Hilbert's Nullstellensatz and proving Infeasibility

Peter Malkin*, UC Davis

Math and Computers 165

Nov 19th, 2008

Hilbert's Nullstellensatz

- Theorem: Let \mathbb{K} be a field and $\overline{\mathbb{K}}$ its algebraic closure field. Let f_{1}, \ldots, f_{s} be polynomials in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. The system of equations $f_{1}=f_{2}=\cdots=f_{s}=0$ has no solution over $\overline{\mathbb{K}}$ iff there exist $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
1=\sum_{i=1}^{s} \alpha_{i} f_{i}
$$

This polynomial identity is a Nullstellensatz certificate.

Hilbert's Nullstellensatz

- Theorem: Let \mathbb{K} be a field and $\overline{\mathbb{K}}$ its algebraic closure field. Let f_{1}, \ldots, f_{s} be polynomials in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. The system of equations $f_{1}=f_{2}=\cdots=f_{s}=0$ has no solution over $\overline{\mathbb{K}}$ iff there exist $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
1=\sum_{i=1}^{s} \alpha_{i} f_{i}
$$

This polynomial identity is a Nullstellensatz certificate.

- If $x \in \overline{\mathbb{K}}^{n}$ was a solution, then $\sum_{i=1}^{s} \alpha_{i}(x) f_{i}(x)=0 \neq 1$.
- Nullstellensatz certificates are certificates of infeasibility.
- Let $d=\max \left\{\operatorname{deg}\left(\alpha_{1}\right), \operatorname{deg}\left(\alpha_{2}\right), \ldots, \operatorname{deg}\left(\alpha_{s}\right)\right\}$. Then, we say that d is the degree of the Nullstellensatz certificate.

Hilbert's Nullstellensatz

- Hilbert's Nullstellensatz is equivalent to the statement that the system $f_{1}=f_{2}=\cdots=f_{s}=0$ has no solution over $\overline{\mathbb{K}}$ iff $1 \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$ or equivalently every Gröbner basis is trivial (i.e. $\{1\}$) or equivalently $\left\langle f_{1}, \ldots, f_{s}\right\rangle=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Hilbert's Nullstellensatz

- Hilbert's Nullstellensatz is equivalent to the statement that the system $f_{1}=f_{2}=\cdots=f_{s}=0$ has no solution over $\overline{\mathbb{K}}$ iff $1 \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$ or equivalently every Gröbner basis is trivial (i.e. $\{1\}$) or equivalently $\left\langle f_{1}, \ldots, f_{s}\right\rangle=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
- So, to show that a system is infeasible we could compute a Gröbner basis, but this often takes too long!

How do we find a Nullstellensatz certificate

Key point:
For fixed degree, this is a linear algebra problem over \mathbb{K} !!

How do we find a Nullstellensatz certificate

Key point:
For fixed degree, this is a linear algebra problem over \mathbb{K} !!
E.g. Consider the system of polynomial equations

$$
f_{1}=x_{1}^{2}-1=0, f_{2}=x_{1}+x_{2}=0, f_{3}=x_{1}+x_{3}=0, f_{4}=x_{2}+x_{3}=0
$$

- This system has no solution over \mathbb{C}.

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem over \mathbb{K} !!
E.g. Consider the system of polynomial equations

$$
f_{1}=x_{1}^{2}-1=0, f_{2}=x_{1}+x_{2}=0, f_{3}=x_{1}+x_{3}=0, f_{4}=x_{2}+x_{3}=0
$$

- This system has no solution over \mathbb{C}.
- Does this system have a Nullstellensatz certificate of degree 1 ?

$$
\begin{aligned}
1 & =\underbrace{\left(c_{0} x_{1}+c_{1} x_{2}+c_{2} x_{3}+c_{3}\right)}_{\alpha_{1}} \underbrace{\left(x_{1}^{2}-1\right)}_{f_{1}}+\underbrace{\left(c_{4} x_{1}+c_{5} x_{2}+c_{6} x_{3}+c_{7}\right)}_{\alpha_{2}} \underbrace{\left(x_{1}+x_{2}\right)}_{f_{2}} \\
& +\underbrace{\left(c_{8} x_{1}+c_{9} x_{2}+c_{10} x_{3}+c_{11}\right)}_{\alpha_{4}} \underbrace{\left(x_{1}+x_{3}\right)}_{f_{3}}+\underbrace{\left(c_{12} x_{1}+c_{13} x_{2}+c_{14} x_{3}+c_{15}\right)}_{f_{4}} \underbrace{\left(x_{4}\right)}_{\alpha_{4}\left(x_{2}+x_{3}\right)}
\end{aligned}
$$

- Expand the Nullstellensatz certificate grouping by monomials.

$$
\begin{aligned}
& 1=c_{0} x_{1}^{3}+c_{1} x_{1}^{2} x_{2}+c_{2} x_{1}^{2} x_{3}+\left(c_{3}+c_{4}+c_{8}\right) x_{1}^{2}+\left(c_{5}+c_{13}\right) x_{2}^{2}+\left(c_{10}+c_{14}\right) x_{3}^{2} \\
& +\left(c_{4}+c_{5}+c_{9}+c_{12}\right) x_{1} x_{2}+\left(c_{6}+c_{8}+c_{10}+c_{12}\right) x_{1} x_{3}+\left(c_{6}+c_{9}+c_{13}+c_{14}\right) x_{2} x_{3} \\
& +\left(c_{7}+c_{11}-c_{0}\right) x_{1}+\left(c_{7}+c_{15}-c_{1}\right) x_{2}+\left(c_{11}+c_{15}-c_{2}\right) x_{3}-c_{3}
\end{aligned}
$$

- Extract a linear system of equations from expanded certificate.

$$
c_{0}=0, \ldots, c_{3}+c_{4}+c_{8}=0, c_{11}+c_{15}-c_{2}=0,-c_{3}=1
$$

- Expand the Nullstellensatz certificate grouping by monomials.

$$
\begin{aligned}
& 1=c_{0} x_{1}^{3}+c_{1} x_{1}^{2} x_{2}+c_{2} x_{1}^{2} x_{3}+\left(c_{3}+c_{4}+c_{8}\right) x_{1}^{2}+\left(c_{5}+c_{13}\right) x_{2}^{2}+\left(c_{10}+c_{14}\right) x_{3}^{2} \\
& +\left(c_{4}+c_{5}+c_{9}+c_{12}\right) x_{1} x_{2}+\left(c_{6}+c_{8}+c_{10}+c_{12}\right) x_{1} x_{3}+\left(c_{6}+c_{9}+c_{13}+c_{14}\right) x_{2} x_{3} \\
& +\left(c_{7}+c_{11}-c_{0}\right) x_{1}+\left(c_{7}+c_{15}-c_{1}\right) x_{2}+\left(c_{11}+c_{15}-c_{2}\right) x_{3}-c_{3}
\end{aligned}
$$

- Extract a linear system of equations from expanded certificate.

$$
c_{0}=0, \ldots, c_{3}+c_{4}+c_{8}=0, c_{11}+c_{15}-c_{2}=0,-c_{3}=1
$$

- Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. Note: the linear system is over \mathbb{R} and not \mathbb{C}.
- Expand the Nullstellensatz certificate grouping by monomials.

$$
\begin{aligned}
& 1=c_{0} x_{1}^{3}+c_{1} x_{1}^{2} x_{2}+c_{2} x_{1}^{2} x_{3}+\left(c_{3}+c_{4}+c_{8}\right) x_{1}^{2}+\left(c_{5}+c_{13}\right) x_{2}^{2}+\left(c_{10}+c_{14}\right) x_{3}^{2} \\
& +\left(c_{4}+c_{5}+c_{9}+c_{12}\right) x_{1} x_{2}+\left(c_{6}+c_{8}+c_{10}+c_{12}\right) x_{1} x_{3}+\left(c_{6}+c_{9}+c_{13}+c_{14}\right) x_{2} x_{3} \\
& +\left(c_{7}+c_{11}-c_{0}\right) x_{1}+\left(c_{7}+c_{15}-c_{1}\right) x_{2}+\left(c_{11}+c_{15}-c_{2}\right) x_{3}-c_{3}
\end{aligned}
$$

- Extract a linear system of equations from expanded certificate.

$$
c_{0}=0, \ldots, c_{3}+c_{4}+c_{8}=0, c_{11}+c_{15}-c_{2}=0,-c_{3}=1
$$

- Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. Note: the linear system is over \mathbb{R} and not \mathbb{C}.
- Reconstruct the Nullstellensatz certificate from a solution of the linear system.

$$
1=-\left(x_{1}^{2}-1\right)+\frac{1}{2} x_{1}\left(x_{1}+x_{2}\right)-\frac{1}{2} x_{1}\left(x_{2}+x_{3}\right)+\frac{1}{2} x_{1}\left(x_{1}+x_{3}\right)
$$

- Expand the Nullstellensatz certificate grouping by monomials.

$$
\begin{aligned}
& 1=c_{0} x_{1}^{3}+c_{1} x_{1}^{2} x_{2}+c_{2} x_{1}^{2} x_{3}+\left(c_{3}+c_{4}+c_{8}\right) x_{1}^{2}+\left(c_{5}+c_{13}\right) x_{2}^{2}+\left(c_{10}+c_{14}\right) x_{3}^{2} \\
& +\left(c_{4}+c_{5}+c_{9}+c_{12}\right) x_{1} x_{2}+\left(c_{6}+c_{8}+c_{10}+c_{12}\right) x_{1} x_{3}+\left(c_{6}+c_{9}+c_{13}+c_{14}\right) x_{2} x_{3} \\
& +\left(c_{7}+c_{11}-c_{0}\right) x_{1}+\left(c_{7}+c_{15}-c_{1}\right) x_{2}+\left(c_{11}+c_{15}-c_{2}\right) x_{3}-c_{3}
\end{aligned}
$$

- Extract a linear system of equations from expanded certificate.

$$
c_{0}=0, \ldots, c_{3}+c_{4}+c_{8}=0, c_{11}+c_{15}-c_{2}=0,-c_{3}=1
$$

- Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. Note: the linear system is over \mathbb{R} and not \mathbb{C}.
- Reconstruct the Nullstellensatz certificate from a solution of the linear system.

$$
1=-\left(x_{1}^{2}-1\right)+\frac{1}{2} x_{1}\left(x_{1}+x_{2}\right)-\frac{1}{2} x_{1}\left(x_{2}+x_{3}\right)+\frac{1}{2} x_{1}\left(x_{1}+x_{3}\right)
$$

- If the linear system was not feasible, we would have had to try a higher degree.

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

The most general bound...

Theorem: (Kollár)

The degree is bounded by $\max \{3, D\}^{n}$, where n is the number of variables and $D=\max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right), \ldots, \operatorname{deg}\left(f_{s}\right)\right\}$.

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

The most general bound...

Theorem: (Kollár)

The degree is bounded by $\max \{3, D\}^{n}$, where n is the number of variables and $D=\max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right), \ldots, \operatorname{deg}\left(f_{s}\right)\right\}$.

But for some types of systems have a better bound:

Theorem: (Lazard)

The degree is bounded by $n(D-1)$.

NulLA: Nullstellensatz linear algebra algorithm

- Input: A system of polynomial equations
$F=\left\{f_{1}=0, f_{2}=0, \ldots, f_{s}=0\right\}$.
- Set $d=0$.
- While $d \leq$ HNBound and no solution found for L_{d} :
- Construct a tentative Nullstellensatz certificate of degree d.
- Extract a linear system of equations L_{d}.
- Solve the linear system L_{d}.
- If there is a solution, then reconstruct the certificate and Output: F is INFEASIBLE.
- Else Set $d=d+1$.
- If $d=$ HNBound and no solution found for L_{d}, then

Output: F is FEASIBLE.

Graph Coloring

- Graph vertex coloring: Given a graph G and an integer k, can the vertices be colored with k colors in such a way that no two adjacent vertices are the same color?
- E.g. the Petersen Graph is 3-colorable.

Graph coloring modeled by a polynomial system

- One variable x_{i} per vertex $i \in\{1, \ldots, n\}$.
- Vertex polynomials: For every vertex $i=1, \ldots, n$,

$$
x_{i}^{k}-1=0 .
$$

- Edge polynomials: For every edge $(i, j) \in E$,

$$
x_{i}^{k-1}+x_{i}^{k-2} x_{j}+\cdots+x_{i} x_{j}^{k-2}+x_{j}^{k-1}=0 .
$$

NB: $x_{i}^{k}-x_{j}^{k}=\left(x_{i}-x_{j}\right)\left(x_{i}^{k-1}+x_{i}^{k-2} x_{j}+\cdots+x_{i} x_{j}^{k-2}+x_{j}^{k-1}\right)=0$.

Graph coloring modeled by a polynomial system

- One variable x_{i} per vertex $i \in\{1, \ldots, n\}$.
- Vertex polynomials: For every vertex $i=1, \ldots, n$,

$$
x_{i}^{k}-1=0 .
$$

- Edge polynomials: For every edge $(i, j) \in E$,

$$
x_{i}^{k-1}+x_{i}^{k-2} x_{j}+\cdots+x_{i} x_{j}^{k-2}+x_{j}^{k-1}=0 .
$$

NB: $x_{i}^{k}-x_{j}^{k}=\left(x_{i}-x_{j}\right)\left(x_{i}^{k-1}+x_{i}^{k-2} x_{j}+\cdots+x_{i} x_{j}^{k-2}+x_{j}^{k-1}\right)=0$.

- Theorem: (D. Bayer) Let k be an integer and let G be a graph encoded as vertex and edge polynomials as above. This system has a solution iff G is k-colorable.
- Theorem: For a graph G, the following system of polynomial equations in $\mathbb{F}_{2}[x]$ has a solution over \mathbb{F}_{2} iff G is 3-colorable.

$$
x_{i}^{3}+1=0 \forall i \in V, \quad x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}=0 \forall(i, j) \in E
$$

E.g. Petersen graph polynomial system of equations

This system has a solution iff the Petersen graph is 3-colorable.
$x_{0}^{3}-1=0, x_{1}^{3}-1=0, \quad x_{0}^{2}+x_{0} x_{1}+x_{1}^{2}=0, x_{0}^{2}+x_{0} x_{4}+x_{4}^{2}=0$,
$x_{2}^{3}-1=0, x_{3}^{3}-1=0, \quad x_{0}^{2}+x_{0} x_{5}+x_{5}^{2}=0, x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}=0$,
$x_{4}^{3}-1=0, x_{5}^{3}-1=0, \quad x_{1}^{2}+x_{1} x_{6}+x_{6}^{2}=0, x_{2}^{2}+x_{2} x_{7}+x_{7}^{2}=0$,
$x_{6}^{3}-1=0, x_{7}^{3}-1=0$,
$x_{8}^{3}-1=0, x_{9}^{3}-1=0, \quad x_{6}^{2}+x_{6} x_{8}+x_{8}^{2}=0, x_{7}^{2}+x_{7} x_{9}+x_{9}^{2}=0$.

Experimental results for NuILA 3-colorability

Graph	$\|V\|$	$\|E\|$	\#rows	\#cols	d	sec
Mycielski 7	95	755	64,281	71,726	1	1
Mycielski 9	383	7,271	$2,477,931$	$2,784,794$	1	269
Mycielski 10	767	22,196	$15,270,943$	$17,024,333$	1	14835
(8,3)-Kneser	56	280	15,737	15,681	1	0
(10,4)-Kneser	210	1,575	349,651	330,751	1	4
(12,5)-Kneser	792	8,316	$7,030,585$	$6,586,273$	1	467
(13,5)-Kneser	1,287	36,036	$45,980,650$	$46,378,333$	1	216105
1-Insertions_5	202	1,227	268,049	247,855	1	2
2-Insertions_5	597	3,936	$2,628,805$	$2,349,793$	1	18
3-Insertions_5	1,406	9,695	$15,392,209$	$13,631,171$	1	83
ash331GPIA	662	4,185	$3,147,007$	$2,770,471$	1	14
ash608GPIA	1,216	7,844	$10,904,642$	$9,538,305$	1	35
ash958GPIA	1,916	12,506	$27,450,965$	$23,961,497$	1	90

Table: DIMACS graphs without 4-cliques.

