
Homework No.6, 553.481/681, Due April 26, 2024.

Problem 1. [DOUBLE] (a) Try Euler’s method with step length h on the simple
test problem

ẏ = λy, y(0) = 1

for an arbitrary real parameter λ.

(i) Determine an explicit expression for yn.

(ii) Determine for which values of λh the sequence {yn}∞n=0 is bounded.

(iii) Use h = t/n to approximate the exact solution y(t) = eλt by yn. Show directly
that limn→∞ yn = y(t) and, in fact, that

yn − y(t) = −(λt)2
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Hint: To show convergence, write
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the fact that
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because of the Taylor expansion with remainder for ex/n.

(iv) From the result in (i) you can determine the local truncation error per step in the
Euler method to be τn = [y(tn+1; yn)− yn+1]/h = 1

2
ÿ(tn)h+ O(h2) for this situation,

where y(t; yn) is the local solution that exactly solves the problem ẏ = λy, y(tn) = yn.
Show that the result obtained in (iii) is the same as yn− y(t) = −δ(t)h+O(h2), with
prefactor δ(t) the solution of

δ̇(t) = λδ(t) +
1

2
ÿ(t), δ(0) = 0. (∗∗)

(b) Repeat (a) for Heun’s method. In part (iii) you will need to find the replacement
for (*) by generalizing the argument in (a). In part (iv) you should be able to
show that τn = [y(tn+1; yn) − yn+1]/h = 1

3!

...
y (tn)h2 + O(h3) and now yn − y(t) =

−δ(t)h2 +O(h3), with δ(t) the solution of δ̇(t) = λδ(t) + 1
3!

...
y (t).
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Problem 2. (a) Consider the three stage Runge-Kutta formula

yn+1 = yn + h[γ1K1 + γ2K2 + γ3K3]

K1 = f(tn, yn), K2 = f(tn + α2h, yn + hβ21K1)
K3 = f(tn + α3h, yn + hβ31K1 + hβ32K2)

Determine the set of equations that the coefficients {γj, αj, βji} must satisfy if the
formula is to be of order 3.

(b) The Runge-Kutta integration scheme with coefficients

α2 = 1/2, β21 = 1/2

α3 = 3/4, β31 = 0, β32 = 3/4

γ1 = 2/9, γ2 = 1/3, γ3 = 4/9

is employed as part of the Bogacki-Shampine algorithm implemented in MATLAB’s
integrator ode23. Use the result of part (a) to check whether this scheme satisfies
the conditions to be third-order.

(c) Write a MATLAB script rk3.m to implement the scheme in part (b). Apply your
code to solve the initial-value problem

ẏ = y ln y, y(0) = 2

with exact solution Y (t) = 2exp t on the time-interval [0, 1], using a number of steps
N = 4, 8, 16, ..., 2048. Use the results to estimate the order of convergence. Does your
numerical finding agree with your theoretical conclusion in part (b)?

Problem 3. (a) Use the Heun method to solve the the initial-value problem

y′ = t1/5y, y(0) = 1

whose exact solution is Y (t) = exp(5
6
t6/5). Solve the equation on [0, 1], using a num-

ber of steps N = 50, 100, 200, ..., 6400 increasing by factors of 2. Calculate the base-2
logarithm of the ratios by which errors in y(1) decrease for successive approxima-
tions when h is halved. How does this compare with the usual quadratic rate of
convergence, which would yield 2 for this logarithm? Explain your results.

(b) Repeat part (a) using the classical 4th-order Runge-Kutta method.
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Problem 4*. A function f(t) is said to be Ck,α for integer k ≥ 0 and 0 < α < 1 if
it is Ck or k-times continuously differentiable and if also its kth-derivative is Hölder
continuous with exponent α, that is:

|f (k)(t)− f (k)(t′)| ≤ K|t− t′|α (∗)

for all t, t′ with some constant K. In this problem we will explore the convergence of
Runge-Kutta methods when the ODE function f(t, y) is smooth in y but only Ck,α

in t and when the solution Y (t) is also only Ck+1,α in t.

(a) If a Runge-Kutta method is order n for ODE’s with smooth solutions Y (t), then
under the above assumptions, prove that the method remains of order n for k ≥ n
but might have order only k + α if k < n.

Hint: If f(t) is Ck,α, use the Hölder continuity condition (*) to derive a new error
estimate on the Taylor polynomial of degree k.

(b) If, however, the assumption about f(t, y) and Y (t) holds only at t = t0 and if
these functions are C∞ for all t > 0, then prove that the Runge-Kutta method has
order at least k + α + 1 if k < n. Does this explain the results in Problem 3?

Hint: Consider the error made in the first step and then in all subsequent steps.

(c) As an example of the type discussed in part (a), consider the initial-value problem

ẏ = f(t), 0 < t < 1; y(0) = 1/(1− 21+α),

with

f(t) =
∞∑
n=1

sin(2nt)

2αn
, Y (t) = −

∞∑
n=1

cos(2nt)

2(1+α)n
.

The function f is a special case of the famous Weierstrass function which is C0,α

but not C0,β for any β > α. As in Problem 3, use the Heun method to solve the
initial-value problem for the case α = 1/2 with number of steps N = 200, ..., 51200
increasing by factors of 2. Calculate the error E(h) = maxtn∈[0,1] |yn−Y (tn)| for each
value of h and make a straight line fit of logE(h) versus log h with polyfit in Matlab
to determine the approximate order of convergence.

Is the observed order of convergence surprising, based on the analysis in (a)? Can
you think of any explanation for your observation? Is there anything special about
solving ODE’s with f(t, y) independent of y?
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