
Homework Problems

1. The Division Algorithm for univariate polynomials f, g ∈ K[x] finds q, r ∈ K[x], with deg(r) <
deg(g), such that f = q · g + r. Prove that this pair q, r is unique, i.e., if q′, r′ ∈ K[x], with
deg(r′) < deg(g), such that f = q′ · g + r′, then q = q′ and r = r′.

2. Prove that iterative version of the Division Algorithm discussed in class actually terminates
without getting into an infinite loop.

3. Do Problem 2 on page 46 of the textbook.

4. Do Problem 13 on page 47 of the textbook.

5. Show that there are
(
n+d−1

d

)
monomials of degree d over n variables.

6. Let f1, . . . , fk ∈ K[x] be univariate polynomials.

(i) Prove that
GCD(f1, . . . , fk) = GCD(f1, GCD(f2, . . . , fk)).

How can this be used to give an algorithm for finding GCD(f1, . . . , fk) using the GCD
algorithm for two polynomials ?

(ii) Prove that there exist polynomials h1, . . . , hk ∈ K[x] such that GCD(f1, . . . , fk) =∑k
i=1 hifi.

7. Use the quo() and rem() commands in MAPLE as a tool to compute the following GCD’s.
You should not run a GCD code on MAPLE - this exercise is meant to give you practice with
working out the GCD algorithm by hand: MAPLE is just to help you compute quotients and
remainders.

(i) GCD(x6 − 1, x4 − 1).

(ii) GCD(x3 + 2x2 − x− 2, x3 + 2x2 − x+ 2)

(ii) GCD(x4 + x2 + 1, x4 − x2 − 2x− 1, x3 − 1).

8. Consider f1, . . . , fk ∈ C[x], i.e., polynomials with complex coefficients. Prove that the set of
common roots (in C) is empty if and only if their GCD is 1.

9. Use MAPLE to find all the real roots of the polynomial 3x− 25x3 + 60x− 20.

10. Explain a method you can use to decide whether a univariate polynomial has roots of multi-
plicity more than 1 (i.e., repeated roots). Use it to test whether x3−2x2−4x+8 has multiple
roots.

11. Using Descartes’ rule of signs find as much information as you can about the possible number
of real roots (counting multiplicities) for each of the following polynomials (You can use
MAPLE to compute GCD’s and quotients and remainders):

(a) x4 − x2 + x− 2

(b) x9 − x5 + x2 + 2

(c) x5 + 2x3 − x2 + x− 1

12. Apply Sturm’s sequences and find out exactly the number of distinct roots for each of the
polynomials of previous problem (You can use MAPLE to compute GCD’s and quotients and
remainders).
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13. Prove the assertion from class : If V = V (f1, . . . , fk) and W = V (g1, . . . , gs), then V ∪W =
V ({figj : i = 1, . . . , k; j = 1, . . . , s}). (A complete proof appears on page 11 of the text)

14. Sketch (or visualize) the following affine varieties (or at least the real parts of it!) in R2:

(a) V (x2 − y2)

(b) V (x2 + 4y2 + 2x− 16y + 1)

and in R3:

(c) V (xz2 − xy)

(d) V (x2 + y2 + z2 − 1, x2 + y2 + (z − 1)2 − 1)

15. Do Problem 2, 3, 5 and 6 on page 12 of textbook.

Recall the definition of the ideal generated by a finite set of polynomials : Given f1, . . . , fk ∈
K[x1, . . . , xn],

〈f1, . . . , fk〉 = {p ∈ K[x1, . . . , xn] : p = h1f1+h2f2+. . .+hkfk for some h1, . . . , hk ∈ K[x1, . . . , xn]}.

Another way to think of this ideal is that it is the set of all “polynomial combinations” of
f1, . . . , fk.

16. Do Problems 2, 3, 5 on page 36 of the textbook.

17. Ideals in Univariate Polynomials In this problem, we characterize ideals in univariate
polynomials.

(a) Let f1, . . . , fk ∈ K[x]. Show that

〈f1, . . . , fk〉 = 〈GCD(f1, . . . , fk)〉.

(Hint: Use Problem 6, part (ii) above.) Thus for univariate polynomials, an ideal gen-
erated by a finite number of polynomials is actually generated by a single polynomial !
In the next part we further strengthen this assertion.

(b) Let I ⊆ K[x] be any ideal in K[x] (note that we are not assuming that it is generated
by a finite set of polynomials as in part (a).) Show that there exists f ∈ K[x] such that
I = 〈f〉. (Hint: Consider the smallest degree polynomial in K[x].)

Because of the above property, the univariate polynomials are called a principal ideal
domain (PID). See also Corollary 4 in the textbook.

(c) Part (a) suggests an algorithm for testing if a given f ∈ K[x] belongs to the ideal
〈f1, . . . , fk〉, without having to “guess” at the appropriate combinations like we had to
for Problem 15. Use this algorithm to test if the polynomial x2 − 4 is in the ideal
generated by the polynomials 〈x3 + x2 − 4x− 4, x3 − x2 − 4x+ 4, x3 − 2x2 − x+ 2〉.

18. Do Problem 1 from page 52 of the textbook.

19. The basis of an ideal is different from a basis in linear algebra in that there is no concept
analogous to linear independence. As a consequence when we write an element f in the ideal
〈f1, . . . , fk〉 as f =

∑k
i=1 hifi the coefficients hi are not always unique. As an example, write

x2 + xy + y2 ∈ 〈x, y〉 in two different ways.

20. Do Problems 7, 8 on page 37 of the textbook.

2



21. Explain a method you can use to decide whether a univariate polynomial has roots of high
multiplicity. Use it to test whether x3−2x2−4x+8 has multiple roots. You can use MAPLE
for manipulating univariate polynomials (like GCD, quotients, remainders etc.)

22. True or false: The set of polynomials p ∈ R[x, y, z] such that p(t2, t3, t4) = 0 for all t ∈ R is
an ideal.

23. Is x2 an element inside the ideal 〈x− y2, xy〉 ? Is 〈x− y2, xy〉 = 〈x2, xy〉 ? Why or why not?
If not, is any one of them included in the other ?

24. Do Problems 1, 2, 3, 7, 10, 11 on page 60 of the textbook.

25. Let > be a total order on the monomials Zn+ such that α > β ⇒ α+ γ > β+ γ. Show that >
is a well-ordering if and only if α > 0 for all α ∈ Zn+ \ {0}. Why does this immediately show
that graded lex and graded reverse lex are monomial orderings ? (Hint: For the if direction,
use the Gordan-Dickson Lemma)

26. Suppose we use the multivariate division algorithm for dividing f by f1, . . . , fk, and we get
two different remainders r1 and r2 corresponding to two different orders that we pick on
f1, . . . , fk. Is r1 − r2 ∈ 〈f1, . . . , fk〉 ? If so, how would you find polynomials h1, . . . , hk such
that r1 − r2 = h1f1 + . . .+ hkfk from the output of the multivariate division algorithm ?

27. Do problems 1, 2, 6, 7, 9 on page 68 of the textbook.

28. Do problems 1, 3, 4, 5 on page 74 of the textbook.

29. Recall that we can define an ideal generated by infinitely many polynomials : Given any set
F ⊆ K[x1, . . . , xn] of polynomials (possibly infinite), define

I = 〈F 〉 = {
∑

finite sum

hαfα : hα ∈ K[x1, . . . , xm], fα ∈ F}

Suppose F = {f1, f2, f3, . . .} is an infinite sequence of polynomials. Let I = 〈F 〉. Show that
there exists a natural number N ∈ N such that I = 〈f1, . . . , fN 〉. (Be careful : the Hilbert
Basis theorem shows that I is finitely generated; however, it does not give any guarantee that
the basis will come from the elements in F ).

30. We defined Gröbner bases in terms of leading monomials (〈LM(I)〉 = 〈LM(g1), . . . , LM(gs)〉).
We can achieve the same by using leading terms instead (recall that these are different from
the leading monomials - they include the coefficients). Suppose I is an ideal. Let LT (I) denote
the set of all leading terms of polynomials in I, i.e., LT (I) = {LT (f) : f ∈ I}. Of course,
LT (I) is a set of polynomials and therefore one can define 〈LT (I)〉 as the ideal generated by
all of these (infinitely many) polynomials (see exercise 29). Suppose g1, . . . , gs ∈ I such that
〈LT (I)〉 = 〈LT (g1), . . . , LT (gs)〉. Show that {g1, . . . , gs} is a Gröbner basis for I.

31. Show that for each natural number n ≥ 1 there exists a monomial ideal I ⊆ K[x, y] such that
every basis of I has at least n elements.

32. Do Problems 1, 2, 3, 4, 5, 6, 7, 9a, 9c, 11 from pages 87-88 of the textbook.

33. Recall that given an ideal I, we define the variety of this ideal V (I) = {a ∈ Kn : f(a) =
0 for all f ∈ I}. Show that if I = 〈f1, . . . , fk〉, V (I) = V (f1, . . . , fk).

34. For the following two problems, use MAPLE to do your calculations. You can compute
S-polynomials and remainders using the commands SPolynomial() and NormalForm() re-
spectively, from the package with(Groebner).
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• Do Problems 2, 3, 5 from page 94 of the textbook.

• Do Problems 1, 2, 3, 4, 5a.

• Find the maximum of x2 + y2 + xy subject to x2 + 2y2 = 1.

• For the following systems of polynomial equations answer the following questions: Is
the system solvable? Does it have a finite number of solutions? If not, determine the
dimension of the solution space.

(a) x2 − 2x+ 5, xy2 + yz3, 3y2 − 8z3.

(b) x2z2 + x3, xz4 + 2x2z2 + x3, y2z − 2yz2 + z3.

• Find the common zeros of the polynomials xyz − w, yzw − x, zwx− y, xyw − z.

35. Consider any ideal I ⊆ K[x1, . . . , xn]. Recall the definition of the l-th elimination ideal
Il = I ∩K[xl, . . . , xn]. Show that Il is an ideal of K[xl, . . . , xn] for every l = 1, . . . , n.

36. Recall that we made a special change of variables during the proof of Hilbert’s Nullstellensatz:

x1 = x̃1

x2 = x̃2 + a2x̃1
...

xn = x̃n + anx̃1

Under this transformation, every polynomial f(x1, . . . , xn) ∈ K[x1, . . . , xn] transforms into
f̃(x̃1, . . . , x̃n) ∈ K[x̃1, . . . , x̃n]. Consider any ideal I ⊆ K[x1, . . . , xn]. Let Ĩ ⊆ K[x̃1, . . . , x̃n] be
the transformed polynomials in I. Show that Ĩ is an ideal of K[x̃1, . . . , x̃n].

37. Do Problem 7 from page 174 of the textbook.

38. Do Problems 12, 13 and 15 from page 160 of the textbook.

39. Do Problems 1, 2a, 2b, 8, 10 from page 166 of the textbook.

40. Consider an ideal I ⊆ K[x1, . . . , xn]. Let c2, . . . , cn be elements of K. Now consider the set of
univariate polynomials in x1 given by Ī = {f(x1, c2, . . . , cn) : f ∈ I}. Show that Ī is an ideal
of K[x1].
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