Hilbert's Nullstellensatz and proving Infeasibility

Peter Malkin*, UC Davis

Math and Computers 165

Nov 19th, 2008

Hilbert's Nullstellensatz

 Theorem: Let K be a field and K its algebraic closure field. Let f₁,..., f_s be polynomials in K[x₁,...,x_n]. The system of equations f₁ = f₂ = ··· = f_s = 0 has no solution over K iff there exist α₁,..., α_s ∈ K[x₁,...,x_n] such that

$$1=\sum_{i=1}^{s}\alpha_{i}f_{i}$$

This polynomial identity is a Nullstellensatz certificate.

Hilbert's Nullstellensatz

 Theorem: Let K be a field and K its algebraic closure field. Let f₁,..., f_s be polynomials in K[x₁,...,x_n]. The system of equations f₁ = f₂ = ··· = f_s = 0 has no solution over K iff there exist α₁,..., α_s ∈ K[x₁,...,x_n] such that

$$1=\sum_{i=1}^{s}\alpha_{i}f_{i}$$

This polynomial identity is a Nullstellensatz certificate.

- If $x \in \overline{\mathbb{K}}^n$ was a solution, then $\sum_{i=1}^{s} \alpha_i(x) f_i(x) = 0 \neq 1$.
- Nullstellensatz certificates are certificates of *infeasibility*.
- Let d = max{deg(α₁), deg(α₂),..., deg(α_s)}. Then, we say that d is the degree of the Nullstellensatz certificate.

Hilbert's Nullstellensatz

• Hilbert's Nullstellensatz is equivalent to the statement that the system $f_1 = f_2 = \cdots = f_s = 0$ has **no** solution over $\overline{\mathbb{K}}$ iff $1 \in \langle f_1, ..., f_s \rangle$ or equivalently every Gröbner basis is trivial (i.e. $\{1\}$) or equivalently $\langle f_1, ..., f_s \rangle = \mathbb{K}[x_1, ..., x_n]$.

Hilbert's Nullstellensatz

- Hilbert's Nullstellensatz is equivalent to the statement that the system $f_1 = f_2 = \cdots = f_s = 0$ has **no** solution over $\overline{\mathbb{K}}$ iff $1 \in \langle f_1, ..., f_s \rangle$ or equivalently every Gröbner basis is trivial (i.e. $\{1\}$) or equivalently $\langle f_1, ..., f_s \rangle = \mathbb{K}[x_1, ..., x_n]$.
- So, to show that a system is infeasible we could compute a Gröbner basis, but this often takes too long!

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem over $\mathbb{K}!!$

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem over $\mathbb{K}!!$

E.g. Consider the system of polynomial equations

$$f_1 = x_1^2 - 1 = 0, \ f_2 = x_1 + x_2 = 0, \ f_3 = x_1 + x_3 = 0, \ f_4 = x_2 + x_3 = 0$$

• This system has no solution over \mathbb{C} .

How do we find a Nullstellensatz certificate

Key point:

For fixed degree, this is a linear algebra problem over $\mathbb{K}!!$

E.g. Consider the system of polynomial equations

$$f_1 = x_1^2 - 1 = 0, \ f_2 = x_1 + x_2 = 0, \ f_3 = x_1 + x_3 = 0, \ f_4 = x_2 + x_3 = 0$$

- This system has no solution over \mathbb{C} .
- Does this system have a Nullstellensatz certificate of degree 1?

$$1 = \underbrace{(c_0x_1 + c_1x_2 + c_2x_3 + c_3)}_{\alpha_1}\underbrace{(x_1^2 - 1)}_{f_1} + \underbrace{(c_4x_1 + c_5x_2 + c_6x_3 + c_7)}_{\alpha_2}\underbrace{(x_1 + x_2)}_{f_2} + \underbrace{(c_8x_1 + c_9x_2 + c_{10}x_3 + c_{11})}_{\alpha_3}\underbrace{(x_1 + x_3)}_{f_3} + \underbrace{(c_{12}x_1 + c_{13}x_2 + c_{14}x_3 + c_{15})}_{\alpha_4}\underbrace{(x_2 + x_3)}_{f_4}$$

$$1 = c_0 x_1^3 + c_1 x_1^2 x_2 + c_2 x_1^2 x_3 + (c_3 + c_4 + c_8) x_1^2 + (c_5 + c_{13}) x_2^2 + (c_{10} + c_{14}) x_3^2$$

+(c_4 + c_5 + c_9 + c_{12}) x_1 x_2 + (c_6 + c_8 + c_{10} + c_{12}) x_1 x_3 + (c_6 + c_9 + c_{13} + c_{14}) x_2 x_3
+(c_7 + c_{11} - c_0) x_1 + (c_7 + c_{15} - c_1) x_2 + (c_{11} + c_{15} - c_2) x_3 - c_3

• Extract a linear system of equations from expanded certificate.

$$c_0 = 0, \ \ldots, \ c_3 + c_4 + c_8 = 0, \ c_{11} + c_{15} - c_2 = 0, \ -c_3 = 1$$

$$\begin{split} 1 &= c_0 x_1^3 + c_1 x_1^2 x_2 + c_2 x_1^2 x_3 + (c_3 + c_4 + c_8) x_1^2 + (c_5 + c_{13}) x_2^2 + (c_{10} + c_{14}) x_3^2 \\ &+ (c_4 + c_5 + c_9 + c_{12}) x_1 x_2 + (c_6 + c_8 + c_{10} + c_{12}) x_1 x_3 + (c_6 + c_9 + c_{13} + c_{14}) x_2 x_3 \\ &+ (c_7 + c_{11} - c_0) x_1 + (c_7 + c_{15} - c_1) x_2 + (c_{11} + c_{15} - c_2) x_3 - c_3 \end{split}$$

• Extract a linear system of equations from expanded certificate.

$$c_0 = 0, \ \ldots, \ c_3 + c_4 + c_8 = 0, \ c_{11} + c_{15} - c_2 = 0, \ -c_3 = 1$$

 Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. Note: the linear system is over ℝ and not ℂ.

$$\begin{split} 1 &= c_0 x_1^3 + c_1 x_1^2 x_2 + c_2 x_1^2 x_3 + (c_3 + c_4 + c_8) x_1^2 + (c_5 + c_{13}) x_2^2 + (c_{10} + c_{14}) x_3^2 \\ &+ (c_4 + c_5 + c_9 + c_{12}) x_1 x_2 + (c_6 + c_8 + c_{10} + c_{12}) x_1 x_3 + (c_6 + c_9 + c_{13} + c_{14}) x_2 x_3 \\ &+ (c_7 + c_{11} - c_0) x_1 + (c_7 + c_{15} - c_1) x_2 + (c_{11} + c_{15} - c_2) x_3 - c_3 \end{split}$$

• Extract a *linear* system of equations from expanded certificate.

$$c_0 = 0, \ \ldots, \ c_3 + c_4 + c_8 = 0, \ c_{11} + c_{15} - c_2 = 0, \ -c_3 = 1$$

- Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. Note: the linear system is over R and not C.
- Reconstruct the Nullstellensatz certificate from a solution of the linear system.

$$1 = -(x_1^2 - 1) + \frac{1}{2}x_1(x_1 + x_2) - \frac{1}{2}x_1(x_2 + x_3) + \frac{1}{2}x_1(x_1 + x_3)$$

$$\begin{split} 1 &= c_0 x_1^3 + c_1 x_1^2 x_2 + c_2 x_1^2 x_3 + (c_3 + c_4 + c_8) x_1^2 + (c_5 + c_{13}) x_2^2 + (c_{10} + c_{14}) x_3^2 \\ &+ (c_4 + c_5 + c_9 + c_{12}) x_1 x_2 + (c_6 + c_8 + c_{10} + c_{12}) x_1 x_3 + (c_6 + c_9 + c_{13} + c_{14}) x_2 x_3 \\ &+ (c_7 + c_{11} - c_0) x_1 + (c_7 + c_{15} - c_1) x_2 + (c_{11} + c_{15} - c_2) x_3 - c_3 \end{split}$$

• Extract a *linear* system of equations from expanded certificate.

$$c_0=0,\;\ldots,\;c_3+c_4+c_8=0,\;c_{11}+c_{15}-c_2=0,\;-c_3=1$$

- Solve the linear system. This linear system is feasible, so we have found a certificate and proven the polynomial system is infeasible. **Note:** the linear system is over \mathbb{R} and not \mathbb{C} .
- Reconstruct the Nullstellensatz certificate from a solution of the linear system.

$$1 = -(x_1^2 - 1) + \frac{1}{2}x_1(x_1 + x_2) - \frac{1}{2}x_1(x_2 + x_3) + \frac{1}{2}x_1(x_1 + x_3)$$

 If the linear system was not feasible, we would have had to try a higher degree.

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

The most general bound...

Theorem: (Kollár)

The degree is bounded by $\max\{3, D\}^n$, where *n* is the number of variables and $D = \max\{\deg(f_1), \deg(f_2), \dots, \deg(f_s)\}$.

Bounds for the Nullstellensatz degree

Question:

How big can the degree of a Nullstellensatz certificate be?

The most general bound...

Theorem: (Kollár)

The degree is bounded by $\max\{3, D\}^n$, where *n* is the number of variables and $D = \max\{\deg(f_1), \deg(f_2), \dots, \deg(f_s)\}$.

But for some types of systems have a better bound:

Theorem: (Lazard)

The degree is bounded by n(D-1).

NulLA: Nullstellensatz linear algebra algorithm

• Input: A system of polynomial equations

$$F = \{f_1 = 0, f_2 = 0, \dots, f_s = 0\}.$$

- Set d = 0.
- While $d \leq$ HNBound and no solution found for L_d :
 - Construct a tentative Nullstellensatz certificate of degree d.
 - Extract a linear system of equations L_d .
 - Solve the linear system L_d .
 - If there is a solution, then reconstruct the certificate and **Output**: F is INFEASIBLE.
 - Else Set d = d + 1.
- If d = HNBound and no solution found for L_d, then
 Output: F is FEASIBLE.

Graph Coloring

- **Graph vertex coloring:** Given a graph *G* and an integer *k*, can the vertices be colored with *k* colors in such a way that no two adjacent vertices are the same color?
- E.g. the Petersen Graph is 3-colorable.

Graph coloring modeled by a polynomial system

- One variable x_i per vertex $i \in \{1, ..., n\}$.
- Vertex polynomials: For every vertex i = 1, ..., n,

$$x_i^k - 1 = 0.$$

• Edge polynomials: For every edge $(i,j) \in E$,

$$x_i^{k-1} + x_i^{k-2}x_j + \dots + x_ix_j^{k-2} + x_j^{k-1} = 0.$$

NB: $x_i^k - x_j^k = (x_i - x_j)(x_i^{k-1} + x_i^{k-2}x_j + \dots + x_ix_j^{k-2} + x_j^{k-1}) = 0.$

Graph coloring modeled by a polynomial system

- One variable x_i per vertex $i \in \{1, ..., n\}$.
- Vertex polynomials: For every vertex i = 1, ..., n,

$$x_i^k - 1 = 0.$$

• Edge polynomials: For every edge $(i,j) \in E$,

$$x_i^{k-1} + x_i^{k-2}x_j + \dots + x_ix_j^{k-2} + x_j^{k-1} = 0.$$

NB: $x_i^k - x_j^k = (x_i - x_j)(x_i^{k-1} + x_i^{k-2}x_j + \dots + x_ix_j^{k-2} + x_j^{k-1}) = 0.$

- **Theorem:** (D. Bayer) Let k be an integer and let G be a graph encoded as vertex and edge polynomials as above. This system has a solution iff G is k-colorable.
- **Theorem:** For a graph G, the following system of polynomial equations in $\mathbb{F}_2[x]$ has a solution over $\overline{\mathbb{F}}_2$ iff G is 3-colorable.

$$x_i^3 + 1 = 0 \ \forall i \in V, \quad x_i^2 + x_i x_j + x_j^2 = 0 \ \forall (i, j) \in E.$$

Computational Investigations (over \mathbb{F}_2)

E.g. Petersen graph polynomial system of equations

This system has a solution iff the Petersen graph is 3-colorable.

$$\begin{aligned} & x_0^3-1=0, \ x_1^3-1=0, & x_0^2+x_0x_1+x_1^2=0, \ x_0^2+x_0x_4+x_4^2=0, \\ & x_2^3-1=0, \ x_3^3-1=0, & x_0^2+x_0x_5+x_5^2=0, \ x_1^2+x_1x_2+x_2^2=0, \\ & x_4^3-1=0, \ x_5^3-1=0, & x_1^2+x_1x_6+x_6^2=0, \ x_2^2+x_2x_7+x_7^2=0, \\ & x_6^3-1=0, \ x_7^3-1=0, & \cdots \cdots \\ & x_8^3-1=0, \ x_9^3-1=0, & x_6^2+x_6x_8+x_8^2=0, \ x_7^2+x_7x_9+x_9^2=0. \end{aligned}$$

Experimental results for NuILA 3-colorability

Graph	V	E	<i>⊭rows</i>	<i>#cols</i>	d	sec
Mycielski 7	95	755	64,281	71,726	1	1
Mycielski 9	383	7,271	2,477,931	2,784,794	1	269
Mycielski 10	767	22,196	15,270,943	17,024,333	1	14835
(8,3)-Kneser	56	280	15,737	15,681	1	0
(10, 4)-Kneser	210	1,575	349,651	330,751	1	4
(12, 5)-Kneser	792	8,316	7,030,585	6,586,273	1	467
(13, 5)-Kneser	1,287	36,036	45,980,650	46,378,333	1	216105
1-Insertions_5	202	1,227	268,049	247,855	1	2
2-Insertions_5	597	3,936	2,628,805	2,349,793	1	18
3-Insertions_5	1,406	9,695	15,392,209	13,631,171	1	83
ash331GPIA	662	4,185	3,147,007	2,770,471	1	14
ash608GPIA	1,216	7,844	10,904,642	9,538,305	1	35
ash958GPIA	1,916	12,506	27,450,965	23,961,497	1	90

Table: DIMACS graphs without 4-cliques.