
Final Solutions, 553.481/681, May 6, 2024

Problem 1 [20 points]. This problem studies the Gauss-Lobatto rules for integration,
which modify usual Gaussian quadrature by including interval endpoints among the
node points in order to enable composite integration.

(a) The 4-point Gauss-Lobatto rule on the symmetric interval [−1, 1] is given by∫ +1

−1
f(x) dx

.
= w1f(−1) + w2f(−ξ1) + w2f(ξ1) + w1f(+1)

for specified ξ1, w1, w2. The rule is exact (= 0) for any odd function by the symmetry
of the formula. Determine the constants ξ1, w1, w2 by requiring that the formula be
exact for the first three even powers, f(x) = xi with i = 0, 2, 4 and by then solving
the resulting algebraic equations.

(b) Use the linear transformation x→ a+ (i+ (x+ 1)/2)h to transform the interval
[−1, 1] into [a+ ih, a+ (i+ 1)h] for integers i = 0, ...., n− 1 with h = (b− a)/n and
construct thereby the composite 4-point Gauss-Lobatto rule to calculate a general def-
inite integral I =

∫ b
a
f(x) dx. Give the resulting formula and write a Matlab function

code lobattoc.m to implement it in the format I=lobattoc(f,a,b,n).

(c) The code in part (b) requires that function f(x) be evaluated not only at the points
xi = a + ih, i = 0, ..., n but also at x±i = xi + (1 ± ξ1)h2 , i = 0, ..., n − 1 and is thus
about as expensive as composite Simpson with 3n subintervals. Compare composite
Gauss-Lobatto and composite Simpson for the integral

I =

∫ π

0

ex sinx dx =
1

2
(eπ + 1)

with n = 10, 30, 90 for Gauss-Lobatto and n = 30, 90, 270 for Simpson. Which is
more accurate for the same computational cost?

Solution: (a) For even f(x), the condition to be imposed is

w1f(1) + w2f(ξ1) =

∫ 1

0

f(x) dx.

Thus,
f(x) = 1 =⇒ w1 + w2 = 1
f(x) = x2 =⇒ w1 + w2ξ

2
1 = 1

3

f(x) = x4 =⇒ w1 + w2ξ
4
1 = 1

5

1



whose unique solution is easily found to be

w1 =
1

6
, w2 =

5

6
, ξ1 =

1√
5
.

(b) The composite Gauss-Lobatto rule has the form

Î =
n−1∑
i=0

[w1f(xi) + w2f(x−i ) + w2f(x+i ) + w1f(xi+1)]
h

2

with the notations xi = a+ih, i = 0, 1, ..., n and x±i = xi+
1
2
(1±ξ1)h, i = 0, 1, ..., n−1

and a Matlab function which implements it is given here:

1 function I=labbatoc(f,a,b,n)
2

3 h=(b-a)/n;
4 x=a:h:b;
5 xm=x(1:n)+(1-1/sqrt(5))*h/2;
6 xp=x(1:n)+(1+1/sqrt(5))*h/2;
7 fx=f(x); fxm=f(xm); fxp=f(xp);
8

9 w1=1/6; w2=5/6;
10 I=0;
11 for ii=1:n
12 I=I+(w1*fx(ii)+w2*fxm(ii)+w2*fxp(ii)+w1*fx(ii+1))*h/2;
13 end
14

15 end

(c) To make the comparison with composite Simpson, we run the following script

1 for ii=0:1:2
2

3 n=10*3ˆii
4

5 Il=lobattoc(@(x) sin(x),0,pi,n)
6

7 errl=Il/2-1
8

9 n=3*n
10

11 Is=simpc(@(x) sin(x),0,pi,n)
12

13 errs=Is/2-1
14

15 end

2



with the following output

Gauss-Lobatto

n = 10, Il = 12.070346377381927, errl = 5.053069074278937× 10−9

n = 30, Il = 12.070346316473794, errl = 6.972422639250908× 10−12

n = 90, Il = 12.070346316389745, errl = 9.325873406851315× 10−15,

Simpson

n = 30, Is = 12.070313975530967, errs = −2.679364603075385× 10−6

n = 90, Is = 12.070345918041660, errs = −3.300219919566416× 10−8

n = 270, Is = 12.070346311473024, errs = −4.073296144824212× 10−10

For the same computational cost, composite Gauss-Lobatto has superior accuracy
compared with composite Simpson.

3



Problem 2 [40 points]. (a) An inconvenient feature of the trapezoidal method as
implemented in the course code trapezoid.m is that it uses the Newton-Raphson
method to approximate the solution of the nonlinear equation F(yn+1) = 0 for

F(yn+1) = yn+1 − yn −
h

2
[f(tn,yn) + f(tn+1,yn+1)],

and thus requires the d × d Jacobian matrix J(t,y) = ∂f
∂y

(t,y). Write a new code
trapezoidsteff.m which uses instead Steffensen’s method, a quasi-Newton method
employing the approximate derivative matrix

∂Fi
∂yj

(yn+1) '
Fi(y

j
n+1)− Fi(y

j+1
n+1)

Fj(yn+1)
, 1 ≤ i, j ≤ d

with yjn+1 = (yn+1,1, ..., yn+1,j−1, y
∗
n+1,j, ..., y

∗
n+1,d) and y∗n+1 = yn+1 + F(yn+1). Show

for a scalar function F (yn+1) that this scheme reduces to Steffensen’s method to find
the fixed point of G(yn+1) = yn+1 + F (yn+1) and thus converges quadratically. Write
your code trapezoidsteff.m to output also the average number of function evalua-
tions per timestep and take care to minimize that number.

(b) The course code pece2.m implements the 2nd-order PECE method with Euler
method as predictor and trapezoidal method as corrector, and with also the first
timestep by Euler’s method. Write a new code pece2mid.m instead with midpoint
method as predictor ymid

n+1 and trapezoidal method as corrector yn+1, and with the first
timestep by Heun’s method y1 = yheun

1 . How many iterations of the trapezoidal cor-
rector are required to obtain yn+1 with the same leading-order truncation error as the
full trapezoidal method? Explain your answer. Explain also why the function value
f(tn+1,y

mid
n+1) rather than f(tn+1,yn+1) can be saved and reused in the next timestep,

without modifying the leading-order truncation error.

(c) Consider the following initial-value problem with given exact solution:

y′ = y − y2, y(0) = 1/4; Y (t) =
1

1 + 3e−t
.

Use all three of the methods midpoint, PECE2, and trapezoidal as implemented by
the course code midpoint.m and the codes in parts (a) and (b), for numbers of steps
Ns = 30, 300, 3000 over the interval 0 < t < 5. For each of these three stepsizes plot
together the error of the three methods and compare and discuss the performance of
the three methods. Do all three appear to converge? Rate the methods in terms of
efficiency, as quantified by the number of function evaluations per time step. Which
methods are most accurate, under what circumstances, and why?

Hint: For the last question, consider the sign of ∂f
∂y

(t, Y (t)).

Solution: (a) Note for the scalar case that the approximate derivative is

DF (xn+1) =
F (xn+1 + F (xn+1))− F (xn+1)

F (xn+1)

4



so that the iteration becomes

xj+1
n+1 = xjn+1 −

F (xjn+1)

DF (xjn+1)
= xjn+1 −

(F (xjn+1))
2

F (xjn+1 + F (xjn+1))− F (xjn+1)
.

The general iteration for Steffensen’s method is

xj+1
n+1 = xjn+1 −

(G(xjn+1)− x
j
n+1)

2

G(G(xjn+1)) + xjn+1 − 2G(xjn+1)

and at least quadratically convergent. However, if G(xn+1) = xn+1 + F (xn+1), then

G(xn+1)− xn+1 = F (xn+1)

and thus

G(G(xn+1)) + xn+1 − 2G(xn+1) = [G(G(xn+1))−G(xn+1)]− [G(xn+1)− xn+1]
= F (G(xn+1))− F (xn+1)
= F (xn+1 + F (xn+1))− F (xn+1).

It follows that Steffensen’s root-finding method is a special case of the general Stef-
fensen’s method for fixed-point iteration.

A code which implements trapezoidal method using Steffensen’s method for nonlinear
root-finding is the following:

1 function [t,y,mfeval] = trapezoidsteff(f,tspan,y 0,N s)
2

3 % solve the ODE dy/dt = f(t,y) by the trapezoidal method
4 % with N s steps, using Steffensen's iteration to find the
5 % fixed point at each time-step.
6

7 tol=1e-15;
8 itmax=100;
9 it=0;

10

11 t 0=tspan(1);
12 t f=tspan(2);
13 D=length(y 0);
14 Fj=zeros(D,1);
15 DFj=zeros(D,D);
16

17 dt = (t f - t 0)/N s;
18 t = t 0:dt:t f;
19 N=length(t);
20

21 j = 1;
22 y(1,:) = y 0(:)';

5



23 mfeval=0;
24

25

26 while j < N
27

28 yj0=y(j,:)';
29 ifeval=0;
30

31 fj0=feval(f,t(j),yj0);
32 ifeval=ifeval+1;
33

34 % begin Steffensen's iteration with forward Euler
35 k=0;
36 yjold=yj0;
37 yj = yj0 + dt*fj0;
38

39 % Steffensen iteration for update
40 while norm(yj-yjold)>tol*max(norm(yj),1)
41 if k+1>itmax
42 break
43 end
44 Fj=yj-yj0-dt*(fj0+feval(f,t(j+1),yj))/2;
45 ifeval=ifeval+1;
46 if norm(Fj)<tol*max(norm(yj),1)
47 break
48 end
49 Fjold=Fj;
50 wj=yj+Fj;
51 yjnew=yj;
52 for l=D:-1:1
53 yjnew(l)=wj(l);
54 Fjnew=yjnew-yj0-dt*(fj0+feval(f,t(j+1),yjnew))/2;
55 ifeval=ifeval+1;
56 DFj(:,l)=(Fjnew-Fjold)/Fj(l);
57 Fjold=Fjnew;
58 end
59 yjold=yj;
60 k=k+1;
61 yj=yj-DFj\Fj;
62 end
63 mfeval=mfeval+ifeval;
64

65

66 y(j+1,:) = yj';
67 j = j + 1;
68 end
69

70 t=t';
71 mfeval=mfeval/(N-1);
72

73 return

6



(b) The midpoint method ymid
n+1 is 2nd-order accurate with local truncation error

Tmid
n (y) = un(tn+1)− ymid

n+1 =
1

3
y(3)(t∗n)h3 +O(h4) = O(h3)

in terms of the local solution un(t). Similarly, the trapezoidal method ytrap
n+1 is also

2nd-order accurate but with local truncation error

Ttrap
n (y) = un(tn+1)− ytrap

n+1 = − 1

12
y(3)(t∗n)h3 +O(h4).

By subtraction, it follows that

ytrap
n+1 − ymid

n+1 = (ytrap
n+1 − un(tn+1))− (ymid

n+1 − un(tn+1)) = O(h3).

Since ‖ytrap
n+1 − y

(j)
n+1‖ decreases by a factor of hK/2 for each iteration of

y
(j+1)
n+1 = yn +

h

2
[f(t,yn) + f(t,y

(j)
n+1)]

it follows that with y
(0)
n+1 = ymid

n+1 then

ytrap
n+1 − y

(1)
n+1 = O(h4)

and

un(tn+1)− y
(1)
n+1 = (un(tn+1)− ytrap

n+1) + (ytrap
n+1 − y

(1)
n+1) = − 1

12
y(3)(t∗n)h3 +O(h4).

Hence, the result yn+1 := y
(1)
n+1 with one iteration of the trapezoidal corrector for the

midpoint predictor has leading-order truncation error Tn(y) = un(tn+1)−yn+1 which
is the same as for the full trapezoidal approximation, Ttrap

n (y).

Furthermore,

y
(1)
n+1 − y

(0)
n+1 = (y

(1)
n+1 − un(tn+1))− (y

(0)
n+1 − un(tn+1)) = O(h3) +O(h3) = O(h3)

and thus by the differential mean value theorem

f(tn+1,y
(1)
n+1)− f(tn+1,y

(0)
n+1) =

∂f

∂y
(tn+1,y)(tn+1, y

∗
n+1) · (y

(1)
n+1 − y

(0)
n+1) = O(h3).

It follows that in the next time-step the midpoint predictor is

ymid
n+2 = yn + 2hf(tn+1,yn+1)

= y(1)
n + 2hf(tn+1,y

(1)
n+1) = y(1)

n + 2hf(tn+1,y
(0)
n+1) +O(h4)

and thus the use of f(tn+1,y
(0)
n+1) rather than f(tn+1,yn+1) leads to an error only

O(h4), of smaller order than the truncation error of midpoint.

A code which implements PECE2 with midpoint predictor and trapezoid corrector,
making the first step by Heun, is given by the following:

7



1 function [ t,y ] = pece2mid(f,tspan,y 0,N s)
2

3 % solve the ODE dy/dt = f(t,y) by 2nd-order PECE method in N s steps,
4 % with midpoint as predictor and trapezoid rule as corrector.
5

6 t 0=tspan(1);
7 t f=tspan(2);
8 D=length(y 0);
9

10 dt = (t f - t 0)/N s;
11

12 t = t 0:dt:t f;
13 N=length(t);
14

15 yj=y 0';
16 y(1,:) = y 0;
17 j = 1;
18

19 % first step by Heun method
20 yd(1,:)=feval(f,t(1),yj)';
21 yj = yj + dt*yd(1,:)';
22 fj0=feval(f,t(2),yj);
23 y(2,:) = (y(1,:)+dt*fj0.'+yj')/2;
24 j=2;
25

26 while j < N
27 yj1=y(j-1,:)';
28 yj0=y(j,:)';
29 % midpoint predictor
30 yj = yj1+ 2*dt*fj0;
31 % trapezoidal corrector
32 fj=feval(f,t(j+1),yj);
33 yj = yj0 + dt*(fj0+fj)/2;
34 % optional second evaluation
35 % fj0=feval(f,t(j+1),yj);
36 fj0=fj;
37 y(j+1,:) = yj';
38 j = j + 1;
39 end
40

41 t=t';
42 return

(c) A code which makes the comparison of the three methods is here:

1 f=@(t,y) y-y.ˆ2
2 Df=@(t,y) 1-2*y
3 Y= @(t) 1./(1+3*exp(-t))
4

8



5

6 for i=1:3
7

8 Ns=3*10ˆi;
9

10 [tt,yt,mfeval]=trapezoidsteff(f,[0 5],1/4,Ns,0);
11 mfeval=mfeval
12 [tp,yp]=pece2mid(f,[0 5],1/4,Ns,0);
13 [tm,ym]=midpoint(f,[0 5],1/4,Ns,0);
14

15 figure
16 plot(tm,ym-Y(tm),'-b',tt,yt-Y(tt),'--r',tp,yp-Y(tp),':g','LineWidth',2)
17 low=min(min([ym-Y(tm),yt-Y(tt),yp-Y(tp)]));
18 high=max(max([ym-Y(tm),yt-Y(tt),yp-Y(tp)]));
19 hold on
20 plot(log(3)+0*[low,high],[low,high],':k','LineWidth',2)
21 xlabel('t')
22 axis tight
23 title(sprintf('All errors with Ns=3*10ˆ%d', i))
24 legend('Midpoint','Trapezoid','PECE')
25 fgnm='prob2';
26 for j=1:i
27 fgnm=[fgnm,'i'];
28 end
29 fgnm=[fgnm,'.png'];
30 print(fgnm,'-dpng')
31

32 pause
33

34 end

and the output figures are on the following page. By visual inspection, the order
of the errors is decreasing in magnitude proportional to h2 and we can say that all
three methods appear to converge quadratically. midpoint.m and pece2mid.m are
both written to make one function evaluation per time-step, but trapezoidsteff.m
makes a mean number of function evaluations per step which varies with h, as follows:

h = 1/6 : mfeval = 7.2; h = 1/60 : mfeval = 6; h = 1/600 : mfeval = 4.

The number of function evaluations per step decreases with h, but trapezoidsteff.m
in all cases is less efficient than the other two methods. In terms of relative error,
trapezoidsteff.m is most accurate, but pece2mid.m has only slightly larger error
and in the limit h→ 0 the two agree almost exactly. midpoint.m is the least accurate,
with decreasing error for 0 < t . 1 and rapidly increasing error for 1 . t < 5. This
can be understood by recalling that errors in midpoint grow approximately as for the
model problem δ̇ = λ(t)δ with λ(t) = ∂f

∂y
(t, Y (t)) = 1− 2Y (t) and the latter changes

sign at t∗ = ln(3)
.
= 1.0986 when Y (t∗) = 1

2
. This time is indicated in the plots by the

vertical dotted line. For t > t∗ where λ(t) < 0, the midpoint method lacks relative
stability and the oscillating parasitic solutions grows.

9



10



Problem 3 [20 points]. For each of the following 3-step methods

(i) yn+1 = 1
4
(yn + 3yn−2) + 1

4
h(9ẏn − 2ẏn−1 + 3ẏn−2)

(ii) yn+1 = yn−2 + 1
4
h(9ẏn + 3ẏn−2)

(iii) yn+1 = 1
20

(27yn − 7yn−2) + h
10

(6ẏn+1 − 3ẏn−2)

answer the following questions:

(a) Is the method explicit or implicit?

(b) Is the method consistent?

(c) Find the characteristic polynomial ρ(r) = (1−hλb−1)rp+1−
∑p

j=0(aj+hλbj)r
p−j of

the method. You do not need to find the p+1 roots, denoted r0(hλ), r1(hλ), ..., rp(hλ).
Note for any consistent method there is a root satisfying r0(hλ) = 1 +hλ+O((hλ)2).

(d) Is the method convergent?

To answer this question you may use the following fundamental result: A consistent
multistep method is convergent if and only if the root condition is satisfied: |rj(0)| ≤ 1
for all j = 0, ..., p and furthermore any root which satisfies |rj(0)| = 1 must be simple.
Note that the root condition only involves the roots rj(0) for hλ = 0, which you should
be able to calculate explicitly.

(e) If the method is convergent, what is the order of convergence and the leading-order
truncation error Tn(y)?

(f) If the method is convergent, is it also relatively stable?

To answer (f), you might use the fact that relative stability is implied by the strong
root condition: |rj(0)| < 1 for all j 6= 0. If you use this condition, you must explain
why it implies relative stability. If instead |rj(0)| = 1 for some j 6= 0, then you will
need to consider rj(hλ) for hλ 6= 0. You may do this numerically, if necessary.

Solution: It is completely mechanical to determine consistency in (b) and and order
of convergence in (e), by checking the corresponding linear conditions

di :=

p∑
j=0

(−j)iaj + i

p∑
j=−1

(−j)i−1bj = 1

for i = 0, 1 in (b) and i = 2, ...,m in (e). Thus, we check those conditions and find
the first non-vanishing value cm+1 := 1− dm+1 with the following Matlab script

1 p=2;
2

3 a=[1,0,3]/4;
4 b=[9,-2,3]/4;
5 j=0:p;

11



6

7 d=sum(a);
8 i=1;
9 while abs(d-1)<1e-10

10 d=sum((-j).ˆi.*a+i*(-j).ˆ(i-1).*b);
11 i=i+1;
12 end
13 m=i-2
14 c=1-d
15 [nx,dx]=rat(c,1e-6);
16 frac=[nx,dx]
17 cr=nx./dx;
18 if norm(c-cr)<1e-14
19 c=cr;
20 end
21

22 pause
23

24 a=[0,0,1];
25 b=[9,0,3]/4;
26 j=0:p;
27

28 d=sum(a);
29 i=1;
30 while abs(d-1)<1e-10
31 d=sum((-j).ˆi.*a+i*(-j).ˆ(i-1).*b);
32 i=i+1;
33 end
34 m=i-2
35 c=1-d
36 [nx,dx]=rat(c,1e-6);
37 frac=[nx,dx]
38 cr=nx./dx;
39 if norm(c-cr)<1e-14
40 c=cr;
41 end
42

43 pause
44

45 a=[27,0,-7]/20;
46 b=[6,0,0,-3]/10;
47 j=0:p;
48 jm=-1:p
49

50 d=sum(a);
51 i=1;
52 while abs(d-1)<1e-10
53 d=sum((-j).ˆi.*a)+i*sum((-jm).ˆ(i-1).*b);
54 i=i+1;
55 end
56 m=i-2

12



57 c=1-d
58 [nx,dx]=rat(c,1e-6);
59 frac=[nx,dx]
60 cr=nx./dx;
61 if norm(c-cr)<1e-14
62 c=cr;
63 end

We now consider in turn the three given multistep methods:

Method (i): (a) Explicit. (b) Consistent. (c) The characteristic polynomial is

r3 − 1

4
(1 + 9hλ)r2 − 1

2
(hλ)r − 3

4
(1 + hλ)

and for hλ = 0

r3 − 1

4
r2 − 3

4
=

1

4
(r − 1)(4r2 + 3r + 3).

(d) The three roots for hλ = 0 are r0 = 1, r± = −3±i
√
39

8
. Since |r| ≤ 1 for all three,

the root condition is satisfied. Because the method is consistent, the root condition
is equivalent to convergence. (e) The method is 2nd-order and c3 = −1

2
so that

Tn =
c3
3!
y(3)(tn)h3 +O(h4) = − 1

12
y(3)(tn)h3 +O(h4)

(f) Since |r| < 1 except for the simple root r = 1, the strong root condition is satisfied
and thus the method is relatively stable.

Because |ri| ≤ 1 − ε < 1 = |r0| for i > 0, relative stability follows easily from
continuity of the roots ri(hλ) with respect to hλ. In fact, for sufficiently small |hλ|,

∀i > 0, |ri(hλ)| < 1− 1

2
ε < |r0(hλ)|.

Method (ii): (a) Explicit. (b) Consistent. (c) The characteristic polynomial is

r3 − 9

4
hλr2 − (1 +

3

4
hλ)

and for hλ = 0
r3 − 1.

(d) The three roots for hλ = 0 are the three cube roots of unity r0 = 1, r± = −1±i
√
3

2
.

Since |r| ≤ 1 for all three, the root condition is satisfied. Because the method is
consistent, the root condition is equivalent to convergence. (e) The method is 3rd-
order and c4 = 9 so that

Tn =
c4
4!
y(4)(tn)h4 +O(h5) =

3

8
y(4)(tn)h4 +O(h5)

13



(f) Since |r| = 1 for all roots, the strong root condition is not satisfied. We thus
calculate r(hλ) = r(0) + r′(0)(hλ) + O((hλ)2) by differentiating the characteristic
polynomial with respect to hλ to obtain

(3r2 − 9

2
(hλ)r)r′(hλ)− 1

4
(3 + 9r2) = 0

and thus for hλ = 0

r′(0) =
3 + 9r2(0)

12r2(0)
=

1

4
(3 + r(0)).

Thus, for r0 = 1, one gets r′0 = 1 and r0(hλ) = 1 + hλ + O((hλ)2), as expected. On
the other hand,

r± =
1

2
(−1± i

√
3) =⇒ r′± =

1

8
(5± i

√
3).

Since Re(r∗±r
′
±) = −5+3

16
= −1

8
< 0, it then follows that |r0(hλ)| is increasing for small,

real hλ whereas |r±(hλ)| is decreasing. In that case, taking small hλ < 0, one gets

|r0(hλ)| < 1 < |r±(hλ)|,

as can be easily verified numerically with the roots function in Matlab. Thus, the
scheme is not relatively stable.

Method (iii): (a) Implicit. (b) Consistent. (c) The characteristic polynomial is

(1− 3

5
hλ)r3 − 27

20
r2 +

1

20
(7 + 6hλ)

and for hλ = 0

r3 − 27

20
r2 +

7

20
=

1

20
(r − 1)(20r2 − 7r − 7).

(d) The three roots for hλ = 0 are r0 = 1, r± = 7±
√
609

40
. Since |r| ≤ 1 for all three,

the root condition is satisfied. Because the method is consistent, the root condition
is equivalent to convergence. (e) The method is 3rd-order and c4 = −27/5 so that

Tn =
c4
4!
y(4)(tn)h4 +O(h5) = − 9

40
y(4)(tn)h4 +O(h5)

(f) Since |r| < 1 except for the simple root r = 1, the strong root condition is satisfied
and thus the method is relatively stable.

14


