Problem 1. [DOUBLE] (a) Derive Boole’s rule, the Newton-Cotes quadrature rule for \(n = 4 \), so that, with \(x_i = a + ih, \ i = 0, \ldots, 4 \) for \(h = (b - a)/4 \), and \(\xi \in [a, b] \)

\[
\int_a^b f(x) \, dx = \frac{2h}{45} \left[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right] - \frac{8h^7}{945} f^{(6)}(\xi)
\]

You do not need to evaluate by hand the integrals to determine the rational coefficients \(\alpha_i, \ i = 0, 1, \ldots, 4 \) but instead you can use symbolic integration (for example, \texttt{int} in Matlab). To evaluate the error term, you should derive and use the expression

\[
E_4(f) = \int_a^b f[x_0, x_1, x_2, x_3, x_4, x] \prod_{i=0}^4 (x - x_i)
\]

Then you can use without proof the fact that \(w(x) := \int_a^x \prod_{i=0}^4 (\bar{x} - x_i) \, d\bar{x} \geq 0 \). The integral to determine the error coefficient can be again obtained symbolically.

(b) Modify the course script \texttt{simp.c.m} to write a code \texttt{boolc.m} that implements the composite Boole’s rule.

(c) Use your code to compare the composite Simpson’s rule and composite Boole’s rule applied to the following two integrals:

\[
(i) \quad \int_0^1 dx \sin(-\pi x^2/2) \quad (ii) \quad \int_{-4}^4 dx \frac{1}{(1+x^2)^{3/2}}.
\]

Use \(n = 8, 16, 32, 64, 128, 256 \) and make a log-log plot of the errors in the approximations versus \(n \). Are the results consistent with the proven asymptotic order of convergence? Explain your answer. For (ii) it may help to consider even larger \(n \).

\textit{Note:} The exact value of integral (i) can be obtained from the Matlab function \texttt{fresnels} and integral (ii) is \(\int_{-c}^c dx \frac{1}{(1+x^2)^{3/2}} = 2c/\sqrt{1+c^2} \).

Problem 2. (a) Prove that the Bernoulli polynomials satisfy the following reflection property:

\[
(-1)^j B_j(1 - x) = B_j(x), \quad j \geq 2.
\]

(b) Prove the following identity relating the Bernoulli polynomials and Bernoulli numbers:

\[
B'_j(x) = j[B_{j-1}(x) + B_{j-1}], \quad j \geq 2.
\]

\textit{Note:} These results can be used to give a general proof of the Euler-MacLaurin formula. See Ralston, \textit{A First Course in Numerical Analysis} (McGraw-Hill, 1965).
Problem 3. (a) The composite midpoint rule \(I_n^M(f) \) with \(h = (b-a)/n \) for evaluating the integral \(I(f) = \int_a^b f(x) \, dx \) can be shown to have the asymptotic error formula

\[
I(f) = I_n^M(f) - \frac{h^2}{24} [f'(b) - f'(a)] + O(h^4).
\]

Using this information, obtain a new numerical integration formula \(\tilde{I}_n(f) \) with a higher order of convergence by making a linear combination of \(I_n^M(f) \) and the composite trapezoidal rule \(I_n^T(f) \). Write out the weights for this new formula \(\tilde{I}_n(f) \),

(b) Show that in Romberg integration, with \(T^{(0)}(h_k) \) the composite trapezoidal rule,

\[
T^{(1)}(h_k) = \frac{1}{3} [4T^{(0)}(h_k) - T^{(0)}(h_{k-1})]
\]

is the composite Simpson rule and

\[
T^{(1)}(h_k) = \frac{1}{15} [16T^{(1)}(h_k) - T^{(1)}(h_{k-1})]
\]

is the composite Boole rule.

Problem 4. Use the MATLAB script `romberg.m` and the intrinsic function `quad` in order to compare Romberg integration and adaptive extrapolated Simpson’s rule applied to the following integrals:

(i) \(\int_0^2 dx \, \exp(-x^4) \) \hspace{1cm} (ii) \(\int_0^2 dx \, \exp(-x^4/(1-x^4)) \text{sign}(1-|x|) \)

Calculate each integral to a tolerance of \(tol = 10^{-14} \) and record the number of function calls made by both algorithms. Explain your results by plotting the integrands and invoking their geometric and smoothness properties.

**Problem 5*. Show that the cubic Hermite interpolating polynomial on the interval \(x_k < x < x_{k+1} \) is given by

\[
H_2(x) = \frac{3h^2s^2 - 2s^3}{h^3} y_{k+1} + \frac{h^3 - 3hs^2 + 2s^3}{h^3} y_k + \frac{s^2(s-h)}{h^2} y'_{k+1} + \frac{s(s-h)^2}{h^2} y'_k
\]

with \(s = x - x_k \) and \(y_i = f(x_i) \), \(y'_i = f'(x_i) \), \(i = k, k+1 \) and that its integral over that interval is given by

\[
\int_{x_k}^{x_{k+1}} dx \, H_2(x) = \frac{h}{2} (y_{k+1} + y_k) - \frac{h^2}{12} (y'_{k+1} - y'_k).
\]

Thus, integrating the piecewise cubic Hermite interpolating polynomial yields the composite corrected trapezoidal rule.
Problem 6. Show that if \(h_k = 2^{-k}h \), then the Romberg approximate integrators are given by

\[
T^\ell(h_k) = p_\ell(0; h_{k-\ell}, ..., h_k), \quad k \geq \ell
\]

where the polynomials interpolate the data \((h_k, T^{(0)}(h_k)), k = 0, 1, 2, ...\)

Hint: Use the result proved in class: if a set of data \((x_i, y_i), i = 0, 1, 2, ...\) are given, then one can inductively define \(p_\ell(x; x_0, ..., x_\ell) \), the polynomial of degree \(\leq \ell \) that interpolates the data on the points \(x_0, ..., x_\ell \), by the formula

\[
 p_\ell(0; x_0, ..., x_\ell) = \frac{x_0 p_{\ell-1}(0; x_1, ..., x_\ell) - x_\ell p_{\ell-1}(0; x_0, ..., x_{\ell-1})}{x_0 - x_\ell}.
\]