Practice Midterm I
 MAT-165 Mathematics and Computers

Fall 2012

Name \qquad

- This test is closed notes, closed book.
- There are 7 pages and 5 questions total.
- The maximum score in the test is 70 points.
- IT IS A VIOLATION OF THE UNIVERSITY HONOR CODE TO, IN ANY WAY, ASSIST ANOTHER PERSON IN THE COMPLETION OF THIS EXAM. IT IS A VIOLATION OF THE UNIVERSITY HONOR CODE TO COPY ANSWERS FROM ANOTHER STUDENT'S EXAM. IT IS A VIOLATION OF THE UNIVERSITY'S HONOR CODE TO HAVE ANOTHER PERSON TAKE YOUR EXAM FOR YOU.

Signature \qquad

Problem	Score	Max Possible
1		10
2		30
3		15
4		7
5		8
Total		70

1. (a) (5 pts) State Rolle's Theorem for univariate polynomials.
(b) (5 pts) State the definition of an ideal of $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
2. Using the algorithms we learned in class, answer the following questions.
(a) (5 pts) Determine the number (including multiplicity) of real roots of the polynomial $7 x^{6}+x^{4}-3 x^{3}-5 x$. (Dont forget to count 0 as a real root).
(b) (10 pts) Show that there are no common roots to the following set of univariate polynomials: $x^{3}+2 x^{2}-x-2, x^{3}-2 x^{2}-x+2$ and $x^{3}-x^{2}-4 x+5$. You can use MAPLE for this problem, but DO NOT use the solve() command. Clearly explain what commands you used, the output given by MAPLE and how that led to your conclusion.
(c) (15 pts) Is the polynomial $x^{3}-1$ in the ideal

$$
\left\langle x^{3}+2 x^{2}-x-2, x^{3}-2 x^{2}-x+2, x^{3}-x^{2}-4 x+4\right\rangle ?
$$

You can use MAPLE for this problem. Clearly state which functions you used, the output given by MAPLE and how that led to your conclusion.
3. (15 pts) Suppose $f_{1}, \ldots, f_{k} \in \mathbb{K}[x]$ and $h=G C D\left(f_{1}, \ldots, f_{k}\right)$. Show that there exist $h_{1}, \ldots, h_{k} \in \mathbb{K}[x]$ such that $h=h_{1} f_{1}+h_{2} f_{2}+\ldots+h_{k} f_{k}$.
4. (7 pts) Prove that $\left\langle 2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right\rangle=\left\langle x^{2}-4, y^{2}-1\right\rangle$.
5. (8 pts) Let $S \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be the subset of all polynomials that are divisible by $x_{i}-1$ for all $i=1, \ldots, n$. Show that S is an ideal. (We say that a polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is divisible by $g \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ if there exists $q \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ such that $f=g \cdot q$.)

