553.481/681 Numerical Analysis

Homework 3 Solutions

Lowen Peng
Problem 1. Define the Vandermonde matrix by its elements:

\[V_{ij}[x_0, ..., x_n] = x_i^j, \quad 0 \leq i, j \leq n, \]

for any set of \((n + 1)\) real numbers \(x_0, ..., x_n\).

(a) Show that

\[\det V[x_0, ..., x_n] = \prod_{i=0}^{n-1} (x_n - x_i) \cdot \det V[x_0, ..., x_{n-1}]. \]

Hint: Show that the determinant on the left is a polynomial of degree \(n\) in \(x_n\) and find its roots and the coefficient of its highest-order term.

(b) Use part (a) and induction to show that

\[\det V[x_0, ..., x_n] = \prod_{0 \leq i < j \leq n} (x_j - x_i) \]

(a) Define \(f(x) := \det V[x_0, ..., x_{n-1}, x]\) and note that if \(x = x_i\) for some \(i = 0, ..., n - 1\) the rows of the Vandermonde matrix are linearly dependent and thus its determinant \(f\) vanishes. Note \(f\) is a polynomial of degree \(n\), which by the Fundamental Theorem of Algebra implies it has \(n\) roots. Thus the roots of \(f\) are precisely \(x_0, ..., x_{n-1}\), that is, \(f(x) = \alpha \prod_{i=1}^{n-1} (x - x_i)\) for some \(\alpha\). Note \(\alpha\) must be the leading coefficient associated with the \(x^n\) term. To find it, begin the determinant expansion for \(f(x)\) along the bottom row, from right to left:

\[
\det V[x_0, ..., x_{n-1}, x] = x^n \det \begin{bmatrix}
1 & x_0 & \cdots & x_0^{n-1} \\
1 & x_1 & \cdots & x_1^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & \cdots & x_{n-1}^{n-1}
\end{bmatrix} + \cdots.
\]

Thus \(\alpha = \det V[x_0, ..., x_{n-1}]\) and we’re done.

(b) For the base case \(n = 0\) note that \(\det V[x_0] = 1\). Suppose now that for \(n - 1\) we have \(\det V[x_0, ..., x_{n-1}] = \prod_{0 \leq i < j \leq n-1} (x_j - x_i)\). Applying our result in (a) we have

\[
\det V[x_0, ..., x_n] = \det V[x_0, ..., x_{n-1}] \prod_{i=1}^{n-1} (x_n - x_i) = \prod_{0 \leq i < j \leq n} (x_j - x_i).
\]
Problem 2. Consider the following eight points:

\[(x_1, y_1) = (1, 8),\ (x_2, y_2) = (2, 26),\ (x_3, y_3) = (3, 76),\ (x_4, y_4) = (4, 44),\]

\[(x_5, y_5) = (5, 128),\ (x_6, y_6) = (6, 718),\ (x_7, y_7) = (7, 14516),\ (x_8, y_8) = (8, -4864).\]

For this data, find the 7th-degree interpolating polynomial (a) in the monomial basis, (b) in the barycentric Lagrange form, and (c) in the Newtonian form with divided-differences. Compare the wall clock times to compute the coefficients in the monomial basis, the barycentric weights, and the divided-differences. Which form of the interpolating polynomial is computed the fastest in this example? Plot the eight points along with the interpolating polynomial over the interval \([0, 9]\).

(a) Interpolating polynomial:

\[p(x) = -19x^7 + 549x^6 - 6476x^5 + 40243x^4 - 141340x^3 + 277926x^2 - 279443x + 108568.\]
xlabel('x','FontSize',15)
ylabel('y','FontSize',15)
legend('data','polynomial','Location','best')
title(fgmn,'FontSize',18)

(b) Barycentric weights:

\[-\frac{1}{5400},\frac{1}{720},\frac{1}{240},\frac{1}{144},\frac{1}{144},\frac{1}{240},\frac{1}{720},\frac{1}{5040}\).

\%
weights in barycentric representation
w=baryctrwt(x);
ww=abs(round(1./w));
wgtmn=['w=[');
for k=1:n-1
 if w(k)>0
 wgtmn=[wgtmn,'1/','num2str(ww(k))',','];
 else
 wgtmn=[wgtmn,'-1/','num2str(ww(k))',','];
 end
end
if w(n)>0
 wgtmn=[wgtmn,'1/','num2str(ww(n))','] '];
else
 wgtmn=[wgtmn,'-1/','num2str(ww(n))','] '];
end
disp(' ')
disp('barycentric weights: ')
disp(wgtmn)

(c) The divided differences are

\[(8, 18, 16, -19, 13, -1, 17, -19)\].

\%
coefficients of Newton basis
disp(' ')
disp('divided differences: ')
d=newtondif(x,y)

We also time:

timV=0;
timL=0;
timN=0;
NIT=10000;
for kk=1:NIT;
 tic
 A=vander(x);
 c=A\y';
 timV=timV+toc;
 tic
 w=baryctrwt(x);
 timL=timL+toc;
 tic
 d=newtondif(x,y);
 timN=timN+toc;
end

timV=timV/NIT
timL=timL/NIT
timN=timN/NIT
timVtoN=timV/timN
timLtoN=timL/timN
timLtoN

to find that \[\text{timVtoN} = 12.933649413788673\] so that interpolating with the monomial basis takes about 13 times longer than with the Lagrange basis, and \[\text{timLtoN} = 1.669106929613677\] so that interpolating with the Lagrange basis takes about 67% times longer than with the Newton basis.
Problem 3. Use the expression

\[f[x_0, \ldots, x_n] = \sum_{i=0}^{n} w_i f(x_i), \quad w_i = 1/\Psi'_n(x_i) \]

for the divided-difference, with \(\Psi_n(x) = \prod_{j=0}^{n}(x - x_j) \), to verify that

\[f[x_0, \ldots, x_n] = \frac{f[x_1, \ldots, x_n] - f[x_0, \ldots, x_{n-1}]}{x_n - x_0}. \]

(b) Show that the polynomial \(p_n(x) \) interpolating \(f(x) \) can be written as

\[p_n(x) = \sum_{j=0}^{n} \frac{w_j f(x_j)}{x - x_j} \]

provided \(x \) is not a node point.

(a) Since

\[f[x_0, \ldots, x_{n-1}] = \sum_{i=0}^{n-1} f(x_i) \prod_{0 \leq j \leq n-1, j \neq i}(x_i - x_j), \quad f[x_1, \ldots, x_n] = \sum_{i=1}^{n} f(x_i) \prod_{1 \leq j \leq n, j \neq i}(x_i - x_j), \]

note that

\[
\begin{align*}
\frac{f[x_1, \ldots, x_n] - f[x_0, \ldots, x_{n-1}]}{x_n - x_0} &= \sum_{i=1}^{n} \frac{f(x_i)}{f(x_n)} \prod_{1 \leq j \leq n, j \neq i}(x_i - x_j) - \sum_{i=0}^{n-1} \frac{f(x_i)}{f(x_0)} \prod_{0 \leq j \leq n-1, j \neq i}(x_i - x_j) \\
&= \prod_{0 \leq j \leq n-1}(x_n - x_j) - \prod_{1 \leq j \leq n}(x_0 - x_j) \\
&\quad + \sum_{i=1}^{n-1} f(x_i) \left[\prod_{1 \leq j \leq n, j \neq i}(x_i - x_j) - \prod_{0 \leq j \leq n-1, j \neq i}(x_i - x_j) \right] \\
&= \frac{f(x_n) - f(x_0)}{\prod_{0 \leq j \leq n-1}(x_n - x_j) - \prod_{1 \leq j \leq n}(x_0 - x_j)} + \sum_{i=1}^{n-1} \frac{f(x_i)(x_n - x_0)}{\prod_{0 \leq j \leq n-1, j \neq i}(x_i - x_j)}.
\end{align*}
\]

It’s immediate that

\[\frac{f[x_1, \ldots, x_n] - f[x_0, \ldots, x_{n-1}]}{x_n - x_0} = \sum_{i=0}^{n} \frac{f(x_i)}{\prod_{0 \leq j \leq n, j \neq i}(x_n - x_j)} = f[x_0, \ldots, x_n]. \]

(b) Fix nodes \(x_0, \ldots, x_n \) and let \(q_n(x) \) be an interpolating polynomial for the constant function \(x \mapsto 1 \). Note that \(p_n(x)/q_n(x) \) remains an interpolating polynomial for \(f(x) \). We recall that the barycentric form for the Lagrangian interpolation of \(f \) is

\[p_n(x) = \Psi_n(x) \sum_{i=0}^{n} f(x_i)w_i/(x - x_i). \]

Correspondingly we also have 1 = \(q_n(x) = \Psi_n(x) \sum_{i=0}^{n} w_i/(x - x_i) \). Thus we take

\[p_n(x) := \frac{p_n(x)}{q_n(x)} = \frac{\sum_{i=0}^{n} f(x_i)w_i/(x - x_i)}{\sum_{i=0}^{n} w_i/(x - x_i)}. \]
Problem 4. Another example of the Runge phenomenon is provided by the function

\[f(x) = \frac{1}{(1 + (5x)^6)^{1/6}}, \quad x \in [-1, 1]. \]

(a) Define the \(n \)-point Chebyshev grid in the interval \([-1, 1]\) by

\[x_k = \cos \left(\frac{(2k-1)\pi}{2n} \right), \quad k = 1, \ldots, n. \]

Interpolate the above function with a polynomial on the \(n \)-point Chebyshev grid for \(n = 10, 20, 30, \ldots, 110, 120 \) and plot the results. What would you conjecture about the limit \(n \to \infty \) of the interpolating polynomial on the basis of these results?

(b) Compare the results in (a) with those obtained by polynomial interpolation on the uniform grid

\[x_k = \frac{2k - (n + 1)}{n + 1}, \quad k = 1, \ldots, n \]

for \(n = 10, 20, 30, \ldots, 110, 120 \).

(a) Code:

```matlab
f = @(x) 1./(1+(5*x).^6).^(1/6);
u = -1:0.01:1;
uu = u;
w = f(u);

'Chebyshev grid'
n = 12;
for ii = 1:n
    kk = 1:10*ii;
x = cos((2.*kk-1).*pi./20/ii);
y = f(x);
v = baryctrint(x,y,u);
plot(x,y,'o',u,v,'-b',u,w,'-r');
axis([-1 1 0 1.5])
fgnm = ['Lagrange interpolant on Chebyshev grid with n=', num2str(10*ii), ' points '];
title(fgnm)
xlabel('x')
ylabel('y')
pause
plot(u,v-w,'-b');
fgnm = ['Error on Chebyshev grid with n=', num2str(10*ii), ' points '];
title(fgnm)
xlabel('x')
ylabel('err')
pause
end
```

The numerical results presented on the following page suggest that the interpolating polynomials \(p_n(x) \) on the Chebyshev grid converge in the limit \(n \to \infty \) to the function \(f(x) \).
The numerical results on the following page suggest for a real value $a \doteq 0.6$ that $\lim_{n \to \infty} p_n(x) = f(x)$ when $|x| < a$ but, because of the observed wild oscillations, that $\limsup_{n \to \infty} p_n(x) = +\infty$ and $\liminf_{n \to \infty} p_n(x) = -\infty$ when $|x| > a$.

(b) Code:

```matlab
'uniform grid'
for ii=1:n
    kk=1:10*ii;
    xx=(2*kk-(10*ii+1))/(10*ii+1);
    yy=f(xx);
    vv=baryctrint(xx,yy,uu);
    plot(xx,yy,'o',uu,vv,-b',u,\,w,;-r')
    axis([-1 1 0 1.5])
    fgnm=['Lagrange interpolant on uniform grid with n=', num2str(10*ii), ' points '];
    title(fgnm)
    xlabel('x')
    ylabel('y')
    pause
end
```
Problem 5. In the root-finding method of inverse quadratic interpolation a quadratic polynomial \(x = p_2(y) \) is fit to the three points \((f_a, a), (f_b, b), (f_c, c)\).

(a) Use the Lagrange form of the interpolating quadratic \(p_2(y) \) to show that it crosses the \(x \)-axis at the unique point

\[
x = a \frac{f_b f_c}{(f_a - f_b)(f_a - f_c)} + b \frac{f_a f_c}{(f_b - f_a)(f_b - f_c)} + c \frac{f_a f_b}{(f_c - f_a)(f_c - f_b)}.
\]

(b) Use the result in (a) to derive the expression used in \texttt{fzerotx.m}, i.e. show that if

\[
\begin{align*}
 r &= f_b / f_a, \quad s = f_b / f_c, \quad t = f_c / f_a \\
 p &= s[(a - b)t(t - r) - (b - c)(r - 1)], \quad q = (r - 1)(s - 1)(t - 1),
\end{align*}
\]

then \(\hat{x} = b - p / q \). [\textit{Hint:} In the latter expression for \(\hat{x} \) gather together all of the terms proportional to \(a, b, \) and \(c \).]

(c) Generalize the formula in (a) to give an approximate root \(x \) by inverse cubic interpolation, using a cubic polynomial \(x = p_3(y) \) to fit four points \((f_a, a), (f_b, b), (f_c, c), (f_d, d)\).

(a) Write

\[
p_2(y) = \frac{a(y - f_b)(y - f_c)}{(f_a - f_b)(f_a - f_c)} + \frac{b(y - f_a)(y - f_c)}{(f_b - f_a)(f_b - f_c)} + \frac{c(y - f_a)(y - f_b)}{(f_c - f_a)(f_c - f_b)}.
\]

Note \(x = p_2(0) \) is of the desired form.

(b) In the expression from (a) for \(x \) divide the numerators and denominators of each term by \(f_a^2 \) and note \(s = r / t \) to write

\[

p_2(0) = \frac{ar}{(r - 1)(t - 1)} + \frac{bt}{(t - r)(1 - r)} + \frac{cr}{(1 - t)(r - t)}
\]

\[
= \frac{ar}{(r - 1)(t - 1)} + \frac{bt}{(1 - s)(1 - r)} + \frac{cr}{(1 - t)(s - 1)}
\]

\[
= \frac{ar(s - 1) + b(t - 1) - cs(r - 1)}{(r - 1)(s - 1)(t - 1)}
\]

\[
= b - \frac{-ar(s - 1) + b(r - 1)(s - 1)(t - 1) - b(t - 1) + cs(r - 1)}{(r - 1)(s - 1)(t - 1)}
\]

\[
= b - \frac{-ar(t - r) + b(r^2 - rt - rs + s) + cs(r - 1)}{(r - 1)(s - 1)(t - 1)}
\]

\[
= b - \frac{ast(t - r) - bst(t - r) - hs(r - 1) + cs(r - 1)}{(r - 1)(s - 1)(t - 1)}
\]

\[
= b - \frac{s[(a - b)t(t - r) - (b - c)(r - 1)]}{(r - 1)(s - 1)(t - 1)}.
\]

The numerator and denominator of the fraction are respectively \(p \) and \(q \) so we are done.

(c) A similar exercise to (a) will show that

\[
x = p_3(0) = \frac{a f_b f_c f_d}{(f_a - f_b)(f_a - f_c)(f_a - f_d)} + \frac{b f_a f_c f_d}{(f_b - f_a)(f_b - f_c)(f_b - f_d)} + \frac{c f_a f_b f_d}{(f_c - f_a)(f_c - f_b)(f_c - f_d)} + \frac{d f_a f_b f_c}{(f_d - f_a)(f_d - f_b)(f_d - f_c)}.
\]
Problem 6*. Given \(n \) distinct points \(x_i, \, i = 1, \ldots, n \) define in terms of the standard Lagrange polynomials \(\ell_i(x), \, i = 1, \ldots, n \) the new set of \(2n \) polynomials

\[
h_i(x) = [1 - 2\ell'_i(x_i)(x - x_i)](\ell_i(x))^2, \quad i = 1, \ldots, n
\]

and

\[
\tilde{h}_i(x) = (x - x_i)(\ell_i(x))^2, \quad i = 1, \ldots, n
\]

which are each of degree \(2n - 1 \).

(a) Show that for all \(i, j \),

\[
h_i(x_j) = \delta_{ij}, \quad h'_i(x_j) = 0
\]

\[
\tilde{h}_i(x_j) = 0, \quad \tilde{h}'_i(x_j) = \delta_{ij},
\]

where \(\delta_{ij} \) is the Kronecker delta function.

(b) Use this result to show that the Hermite interpolating polynomial \(H_n(x) \) of degree at most \(2n - 1 \) which satisfies

\[
H_n(x_i) = y_i, \quad H'_n(x_i) = y'_i, \quad i = 1, \ldots, n
\]

can be written in a “Lagrange form” as

\[
H_n(x) = \sum_{i=1}^{n} \left[y_i h_i(x) + y'_i \tilde{h}_i(x) \right].
\]

(a) Since \(\ell_i(x_j) = \delta_{ij} \) and \((x_j - x_i)\delta_{ij} = 0 \) for all \(i, j \), then

\[
h_i(x_j) = [1 - 2\ell'_i(x_i)(x_j - x_i)]\delta_{ij} = \delta_{ij}
\]

and

\[
\tilde{h}_i(x_j) = (x_j - x_i)\delta_{ij} = 0
\]

for all \(i, j \).

Since \(h'_i(x) = 2\ell'_i(x)\ell_i(x)[1 - 2\ell'_i(x_i)(x - x_i)] - 2\ell'_i(x)\ell_i(x)^2 \),

\[
h'_i(x_j) = 2\delta_{ij}\ell'_i(x_j)[1 - 2\ell'_i(x_i)(x_j - x_i)] - 2\ell'_i(x_j)\delta_{ij} = -4[\ell'_i(x_j)]^2(x_j - x_i)\delta_{ij} = 0
\]

for all \(i, j \).

Similarly \(\tilde{h}'_i(x) = \ell_i(x)^2 + 2(x - x_i)\ell'_i(x)\ell_i(x) \) so that

\[
\tilde{h}'_i(x_j) = \delta_{ij} + 2(x_j - x_i)\ell'_i(x_j)\delta_{ij} = \delta_{ij}.
\]

(b) We have

\[
H_n(x) = \sum_{i=1}^{n} \left[y_i h_i(x) + y'_i \tilde{h}_i(x) \right] = \sum_{i=1}^{n} y_i \delta_{ij} = y_j,
\]

Similarly, since \(H'_n(x) = \sum_{i=1}^{n} \left[y_i h'_i(x) + y'_i \tilde{h}'_i(x) \right] \),

\[
H'_n(x_j) = \sum_{i=1}^{n} \left[y_i h'_i(x_j) + y'_i \tilde{h}'_i(x_j) \right] = \sum_{i=1}^{n} y'_i \delta_{ij} = y'_j.
\]
(a) By modifying the code `hermitedif.m`, write a script `hermite2dif.m` to find the coefficients of the 2nd-order Hermite interpolating polynomial satisfying

\[H_n(x_i) = y_i, \quad H'_n(x_i) = y'_i, \quad H''_n(x_i) = y''_i, \quad i = 1, \ldots, n \]

for general data \(x = (x_1, \ldots, x_n) \), \(y = (y_1, \ldots, y_n) \), \(y' = (y'_1, \ldots, y'_n) \), and \(y'' = (y''_1, \ldots, y''_n) \). Hint: If the vector is tripled to \(X = (x_1, x_1, x_2, \ldots, x_n, x_n, x_n) \), then only the loops over \(i = 1 \) and \(i = 2 \) must be modified.

(b) Similarly, write a script `hermite2int.m` to evaluate the 2nd-order Hermite interpolating polynomial, by modifying `hermiteint.m`.

(c) Apply the code in (b) to Hermite interpolate the function \(f(x) = e^{-x} \sin x \) on the points \(x = 1, 2, 3, \ldots, 7 \). Plot the interpolating polynomial on the interval \([-1, 9]\) along with the original function \(f(x) \).

(d) Compare the results in (c) with the Lagrange interpolating polynomial and the 1st-order Hermite interpolating polynomial for the same points and function. Plot all three interpolating polynomials together with the function itself on the interval \([-1, 9]\) and plot also on this interval the absolute error of each interpolant in log-scale. Order the interpolants in terms of accuracy. Comment also on the relative accuracy of extrapolation versus interpolation.

Problem 7. (a) The function `hermite2dif.m`:

```matlab
function d=hermite2dif(x,y,yp,ypp)
    n=length(x);
    nn=3*n;
    for i=1:n
        xx(3*i-2)=x(i);
        xx(3*i-1)=x(i);
        xx(3*i)=x(i);
    end
    d(1)=y(1);
    d(2)=yp(1);
    for j=1:n
        d(3*j)=ypp(j)/2;
    end
    for j=2:n
        fd(j)=(y(j)-y(j-1))/(x(j)-x(j-1));
        d(3*j-2)=(fd(j)-yp(j-1))/(x(j)-x(j-1));
        d(3*j-1)=(yp(j)-fd(j))/(x(j)-x(j-1));
    end
    for i=3:nn-1
        for j=nn:-1:i+1
            d(j)=(d(j)-d(j-1))/(xx(j)-xx(j-1));
        end
    end
```

(b) The function `hermite2int.m`:

```matlab
function v=hermite2int(x,y,yp,ypp,u)
    n=length(x);
    nn=3*n;
    d=hermite2dif(x,y,yp,ypp);
    for i=1:n
        xx(3*i-2)=x(i);
        xx(3*i-1)=x(i);
        xx(3*i)=x(i);
    end
    v=d(nn).*ones(size(u));
    for k=nn:-1:2
        v=d(k-1)+(u-xx(k-1)).*v;
    end
```

(c) See:
The numerical results on the following page show that the methods are ordered from least to most accurate as Lagrange, 1st-order Hermite, and 2nd-order Hermite. The results show also that the errors are smallest within the interpolating interval [1, 7] from which the data points x_i are selected, whereas errors are larger when extrapolating outside this interval.