
Homework No.5, 553.481/681, Due April 5, 2024.

Problem 1. (a) Verify that the formula

pn(x) = ex
(
− d

dx

)n

(xne−x), n = 0, 1, 2, ....

defines a monic polynomial of degree n. Derive an explicit formula for the coefficients
of each polynomial.

(b) Show that these polynomials satisfy the orthogonality condition∫ ∞
0

pn(x)pm(x) e−x dx = 0, n 6= m.

Hint: You will find useful the following result:(
d

dx

)n

(eaxf(x)) = eax
(
a+

d

dx

)n

f(x),

called the exponential shift property of the derivative operator d/dx. The polynomials

Ln(x) = pn(x)/n!

are called the Laguerre polynomials.

Problem 2. Continuing Problem 1, consider Gaussian quadrature for integrals of
the form

I(f) =

∫ ∞
0

f(x) e−x dx,

or so-called Gauss-Laguerre quadrature.

(a) Write out explicitly p0(x), p1(x), p2(x), p3(x)

(b) Find the two roots x1 < x2 of p2(x).

(c) Derive the weights w1, w2 corresponding to x1, x2 using the formula

wi =

∫ ∞
0

`i(x) e−x dx, i = 1, 2

where `i(x), i = 1, 2 are the Lagrange interpolating polynomials for the two points.
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(d) Show that the same weights as in (c) may be derived instead from the two
conditions

w1x
i
1 + w2x

i
2 =

∫ ∞
0

xi e−x dx = i!

for i = 0, 1 using the results from (b).

(e) Use the results of (b)–(d) to calculate the n = 2 Gauss-Laguerre quadrature
approximation I2(f) = w1f(x1) + w2f(x2) for

f(x) = exp(−x/2).

Compare this simple approximation with the exact analytical result.

Problem 3. (a) Modify the MATLAB script gaussleg.m to define a function
gaussleg2, as follows:

function [I, fnct]=gaussleg2(f,a,b,tol)

The function should output the Gauss-Legendre approximation I of the integral∫ b

a
f(x) dx to a tolerance tol, and also the number of function calls fnct used in

the entire calculation. Start with n = 1 points and increase n by 1 in each iteration,
to a maximum of 400 iterations. You may use as your stopping criterion the condition
on the relative error in successive quadratures, |In(f)− In−1(f)|/|In(f)| < tol.

(b) Use your script to calculate the following integrals to the specified tolerances:

(i)
∫ 1

0
dx x exp(x2), tol = 10−15 (ii)

∫ 1

0
dx [x(1− x)]1/3, tol = 10−7.

Compare your results with those of Romberg integration for the wall clock time and
number of function calls required. Try to explain your results, in particular the
difference in the results for these two distinct measures of computational cost. Is
there a simple way to reduce the wall clock time for Gauss-Legendre?

Problem 4. This problem studies the Gauss-Kronrod pair (G3, K7) and compares
with the Gauss method G7 for the same number of points.

(a) The 3-point Gauss rule is given explicitly by

G3(f) = w0f(0) + w1[f(ξ1) + f(−ξ1)]

with ξ1 =
√

3
5
, w0 = 8

9
, w1 = 5

9
. The 7-point Kronrod rule adds four new points

K7(f) = w′0f(0) + w′1[f(ξ1) + f(−ξ1)] + w′2[f(ξ2) + f(−ξ2)] + w′3[f(ξ3) + f(−ξ3)]

where ±ξ2, ±ξ3 are smallest and largest magnitude roots of the Stieltjes polynomial

x4 − 10

9
x2 +

155

891
= 0.
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Use this information to find the modified weights w′i, i = 0, 1, 2, 3 by requiring that
K7 exactly integrates the even powers x2i, i=0,1,2,3 and using Matlab’s mldivide to
solve the resulting linear system for the weights.

(b) Write a Matlab function code G3K7.m to evaluate both G3(f) and K7(f) for an
input function f on the interval [−1, 1]. Make certain to save the three function values
f(0), f(ξ1), f(−ξ1) needed for G3(f) and reuse them in the calculation of K7(f).

(c) Use your code from (b) to compare G3, K7 and G7 for the following three functions
on the interval [−1, 1]:

i) f(x) = (x+ 1)10, (ii) f(x) = cosh(x), (iii) f(x) = cos(πx2/2).

You can get the nodes and weights for G7 from the class code glquad.m. Compare
each approximation with the exact value of the integral I =

∫ 1

−1 f(x) dx. Which has
the least/greatest relative error? What is the advantage of using K7 rather than G7?

Remark: The exact value of integral (iii) is given in terms of the cosine Fresnel
integral which is calculated in Matlab with fresnelc.

Problem 5*. This problem explores the use of Gauss-Hermite quadrature to ap-
proximate improper integrals of the form

I(f) =

∫ +∞

−∞
f(x)w(x) dx, w(x) =

e−x
2/2

√
2π

.

(a) Show that the infinite series expansion of the generating function

ext−
1
2
t2 =

∞∑
n=0

Hn(x)
tn

n!

defines a sequence Hn(x) of monic polynomials of degree n. These Hermite polyno-
mials are the orthogonal polynomials on (−∞,+∞) with the Gaussian weight w(x).

(b) By differentiating the expansion in (a) with respect to x and with respect to t,
show both of the following:

H ′n(x) = nHn−1(x), Hn+1(x) = xHn(x)− nHn−1(x).

The second result is called a recurrence relation for the Hermite polynomials.

(c) Define for each n the n× n symmetric, tridiagonal matrix An with 0’s along the
diagonal and the vector b(i) =

√
i, i = 1, ..., n − 1 along the first two off-diagonals.

Show that the characteristic polynomials

pn(x) = det(xIn −An)
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with In the n × n identity matrix are monic polynomials which satisfy the same
recurrence relation as in (b) and thus that pn(x) = Hn(x), n = 0, 1, 2, .. Explain why
the nodes x1, ..., xn for n-point Gauss-Hermite quadrature are the eigenvalues of An.

(d) Use the results in part (c) to write a Matlab function code ghquad.m which
evaluates the n-point Gauss-Hermite quadrature rule for given f and n. You may
take as your model the class code glquad.m for Gauss-Legendre quadrature. You can
use the fact, without proof, that the weight wi = |ei1|2 where e(i) is the normalized
eigenvector of An for the eigenvalue xi, i = 1, ..., n.

(e) Apply your code in (d) to evaluate the integral I(f) for the function f(x) = coshx
by Gauss-Hermite quadrature with odd n = 1, 3, 5, ..., 15. Give the approximate value
and the error for each choice of n and show by a semilog plot that the error is
decreasing approximately exponentially in n.
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