
Final Exam, 553.481/681, May 6, 2024

Do all three of the following problems. Show all your work. Answers without sup-
porting work may receive no credit.

Students may discuss the exam only with the instructor and the teaching assistant.
No discussion of the exam contents, directly or indirectly, is permitted among students
or with any third parties. Any book or internet resource may be used, as long as the
book or the website are cited, along with the material taken from it. However, please
note that explanations must be correct and complete, whereas many online sources
give only partial explanations or even contain errors. It is your responsibility to give
full and accurate answers, demonstrating your own understanding.

You may use any numerical software available, unless you are specifically instructed
in the problem statement to write your own code. All codes that are written by
you should be turned in with the exam, either as paper printouts or preferably as a
Matlab script sent by e-mail to the instructor. Numerical results without the code
that produced them will receive no credit.

I attest that I have completed this exam without unauthorized assistance from any
person, materials, or device:

Full name:

Signature:

(See the Johns Hopkins Handbook Academic Ethics for Undergraduates).
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Problem 1 [20 points]. This problem studies the Gauss-Lobatto rules for integration,
which modify usual Gaussian quadrature by including interval endpoints among the
node points in order to enable composite integration.

(a) The 4-point Gauss-Lobatto rule on the symmetric interval [−1, 1] is given by∫ +1

−1
f(x) dx

.
= w1f(−1) + w2f(−ξ1) + w2f(ξ1) + w1f(+1)

for specified ξ1, w1, w2. The rule is exact (= 0) for any odd function by the symmetry
of the formula. Determine the constants ξ1, w1, w2 by requiring that the formula be
exact for the first three even powers, f(x) = xi with i = 0, 2, 4 and by then solving
the resulting algebraic equations.

(b) Use the linear transformation x→ a+ (i+ (x+ 1)/2)h to transform the interval
[−1, 1] into [a + ih, a + (i + 1)h] for integers i = 0, ...., n − 1 with h = (b − a)/n
and construct thereby the composite 4-point Gauss-Lobatto rule to calculate a gen-
eral definite integral I =

∫ b
a
f(x) dx. Give the resulting formula and write a Matlab

function code lobattoc.m to implement it in the format I=lobattoc(f,a,b,n).

(c) The code in part (b) requires that function f(x) be evaluated not only at the
points xi = a + ih, i = 0, ..., n but also at x±i = xi + (1 ± ξ1)

h
2
, i = 0, ..., n − 1

and is thus about as expensive as composite Simpson with 3n subintervals. Compare
composite Gauss-Lobatto and composite Simpson for the integral

I =

∫ π

0

ex sinx dx =
1

2
(eπ + 1)

with n = 10, 30, 90 for Gauss-Lobatto and n = 30, 90, 270 for Simpson. Which is
more accurate for the same computational cost?
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Problem 2 [40 points]. (a) An inconvenient feature of the trapezoidal method as
implemented in the course code trapezoid.m is that it uses the Newton-Raphson
method to approximate the solution of the nonlinear equation F(yn+1) = 0 for

F(yn+1) = yn+1 − yn −
h

2
[f(tn,yn) + f(tn+1,yn+1)],

and thus requires the d × d Jacobian matrix J(t,y) = ∂f
∂y

(t,y). Write a new code
trapezoidsteff.m which uses instead Steffensen’s method, a quasi-Newton method
employing the approximate derivative matrix

∂Fi
∂yj

(yn+1) '
Fi(y

j
n+1)− Fi(y

j+1
n+1)

Fj(yn+1)
, 1 ≤ i, j ≤ d

with yjn+1 = (yn+1,1, ..., yn+1,j−1, y
∗
n+1,j, ..., y

∗
n+1,d) and y∗n+1 = yn+1 + F(yn+1). Show

for a scalar function F (yn+1) that this scheme reduces to Steffensen’s method to
find the fixed point of G(yn+1) = yn+1 + F (yn+1) and thus converges quadratically.
Write your code trapezoidsteff.m to output also the average number of function
evaluations per timestep and take care to minimize that number.

(b) The course code pece2.m implements the 2nd-order PECE method with Euler
method as predictor and trapezoidal method as corrector, and with also the first
timestep by Euler’s method. Write a new code pece2mid.m instead with midpoint
method as predictor ymid

n+1 and trapezoidal method as corrector yn+1, and with the
first timestep by Heun’s method y1 = yheun

1 . How many iterations of the trapezoidal
corrector are required to obtain yn+1 with the same leading-order truncation error
as the full trapezoidal method? Explain your answer. Explain also why the function
value f(tn+1,y

mid
n+1) rather than f(tn+1,yn+1) can be saved and reused in the next

timestep, without modifying the leading-order truncation error.

(c) Consider the following initial-value problem with given exact solution:

y′ = y − y2, y(0) = 1/4; Y (t) =
1

1 + 3e−t
.

Use all three of the methods midpoint, PECE2, and trapezoidal as implemented by
the course code midpoint.m and the codes in parts (a) and (b), for numbers of steps
Ns = 30, 300, 3000 over the interval 0 < t < 5. For each of these three stepsizes plot
together the error of the three methods and compare and discuss the performance of
the three methods. Do all three appear to converge? Rate the methods in terms of
efficiency, as quantified by the number of function evaluations per time step. Which
methods are most accurate, under what circumstances, and why?

Hint: For the last question, consider the sign of ∂f
∂y

(t, Y (t)).
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Problem 3 [20 points]. For each of the following 3-step methods

(i) yn+1 = 1
4
(yn + 3yn−2) + 1

4
h(9ẏn − 2ẏn−1 + 3ẏn−2)

(ii) yn+1 = yn−2 + 1
4
h(9ẏn + 3ẏn−2)

(iii) yn+1 = 1
20

(27yn − 7yn−2) + h
10

(6ẏn+1 − 3ẏn−2)

answer the following questions:

(a) Is the method explicit or implicit?

(b) Is the method consistent?

(c) Find the characteristic polynomial ρ(r) = (1−hλb−1)rp+1−
∑p

j=0(aj+hλbj)r
p−j of

the method. You do not need to find the p+1 roots, denoted r0(hλ), r1(hλ), ..., rp(hλ).
Note for any consistent method there is a root satisfying r0(hλ) = 1 +hλ+O((hλ)2).

(d) Is the method convergent?

To answer this question you may use the following fundamental result: A consistent
multistep method is convergent if and only if the root condition is satisfied: |rj(0)| ≤ 1
for all j = 0, ..., p and furthermore any root which satisfies |rj(0)| = 1 must be simple.
Note that the root condition only involves the roots rj(0) for hλ = 0, which you should
be able to calculate explicitly.

(e) If the method is convergent, what is the order of convergence and the leading-order
truncation error Tn(y)?

(f) If the method is convergent, is it also relatively stable?

To answer (f), you might use the fact that relative stability is implied by the strong
root condition: |rj(0)| < 1 for all j 6= 0. If you use this condition, you must explain
why it implies relative stability. If instead |rj(0)| = 1 for some j 6= 0, then you will
need to consider rj(hλ) for hλ 6= 0. You may do this numerically, if necessary.
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