
Homework No.3, 553.481/681, Due March 8, 2024.

Problem 1. Define the Vandermonde matrix by its elements:

Vij[x0, ..., xn] = xji , 0 ≤ i, j ≤ n,

for any set of (n+ 1) real numbers x0, ..., xn.

(a) Show that

detV[x0, ..., xn] =
n−1∏
i=0

(xn − xi) · detV[x0, ..., xn−1].

Hint: Show that the determinant on the left is a polynomial of degree n in xn and
find its roots and the coefficient of its highest-order term.

(b) Use part (a) and induction to show that

detV[x0, ..., xn] =
∏

0≤i<j≤n

(xj − xi)

Problem 2. Consider the following seven points:

(x1, y1) = (1,−17), (x2, y2) = (2,−29), (x3, y3) = (3,−55), (x4, y4) = (4,−155),

(x5, y5) = (5,−581), (x6, y6) = (6,−1537), (x7, y7) = (7, 661)

For this data, find the 6th-degree interpolating polynomial (a) in the monomial basis,
(b) in the barycentric Lagrange form, and (c) in the Newtonian form with divided-
differences. Compare the wall clock times to compute the coefficients in the monomial
basis, the barycentric weights, and the divided-differences. Which form of the inter-
polating polynomial is computed the fastest in this example? Plot the seven points
along with the interpolating polynomial over the interval [0, 8].

Problem 3. Use the expression

f [x0, ..., xn] =
n∑

i=0

wif(xi), wi = 1/Ψ′n(xi)

for the divided-difference, with Ψn(x) =
∏n

j=0(x− xj), to verify that

f [x0, ..., xn] =
f [x1, ..., xn]− f [x0, ..., xn−1]

xn − x0
.
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(b) Show that the polynomial pn(x) interpolating f(x) can be written as

pn(x) =

∑n
j=0

wjf(xj)

x−xj∑n
j=0

wj

x−xj

provided x is not a node point.

Problem 4. This problem explores the utility of inverse polynomial interpolation in
which data (xi, yi), i = 1, , , , n are interpolated by a polynomial x = Q(y) rather than
by a polynomial y = P (x). Both interpolation schemes can be applied to the same
data if all xi-values are distinct for i = 1, ..., n and if also all yi-values are distinct for
i = 1, ..., n. If both of these conditions are satisfied, then the same algorithms can be
applied to evaluate both polynomial interpolants.

(a) Here we consider the following seven points:
(x1, y1) = (1, 17), (x2, y2) = (1.2, 17.8929291), (x3, y3) = (1.4, 19.2467442),

(x4, y4) = (1.6, 21.1810760), (x5, y5) = (1.8, 23.8244495),

(x6, y6) = (2, 27.3137093), (x7, y7) = (3, 29.0457592)

Could this data have been consistently generated by (xi, f(xi)) and also by (g(yi), yi)
for a function f and its inverse g = f−1?

(b) Give both 6th-degree polynomials for the data in (a), the direct interpolant P6(x)
and the inverse interpolant Q6(y), both in the Newton form.

(c) Plot the data and both polynomials over the range 0 < x < 4 and 10 < y < 60.
Is it true that Q6(y) = P−16 (y)?

Problem 5. Another example of the Runge phenomenon is provided by the function

f(x) =
1

(1 + 8000|x|5)1/5
.

(a) Define the n-point Chebyshev grid in the interval [−1, 1] by

xk = cos

(
(2k − 1)π

2n

)
, k = 1, ..., n.

Interpolate the above function with a polynomial on the Chebyshev grid for n =
30, 40, 50, 60, 70, 80 and plot the results. What would you conjecture about the limit
n→∞ of the interpolating polynomial on the basis of these plots?

(b) Compare the results in (a) with those obtained by polynomial interpolation on
the uniform grid

xk =
2k − (n+ 1)

2(n+ 1)
, k = 1, ..., n

for n = 30, 40, 50, 60, 70, 80.

2



Problem 6*. In the root-finding method of inverse quadratic interpolation a quadratic
polynomial x = p2(y) is fit to the three points (fa, a), (fb, b), (fc, c).

(a) Use the Lagrange form of the interpolating quadratic p2(y) to show that it crosses
the x-axis at the unique point

x = a
fbfc

(fa − fb)(fa − fc)
+ b

fafc
(fb − fa)(fb − fc)

+ c
fafb

(fc − fa)(fc − fb)
.

(b) Use the result in (a) to derive the expression used in fzerotx.m, i.e. show that if

r = fb/fa, s = fb/fc, t = fc/fa

p = s[(a− b)t(t− r)− (b− c)(r − 1)], q = (r − 1)(s− 1)(t− 1),

then x̂ = b−p/q. [Hint: In the latter expression for x̂ gather together all of the terms
proportional to a, b, and c.]

(c) Generalize the formula in (a) to give an approximate root x by inverse cubic
interpolation, using a cubic polynomial x = p3(y) to fit four points (fa, a), (fb, b),
(fc, c), (fd, d).

Problem 7*. (a) By modifying the code newtondif.m, write a script hermitedif.m
to find the coefficients of the Hermite interpolating polynomial for general data x =
(x1, ..., xn), y = (y1, ..., yn) and y′ = (y′1, ..., y

′
n). Hint: Essentially only the first loop

over i = 1 needs to be modified, if the vector is doubled to X = (x1, x1, x2, x2, ..., xn, xn).

(b) Similarly, write a script hermiteint.m to evaluate the Hermite interpolating
polynomial, by modifying newtonint.m.

(c) Apply the code in (b) to Hermite interpolate the function f(x) = e−x/
√
x on the

points 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. Plot the interpolating polynomial on the interval
[0, 4] along with the original function f(x). Comment on the relative accuracy of
extrapolation versus interpolation.

(d) Compare the results in (c) with the Lagrange interpolating polynomial for the
same points and function. Which is more accurate and over what ranges of x?
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