
EN.553.481/681 Numerical Analysis – Homework 5 Solutions

Problem 1. (a) Note that

− d

dx
xne−x = xne−x − nxn−1e−x = e−x

(
1− d

dx

)
xn.

By noting that d/dx and 1− d/dx commute we can extend the above to(
− d

dx

)n
xne−x = e−x

(
1− d

dx

)n
xn.

With the binomial expansion we can write

pn(x) = ex
(
− d

dx

)n
xne−x

=

(
1− d

dx

)n
xn

=

n∑
k=0

(
n

k

)(
− d

dx

)k
xn

=

n∑
k=0

(
n

k

)
(−1)k

n!

(n− k)!
xn−k.

(b) Without loss of generality assume n > m. Then:

∫ ∞
0

pn(x)pm(x)e−x dx =

∫ ∞
0

ex
(
− d

dx

)n {
xne−x

}(
− d

dx

)m {
xme−x

}
dx

=

∫ ∞
0

(
− d

dx

)n {
xne−x

}(
1− d

dx

)m
{xm} dx

=

(
− d

dx

)n−1 {
xne−x

}(
1− d

dx

)m
{xm}

∣∣∣∣∣
∞

0

+

∫ ∞
0

(
− d

dx

)n−1 {
xne−x

} d

dx

(
1− d

dx

)m
{xm} dx.

In this last step we used integration by parts. Note that when expanded (−d/dx)n−1xne−x has a polynomial
term of degree at least 1 and a factor e−x in each summand, implying it vanishes at x = 0,∞. Thus:(

− d

dx

)n−1 {
xne−x

}(
1− d

dx

)m
{xm}

∣∣∣∣∣
∞

0

= 0.

We repeat integration by parts:

∫ ∞
0

pn(x)pm(x)e−x dx =

∫ ∞
0

(
− d

dx

)n−1 {
xne−x

} d

dx

(
1− d

dx

)m
{xm} dx

=

∫ ∞
0

(
− d

dx

)n−2 {
xne−x

}(d

dx

)2(
1− d

dx

)m
{xm} dx,

and continue until

1

∫ ∞
0

pn(x)pm(x)e−x dx =

∫ ∞
0

xne−x
(

d

dx

)n(
1− d

dx

)m
xm dx

=

∫ ∞
0

xne−x
(

1− d

dx

)m(
d

dx

)n
xm dx

= 0.

Problem 2. (a) We have: p0(x) = 1, p1(x) = x− 1, p2(x) = x2 − 4x + 2, and p3(x) = x3 − 9x2 + 18x− 6.

(b) The roots of p2 are 2±
√

2.

(c) We have: `1(x) = −(x− x2)/2
√

2 and `2(x) = (x− x1)/2
√

2. Then

w1 =

∫ ∞
0

`1(x) exp(−x) dx = −1− x2

2
√

2
=

1

2

(
1 +

1√
2

)
w2 =

∫ ∞
0

`2(x) exp(−x) dx =
1− x1

2
√

2
=

1

2

(
1− 1√

2

)
.

(d) We find that

w1 + w2 =

∫ ∞
0

e−x dx = 1

w1x1 + w2x2 =

∫ ∞
0

xe−x dx = 1.

With x1 = 2−
√

2 and x2 = 2 +
√

2 from (b) this system of equations lets us recover the same w1, w2 in (c).

(e) See Program 2. We find that I2(f) ≈ 0.6634. Compare with

I(f) =

∫ ∞
0

e−xe−x/2 dx

=

∫ ∞
0

e−
3
2x dx

= (−2

3
e−

3
2x)∞x=0

=
2

3

Problem 3. (a) See Program 3.1.

(b) See Program 3.2 for (i). We compute I ≈ 0.8591. The Gauss–Legendre method made 66 calls, while
Romberg made 257 calls. This reflects the exponential rate of convergence of Gaussian quadrature for C∞

functions. However, in terms of wall clock time, the Gauss–Legendre method took approximately 4.8457
times the number of seconds it took the Romberg method to compute.

See Program 3.3 for (ii). We compute I ≈ 0.5300. The Gauss–Legendre method made 3486 calls, while
Romberg made 131073 calls. Both methods have slower convergence for this singular integrand, but the
asymptotic order of convergence of Romberg is here only 1.9, while Gauss-Legendre has asymptotic convergence
rate 2 times as large, or 3.8. Thus, the many function calls made by Romberg to achieve higher-order accuracy

2

are wasted here and Gauss-Legendre quadrature is much more efficient. However, the Gauss–Legendre method
in wall-clock time took approximately 6.5728 times the number of seconds required by Romberg method!

There is a large time loss from having to perform, for each successive choice of n, an eigendecomposition of
an n-dimensional tridiagonal matrix in the Gauss–Legendre method. This can be avoided by pre-calculating
the weights and nodes needed in Gauss-Legendre quadrature for the various n values and storing them in a
file, since these numbers are the same for all integrands. The weights and nodes can then be read in when
computing the approximate integrals and not recomputed each time. This will greatly reduce the wall-clock
time and make Gauss-Legendre much more efficient than Romberg.

Problem 4. (a) See Program 4.1. We find the Konrod weights w′0 ≈ 0.45092, w′1 ≈ 0.26849, w′2 ≈ 0.40140,
and w′3 ≈ 0.10466.

(b) See Program 4.2.

(c) See Program 4.3 for (i). The exact integral is I = 211/11 ≈ 186.1818. The G3 integral is approximately
172.9664 with error −0.0710. The K7 integral is approximately 186.1818 with error 2.2204× 10−16. The G7

integral is approximately 186.1818 with error 2.2204 × 10−16. Note that K7 has precision 10 and and G7

has precision 13, so that both of these methods integrate x10 exactly (in infinite-precision arithmetic). This
explains their spectacular accuracy here.

See Program 4.4 for (ii). The exact integral is I = e1 − e−1 ≈ 2.3504. The G3 integral is approximately
2.3503 with error −2.7850× 10−5. The K7 integral is approximately 2.3504 with error 2.5291× 10−13. The
G7 integral is approximately 2.3504 with error −1.1102× 10−15.

See Program 4.5 for (iii). The exact integral is I = 2C(1) ≈ 1.5598 where C is the cosine Fresnel integral.
The G3 integral is approximately 1.5420 with error −0.0114. The K7 integral is approximately 1.5598 with
error −3.0731× 10−6. The G7 integral is approximately 1.5598 with error −3.6583× 10−7.

By inspection, G7 is the most accurate. However, it must compute 7 new function values every time it is
employed, while K7 can reuse the 3 function values already computed for G3. This makes the Kronrod pair
(G3,K7) much more efficient for adaptive methods even though the pair of Gaussian rules (G3, G7) would
achieve slightly higher accuracy.

Problem 5.* (a) Recall that

ext =

∞∑
n=0

xntn

n!
, e−

1
2 t

2

= 1 +

∞∑
k=1

(−1)k
t2k

2kk!
.

Multiplying these series termwise, we see that the power xn first appears multiplying tn with coefficient 1
n!

and thereafter appears with other coefficients multiplying tn+2k for k = 1, 2, 3, Therefore, if we combine
all of the terms tn for the same power n, then the coefficient multiplying tn is 1

n!x
n plus linear combinations

of xn−2, xn−4,..., 1 (n odd) or 0 (n even). In other words,

ext−
1
2 t

2

=

∞∑
n=0

pn(x)
tn

n!

where pn(x) is a monic polynomial of degree n, in fact containing only even powers of x for n even and only
odd powers for n odd. This polynomial pn(x) is the so-called Hermite polynomial, usually denoted Hn(x).
(b) Note that if you take t = 0 you immediately obtain H0(x) = 1. From here we write

d

dx
exp

(
xt− 1

2
t2
)

= t exp

(
xt− 1

2
t2
)

=

∞∑
n=0

Hn(x)
tn+1

n!
=

∞∑
n=0

(n + 1)Hn(x)
tn+1

(n + 1)!
=

∞∑
n=1

nHn−1(x)
tn

n!

3

d

dx

∞∑
n=0

Hn(x)
tn

n!
=

∞∑
n=0

H ′n(x)
tn

n!
=

∞∑
n=1

H ′n(x)
tn

n!
,

The two rows are equal. This gives us H ′n(x) = nHn−1(x). Next write

d

dt
exp

(
xt− 1

2
t2
)

= (x− t) exp

(
xt− 1

2
t2
)

=

∞∑
n=0

xHn(x)
tn

n!
−
∞∑
n=0

Hn(x)
tn+1

n!

=

∞∑
n=0

xHn(x)
tn

n!
−
∞∑
n=0

(n + 1)Hn(x)
tn+1

(n + 1)!

=

∞∑
n=0

xHn(x)
tn

n!
−
∞∑
n=1

nHn−1(x)
tn

n!

=

∞∑
n=0

xHn(x)
tn

n!
−
∞∑
n=0

nHn−1(x)
tn

n!

=

∞∑
n=0

[xHn(x)− nHn−1(x)]
tn

n!

d

dt

∞∑
n=0

Hn(x)
tn

n!
=

∞∑
n=1

Hn(x)
tn−1

(n− 1)!
=

∞∑
n=0

Hn+1(x)
tn

n!
.

As before the two above expressions are equal, giving us Hn+1(x) = xHn(x)− nHn−1(x).

(c) Let en := (0, . . . ,−
√
n) ∈ Rn and write

pn+1(x) = det (xIn+1 −An+1) = det

[
xIn −An en

e>n x

]
Now expand in minors along the last row or last column to obtain

pn+1(x) = xdet (xIn −An) +
√
n det

[
xIn−1 −An−1 en−1

0>n−1 −
√
n

]
Next expand the final determinant along its bottom row to obtain

pn+1(x) = xdet (xIn −An)− ndet (xIn−1 −An−1)

= xpn(x)− npn−1(x),

as desired. Note we immediately have p1(x) = x = H1(x) and also p2(x) = xp1(x) − 1, consistent with
p0(x) = 1 = H0(x). Since the characteristic polynomials pn(x) satisfy the same recurrence relation as do the
Hermite polynomials and also agree for n = 0, 1, it follows that pn(x) = Hn(x) for all n ≥ 0. In particular,
the eigenvalues of An are precisely the roots of the Hermite polynomial Hn(x).

(d) See Program 5.1.

(e) See Program 5.2. See Figure 5 for the semi-log error plot. The approximate linear decrease is evidence of
an exponential rate of convergence. Approximate values listed below with errors for each n.

4

n Gauss–Hermite Approximation Error

1 1.0000 -0.6487
3 1.6382 -0.0105
5 1.6487 -0.0000
7 1.6487 -0.0000
9 1.6487 -0.0000
11 1.6487 -0.0000
13 1.6487 -0.0000
15 1.6487 -0.0000

MATLAB Plots

Figure 5. Semi-log error in Gauss–Hermite quadrature.

5

MATLAB Code

Program 2. Gauss–Laguerre quadrature.

1 x=2*[1 1]+ sqrt (2)*[-1 1];

2
3 w=[1 1]+[1 -1]/sqrt (2);

4 w=w/2;

5
6 f=@(x) exp(-x/2);

7
8 I=sum(w.*f(x))

Program 3.1. Implementation of gaussleg2.m.

1 function [I, fcnt]= gaussleg2(f,a,b,tol)

2
3 itmax =400;

4
5 n=1;

6 I=(b-a)*f((a+b)/2);

7 fcnt =1;

8 E=1;

9
10 while E>tol

11 n=n+1;

12 if n>itmax

13 break

14 end

15
16 Iold=I;

17
18 % calculate zeros & weights by the Gollub -Welsch algorithm

19
20 A=zeros(n,n);

21 for i=2:n

22 A(i-1,i)=(i-1)/ sqrt ((2*i -1)*(2*i -3));

23 end

24 A=A+A’;

25
26 [V,D]=eig(A);

27
28 x=diag(D);

29
30 for j=1:n,

31 v=V(:,j);

32 w(j ,1)=2*v(1)^2;

33 end

34
35 % Gauss -Legendre approximation of the integral

36
37 x=((b-a).*x+(a+b))./2;

38
39 I=sum(w.*f(x))*(b-a)/2;

40 fcnt=fcnt+n;

41 E=abs(I-Iold)/abs(I);

42
43 end

6

Program 3.2. Gauss–Legendre versus Romberg for f(x) = x exp(x2).

1 f=@(x) x.*exp(x.^2);

2 a=0; b=1; tol=1e-15;

3 I=(exp (1) -1)/2

4
5 timeGL =0; timeR =0;

6 for ii =1:1000

7
8 tic

9 [IGL ,fcntGL]= gaussleg2(f,a,b,tol);

10 timeGL=timeGL+toc;

11
12 tic

13 [IR ,fcntR]= romberg(f,a,b,tol);

14 timeR=timeR+toc;

15 end

16
17 IGL=IGL , fcntGL=fcntGL

18 IR=IR, fcntR=fcntR

19
20 tratio=timeGL/timeR

Program 3.3. Gauss–Legendre versus Romberg for f(x) = (x(1− x))1/3.

1 f=@(x) (x.*(1-x)).^(1/3);

2 a=0; b=1; tol=1e-7;

3 I=beta (4/3 ,4/3)

4
5
6 timeGL =0; timeR =0;

7 for ii =1:1000

8
9 tic

10 [IGL ,fcntGL]= gaussleg2(f,a,b,tol);

11 timeGL=timeGL+toc;

12
13 tic

14 [IR ,fcntR]= romberg(f,a,b,tol);

15 timeR=timeR+toc;

16 end

17
18 IGL=IGL , fcntGL=fcntGL

19 IR=IR, fcntR=fcntR

20
21 tratio=timeGL/timeR

Program 4.1. Finding the Kronrod weights by finding the linear system given by the constraint that K7

exactly integrates x2i for i = 0, . . . , 3.

1 xg=[-sqrt(.6),0, sqrt (.6)]; xg1=xg(3);

2 wg=[5 ,8 ,5]/9;

3
4 % use the quadratic formula

7

5 b= -10/9; c=155/891; d=sqrt(b^2-4*c);

6 xk1=sqrt((-b-d)/2); xk2=sqrt((-b+d)/2);

7
8 % half of the integral of x^{2k} is 1/(2k+1)

9 A=[1/2 1 1 1; 0 xg1^2 xk1^2 xk2^2; 0 xg1^4 xk1^4 xk2^4; 0 xg1^6 xk1^6 xk2 ^6];

10 b=[1; 1/3; 1/5; 1/7];

11 wk=A\b

Program 4.2. Implementation of G3K7.m.

1 function [Ig,Ik] = G3K7(f)

2
3 xg=[-sqrt(.6),0, sqrt (.6)]; xg1=xg(3);

4 wg=[5 ,8 ,5]/9;

5
6 b= -10/9; c=155/891; d=sqrt(b^2-4*c);

7 xk2=sqrt((-b-d)/2); xk3=sqrt((-b+d)/2);

8
9 A=[1/2 1 1 1; 0 xg1^2 xk2^2 xk3^2; 0 xg1^4 xk2^4 xk3^4; 0 xg1^6 xk2^6 xk3 ^6];

10 b=[1; 1/3; 1/5; 1/7];

11 wk=A\b;

12
13 wkg=[wk(2) wk(1) wk (2)];

14 xkp=[-xk3 -xk2 xk2 xk3];

15 wkp=[wk(4) wk(3) wk(3) wk (4)];

16
17 fg=f(xg);

18 Ig=sum(wg.*fg);

19 Ik=sum(wkg.*fg)+sum(wkp.*f(xkp));

20
21 end

Program 4.3. Comparing G3, K7, and G7 for f(x) = (x + 1)10.

1 xw=glquad (7)

2 xg7=xw(:,1);

3 wg7=xw(:,2);

4
5 f=@(x) (x+1).^10

6 I=2^11/11

7
8 [Ig ,Ik]=G3K7(f);

9 Ig=Ig

10 Eg=Ig/I-1

11
12 Ik=Ik

13 Ek=Ik/I-1

14
15 Ig7=sum(wg7.*f(xg7))

16 Eg7=Ig7/I-1

Program 4.4. Comparing G3, K7, and G7 for f(x) = cosh(x).

1 xw=glquad (7)

2 xg7=xw(:,1);

3 wg7=xw(:,2);

8

4
5 f=@(x) cosh(x)

6 I=exp(1)-exp(-1)

7
8 [Ig ,Ik]=G3K7(f);

9 Ig=Ig

10 Eg=Ig/I-1

11
12 Ik=Ik

13 Ek=Ik/I-1

14
15 Ig7=sum(wg7.*f(xg7))

16 Eg7=Ig7/I-1

Program 4.5. Comparing G3, K7, and G7 for f(x) = cos(π2x
2).

1 xw=glquad (7)

2 xg7=xw(:,1);

3 wg7=xw(:,2);

4
5 f=@(x) cos(pi*x.^2/2)

6 I=2* fresnelc (1)

7
8 [Ig ,Ik]=G3K7(f);

9 Ig=Ig

10 Eg=Ig/I-1

11
12 Ik=Ik

13 Ek=Ik/I-1

14
15 Ig7=sum(wg7.*f(xg7))

16 Eg7=Ig7/I-1

Program 5.1. Implementation of ghquad.m.

1 function I=ghquad(f,n)

2
3 % calculate improper integral by Gaussian quadrature with weight function

4 % w(x)=exp(-x^2/2)/ sqrt (2*pi) with nodes & weights by the Gollub -Welsch algorithm

5
6 A=zeros(n,n);

7 for i=2:n

8 A(i-1,i)=sqrt(i-1);

9 end

10 A=A+A’;

11
12 [V,D]=eig(A);

13
14 [x,in]=sort(diag(D));

15
16 for j=1:n,

17 v=V(:,j);

18 w(j)=v(1)^2;

19 end

20
21 w=w(in)’;

9

22
23 I=sum(f(x).*w);

24
25 return

Program 5.2. Approximation of I(f) by Gauss–Hermite quadrature.

1 f=@(x) cosh(x);

2 I=exp (1/2);

3
4 for i=1:8

5 N(i)=2*i-1;

6 IH(i)= ghquad(f,N(i));

7 EH(i)=IH(i)-I;

8 end

9
10 [N’,IH.’,EH.’]

11
12 semilogy(N,abs(EH),’-b’,’LineWidth ’ ,2)

13 xlabel(’n’,’FontSize ’ ,15)

14 ylabel(’Error ’,’FontSize ’ ,15)

15 title(’Errors in Gauss -Hermite Quadrature ’,’FontSize ’ ,18)

10

