</tr>
<tr>
<td>3200</td>
<td>2.3009</td>
<td>2.301</td>
<td>5.0068 \times 10^{-9}</td>
<td>1.2004</td>
</tr>
<tr>
<td>6400</td>
<td>2.301</td>
<td>2.301</td>
<td>2.179 \times 10^{-8}</td>
<td>1.2003</td>
</tr>
</tbody>
</table>

By inspection we see our convergence isn’t quadratic as we expect of Heun’s method. Notice that

\[Y'(t) = t^{1/5} \exp \left(\frac{5}{6} \frac{t^4}{t} \right) \]
In other words, \(Y' \) is non-differentiable at \(t = 0 \). This was however a crucial assumption in the series expansions used to show the order of convergence of Heun’s method. (b) See Program 4 for our solution. Below we summarize our findings. For the same reason as in (a) we do not see the expected 4th-order convergence.

<table>
<thead>
<tr>
<th>Increments</th>
<th>Runge–Kutta</th>
<th>Exact</th>
<th>Error</th>
<th>Log-Error Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2.3002</td>
<td>2.301</td>
<td>0.00079141</td>
<td>—</td>
</tr>
<tr>
<td>200</td>
<td>2.3006</td>
<td>2.301</td>
<td>0.00034445</td>
<td>1.2001</td>
</tr>
<tr>
<td>400</td>
<td>2.3008</td>
<td>2.301</td>
<td>0.00014992</td>
<td>1.2001</td>
</tr>
<tr>
<td>800</td>
<td>2.3009</td>
<td>2.301</td>
<td>(6.5256 \times 10^{-6})</td>
<td>1.2</td>
</tr>
<tr>
<td>1600</td>
<td>2.3009</td>
<td>2.301</td>
<td>(2.8404 \times 10^{-6})</td>
<td>1.2</td>
</tr>
<tr>
<td>3200</td>
<td>2.301</td>
<td>2.301</td>
<td>(1.2364 \times 10^{-6})</td>
<td>1.2</td>
</tr>
<tr>
<td>6400</td>
<td>2.301</td>
<td>2.301</td>
<td>(5.3815 \times 10^{-6})</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Problem 4. (a) Write the series expansion and use Taylor’s theorem to get that, for some \(\theta \in [0,1] \),

\[
 f(t + h) = f(t) + f'(t)h + \frac{f''(t)h^2}{2} + \cdots + \frac{f^{(k-1)}(t)h^{k-1}}{(k-1)!} + \frac{f^{(k)}(t + \theta h)h^k}{k!}.
\]

But using \(\alpha \)-Hölder continuity we have \(|f^{(k)}(t + \theta h) - f^{(k)}(t)| \leq K|\theta h|^\alpha \) and thus

\[
 f^{(k)}(t + \theta h) = f^{(k)}(t) + [f^{(k)}(t + \theta h) - f^{(k)}(t)] = f^{(k)}(t) + O(h^\alpha).
\]

Thus

\[
 f(t + h) = f(t) + f'(t)h + \frac{f''(t)h^2}{2} + \cdots + \frac{f^{(k)}(t)h^k}{k!} + O(h^{k+\alpha}),
\]

which lets us write

\[
 Y(t + h) = Y(t) + Y'(t)h + \frac{Y''(t)h^2}{2} + \cdots + \frac{Y^{(k+1)}(t)h^{k+1}}{(k+1)!} + O(h^{k+\alpha+1}).
\]

(2)

We perform a multivariate series expansion using Taylor’s theorem such that for some \(\theta \in [0,1] \):

\[
 f(t + ah, y + bh) = f(t, y) + (ah \partial_t + bh \partial_y) f(t, y) + \cdots + \frac{1}{k!} (ah \partial_t + bh \partial_y)^k f(t + \theta ah, y + \theta bh).
\]

Just as before we apply \(\alpha \)-Hölder continuity to get

\[
 \partial_x^k f(t + \theta ah, y + \theta bh) = \partial_x^k f(t, y) + O(h^\alpha).
\]

Note the second argument is smooth and bounded on the \((k+1)\)st derivative, and thus the mean value theorem guarantees it is \(\alpha \)-Hölder continuous for every \(\alpha \). Then

\[
 f(t + ah, y + bh) = f(t, y) + (ah \partial_t + bh \partial_y) f(t, y) + \cdots + \frac{1}{k!} (ah \partial_t + bh \partial_y)^k f(t, y) + O(h^{k+\alpha}),
\]

(3)

and we write the truncation error of the explicit Runge–Kutta update, while recalling our assumption that the update is of \(n \)th order:

\[
 T(t, Y) := \begin{cases}
 Y(t + h) - Y(t) & \text{if } k \geq n \\
 \frac{h}{k!} \sum_{i=1}^{p} c_i f \left(t + a_i h, y + h \sum_{j=1}^{i-1} \beta_{ij} k_i \right) & \text{if } k < n
 \end{cases} = \begin{cases}
 O(h^{n+1}) & \text{if } k \geq n \\
 O(h^{k+\alpha+1}) & \text{if } k < n
 \end{cases}.
\]

(4)

First, if \(k \geq n \) the order of convergence is immediate—all the coefficients of \(1, h, h^2, \ldots, h^n \) in both the blue and red brackets agree and the remaining terms are of order \(n \) or higher. Next, if \(k < n \), we are still automatically granted that all coefficients \(1, h, h^2, \ldots, h^k \) agree in both the blue and red brackets. However, we observe that in the red brackets the order of the residual is, via our work in (3), \(hO(h^{k+\alpha}) = O(h^{k+\alpha+1}) \).
In the blue brackets we already showed in (2) that the order of the residual is \(O(h^{k+\alpha+1}) \). Thus (4) is \(O(h^{k+\alpha+1}) \) and we’re done.

(b) In the very first step, the arguments of part (a) apply and since \(k < n \) thus

\[
Y(t_1) - y_1 = T(t_0, Y) = O(h^{k+\alpha+1}),
\]

assuming that \(Y(0) = y_0 \).

However, since \(t_1 = t_0 + h > t_0 \) the solution \(Y(t) \) and the function \(f(t, y) \) are both \(C^\infty \) in time for all \(t \geq t_1 \). Thus, the method is order \(n \) after the first step! The general error bound derived in class therefore gives

\[
\max_{i=1,\ldots,n} |Y(t_i) - y_i| \leq \exp \left(|t_n - t_1| L \right) \left| Y(t_1) - y_1 \right| + \frac{\exp(|t_n - t_1| L) - 1}{L} \max_{j=1,\ldots,n} |\tau_j|.
\]

Here \(\max_{j=1,\ldots,n} |\tau_j| = O(h^n) \) so that the error is dominated for small \(h \) by the first term proportional to \(|Y(t_1) - y_1| = O(h^{k+\alpha+1}) \). This is the statement that the method is of order at least \(k + \alpha + 1 \).

Note \(f \) in Problem 3 is zero times continuously differentiable and \(1/5 \)-Hölder in \(t \) in any small neighborhood of the origin, but \(C^\infty \) elsewhere. We’re thus guaranteed an order of convergence at least \(6/5 \), which is what we observe numerically for the order approximation in Problem 3(b).

(c) See Program 5 for the implementation of the solution. See Figure 1 for the approximate order of convergence. We find the approximate order of convergence to be 1.48147, which is greater than \(1/2 \). This is a larger rate of convergence than implied by our work in (a), which only guaranteed a \((k + \alpha)\)th-order rate of convergence, which in this case is \(1/2 \). There is no logical contradiction with part (a), just a bit of a mystery why the convergence rate is higher than guaranteed.

Note, however, that the Heun approximation for this problem is

\[
y_{\text{Heun}}(1) = y(0) + \sum_{k=0}^{n-1} \frac{h}{2} \left[f(t_k) + f(t_{k+1}) \right].
\]

This is \(y(0) \) plus the trapezoidal approximation to the integral \(\int_0^1 f(t) \, dt \), whose order of convergence is \(1 + \alpha \) if the integrand is \(\alpha \)-Hölder continuous. As it happens, this \(3/2 \) rate for \(\alpha = 1/2 \) approximately agrees with our findings.

Likewise, the RK4 approximation is

\[
y_{\text{RK4}}(1) = y(0) + \sum_{k=0}^{n-1} \frac{h}{6} \left[f(t_k) + 4f(t_{k+1}) + f(t_{k+1/2}) \right].
\]

and this is \(y(0) \) plus the Simpson approximation to the integral \(\int_0^1 f(t) \, dt \), whose order of convergence again is \(1 + \alpha \) if the integrand is \(\alpha \)-Hölder continuous. The rate \(3/2 \) is again quite close to what we observed numerically.

In general, convergence and stability is much better for numerical methods applied to ODE’s \(\dot{y}(t) = f(t) \) where \(f(t) \) is \(y \)-independent. In this case, solving the ODE just reduces to calculating the integral \(\int_0^1 f(t') \, dt' \).
Figure 1. Error in Heun method for Problem 4(c). Approximate order 1.48147.
MATLAB Code

Program 1. Implement rk3.m.

```matlab
function [ t,y ] = rk3(f,tspan,y_0,N_s,yes)

  t_0=tspan(1);
  t_f=tspan(2);
  D=length(y_0);
  dt = (t_f - t_0)/N_s;
  t = t_0 : dt : t_f;
  N=length(t);
  j = 1;
  y(1,:) = y_0(:)';

  while j < N
    yj=y(j,:);'
    k1 = feval(f,t(j),yj);
    k2 = feval(f,t(j)+dt/2,yj+k1*dt/2);
    k3 = feval(f,t(j)+3*dt/4,yj+3*k2*dt/4);
    yj = yj + dt.*(2*k1+3*k2+4*k3)/9;
    y(j+1,:) = yj';
    j = j + 1;
  end

  if yes==1
    for k=1:D,
      figure
      z=y(:,k);
      plot(t,z)
      xlabel('time t')
      ylabel(sprintf('y_%d', k))
    end
  end

  t=t';
  return
```

Program 2. Solve Problem 2(c).

```matlab
format long
f= @(t,y) y.*log(y);
tspan=[0 1]
y_0=2
Y= @(t) 2.^exp(t);
```
Program 3. Solve Problem 3(a).

```matlab
f=@(t,y,p) t.^(p-1).*y;
Y=@(t,p) exp(t.^p/p);
y_0=1
tspan=[0 1]
p=1.2;
pause
for i=1:7,
    N_s=50*2^i;
    [ t,y ] = heun(@(t,y) f(t,y,p),tspan,y_0,N_s,0);
end
```
Program 4. Solve Problem 3(b).

format long

f=@(t,y,p) t.^(p-1).*y;
Y=@(t,p) exp(t.^p/p);
y_0=1
tspan=[0 1]
p=1.2;

for i=1:7,
N_s=50*2^i;
[t,y] = rk4(@(t,y) f(t,y,p) ,tspan,y_0,N_s,0);
s=y(i+N_s,:);
y1(i,:)=s;
E1(i)=norm(s-S);
end

disp([‘N_s , heun , exact , error , log error - ratio’])
disp([‘100 ', num2str(y1(1,:)),' ', num2str(Y1(1,:)),' ', num2str(E1(1)),' NaN’])
for i=2:7
 num=num2str(50*2^(i));
 for j=1:6-length(num)
 num=[num,' '];
 end
 yst=num2str(y1(i,:));
 for j=1:9-length(yst)
 yst=[yst,' '];
 end
 disp([num,yst,num2str(Y1(i,:)),' ',num2str(E1(i)),' ',num2str(log2(E1(i-1)/E1(i)))]
end
Program 5. Solve Problem 4(c).

```matlab
alp=1/2;
y_0=1/(1-2^(1+alp));
tspan=[0 1];
imin=2;
imax=10;
for i=imin:imax
    N_s=50*2^i;
    ii=round(i-imin+1);
    [t,y] = heun(@(t,y) wsfun(t,y,alp),tspan,y_0,N_s,0);
    s=y(i+N_s,:);
y1(ii,:)=s;
S=feval(@(t) wcfun(t,alp),t(i+N_s));
Y1(ii,:)=S;
E1(ii)=norm(y-wcfun(t,alp),'inf');
end
```
disp(['N_s, error, log error-ratio'])

i = imin;
num = num2str(50*2^i);
for j = 1:9-length(num)
 num = [num,' '];
end
disp([num, num2str(abs(E1(1))),' NaN'])

for i = imin+1:imax
 num = num2str(50*2^i);
 for j = 1:9-length(num)
 num = [num,' '];
 end
 ii = round(i-imin+1);
 disp([num, num2str(abs(E1(ii))),' ', num2str(log2(abs(E1(ii-1))/E1(ii)))]
end

h = 1./(50*2.^(imin:imax));
P = polyfit(log(h), log(abs(E1)), 1);
m = P(1)
b = P(2)

figure; loglog(h, abs(E1),'-b', h, exp(polyval(P, log(h))),'--r','LineWidth',2)
xlabel('h','FontSize',15)
ylabel('E(h)','FontSize',15)
legend('error','fit','Location','NorthWest')
title(['Error in Heun Method Showing Approximate Order n=', num2str(m),']','FontSize',15)