
553.481/681 Numerical Analysis – Homework 1 Solutions
Matthew Hudes

Problem 1. (a) Any binary number (· · · b2b1b0.b−1b−2 · · · )2 can be written as the decimal
∑
i bi2

i =∑
i(b4i+3 · 23 + b4i+2 · 22 + b4i+1 · 2 + b4i)2

4i. Since ∀i : bi ∈ {0, 1}, we must have that b4i+3 · 23 + b4i+2 · 22 +
b4i+1 · 2 + b4i ∈ {0, . . . , 15}, i.e. is represented by one hexadecimal symbol, and noting that 24i = 16i, we’re
done.

(b) Coded in MATLAB.

a=10;b=11;c=12;d=13;e=14;f=15;

h=[1 f b c 4 7 a 3];

n=length(h);

bb=[];

for ii=1:n

z=h(ii);

z0=mod(z,2);

z=(z-z0)/2;

z1=mod(z,2);

z=(z-z1)/2;

z2=mod(z,2);

z3=(z-z2)/2;

bb=[bb , [z3 z2 z1 z0]];

end

bb=num2str(bb);

bb= bb(~ isspace(bb))

(c) With h=‘f593c48b’, we obtain the binary representation 11110101100100111100010010001011.

Problem 2. (a) We can convert (bff)16 = 11 ∗ 162 + 15 ∗ 161 + 15 ∗ 160 = 3071. Since 3071 > 211 = 2048,
the sign is σ = −1 and we subtract the bias plus 211 = 2048 from this characteristic to find the exponent

E = 3071− (2r−1 − 1 + 211) = 3071− (210− 1 + 2048) = 3071− 3071 = 0

(b) We can convert

F = (0.75d9cb07e7400)16 = (7, 5, d, . . . , 4, 0, 0) · (16−1, 16−2, 16−3, . . . , 16−11, 16−12, 16−13)

= 0.4603545088

(c) Per IEEE format we know the number is

σ[1 + F ] · 2E = −1[1 + 0.4603545088] · 23071

= −1.4603545088

.
This is the value of the Riemann zeta function ζ(s) at s = 1/2

1



Problem 3. (a) Note (1.0 . . . 0)β · βL = βL.

(b) Let ξ := β − 1 and write

(ξ.ξ · · · ξ)β · βU = ξ

p∑
i=0

β−k · βU

= (β − 1)

p∑
i=0

β−k · βU

= (β − 1)
1/βp − 1

1/β − 1
· βU

= (β − βp) · βU .

(c) Write (0.0 · · · 01)β · βL = β−p · βL = βL−p.

Problem 4. Code in MATLAB. Graph below.

f=@(x) x.^8-8*x.^7+28*x.^6 -56*x.^5+70*x.^4 -56*x.^3+28*x.^2-8*x+1;

fplot(f ,[0.98 ,1.02])

rr=roots ([1 -8 28 -56 70 -56 28 -8 1])

g=@(x) (x -1).^8;

hold on

fplot(g,[0.98 ,1.02] , ’ LineWidth ’,2)

ss=roots ([1 0 0 0 0 0 0 0]);

rr=ss+1

(a) No, the result does not look like the plot of a smooth polynomial.

(b) No, there is not agreement to double precision accuracy. Checking that f(1) = 0 is straightforward, but
all of the computed roots are different from x = 1 by a good amount. For example, one computed root is
1.0152 + 0.0154i. The roots are close to the region where floating point addition errors are substantial.

(c) The plot of (x− 1)2 using the code at the start of this problem is the red curve in the previous figure.
This plot is much more accurate. The only floating point arithmetic errors in this formulation are from
multiplication, which is very well-conditioned. By contrast, the formula in (a) sums up 9 terms with alternating
signs that almost completely cancel each other since 1− 8 + 28− 56 + 70− 56 + 28− 8 + 1 = 0. Thus, there
are big loss of significance errors in the expression in part (a).

(d) Yes. Using the code at the beginning of the problem, the computed roots are uniformly 1.

2



Problem 5. (a) By substitution it’s easy to see that x(α) = 1/(1− α2) and y(α) = −α/(1− α2). We have

Kx(α) :=
αx′(α)

x(α)
=

2α2/(1− α2)2

1/(1− α2)
=

2α2

1− α2
,

and

Ky(α) :=
αy′(α)

y(α)
=

2α(α2 + 1)/(1− α2)2

2α/(1− α2)
=
α2 + 1

1− α2
.

By inspection it’s evident that as α→ 1, Kx(α),Ky(α)→ ±∞.

(b) Note z(α) = x(α) + y(α) = (1− α)/(1− α2) = 1/(1 + α). Then

Kz(α) =
αz′(α)

z(α)
=
−α/(1 + α)2

1/(1 + α)
= − α

1 + α
,

and as α→ 1, K(z)→ −1/2.

(c) In MATLAB:

al=1-1e-8;

A=[1 al; al 1];

b=[1; 0];

x=A\b;

z1=sum(x)

z2 =1/(1+ al)

Kx=2*al^2/(1-al^2)

The method by addition estimates z ≈ 0.5 and the method by direct computation estimates z ≈ 0.5000000025.
The relative difference is 4.999999975000001 · 10−9, much bigger than double-precision error. The direct
computation should be more accurate because α = 0.99999999 is very close to 1, where Kx(α),Ky(α) become
big. Thus, inaccuracy in approximations to x and y carry over to inaccuracy in the approximate value of z.

Problem 6. (a) Note that

1

n(n+ 1)
=

1

n
− 1

n+ 1

Therefore we can get the formula for Sk:

Sk =

k∑
n=1

1

n(n+ 1)
=

k∑
n=1

[
1

n
− 1

n+ 1

]
= 1− 1

k + 1

Note then that

S = lim
k→∞

Sk = lim
k→∞

(1− 1

k + 1
) = 1

We also can find a formula for the remainder:

Rk = 1− Sk = 1− (1− 1

k + 1
) =

1

k + 1

(b) We find that the algorithm terminates when n reaches 5793, with S5793 = 0.9999 and relative error
1.4728 · 10−04. The exact remainder R5793 is 1.7259 · 10−4, which is the same order of magnitude as the
relative error.

3



(c) Single precision was not obtained in (b). The last term computed for n = 5793 was 1/n(n+1)
.
= 2.9793·10−8

which is smaller than the unit round 2−24
.
= 5.9605× 10−8 in single precision arithmetic. Since the sum of

all earlier terms was close to 1, adding this small value did not change the result to single precision and
the series appeared to “converge”. However, the remainder was 1.4728 · 10−4, which is much larger than
single precision round-off error! This is an example where the last term in the sum is much smaller than the
remainder and does not estimate the remainder well.

To avoid this problem, one should always sum numbers in floating-point arithmetic from small terms to large
ones, not from large to small. To decide how large an n must be considered, we use the remainder formula
to find an N so that RN = 1/(N + 1)

.
= eps and thus find that N = 1/eps = 223 = 8, 388, 608. Below is a

MATLAB script that implements an improved algorithm:

NN=round (1/ eps(’single ’))

nn=NN;

RR=1/(nn+1)

dS=single (1/nn/(nn +1));

SS=dS;

for nn=NN -1: -1:1

dS=single (1/nn/(nn +1));

SS=SS+dS;

end

SS=SS

relerr=abs(SS -1)

Running this script yields S8388608 = 1.0000 with a relative error 1.1921 · 10−07, which is exactly the machine
epsilon in single precision arithmetic or 2−23. Thus, the correct answer is obtained to single precision.

4


