Graph Theory:

What is a graph?

\((V, E)\)

vertices/nodes edges

\(f\)

\(\text{unordered pairs from } V\)

\(|V| = n\)

\(|E| = m\)

self loops

\(e_1 \rightarrow \{v_1, v_3\}\)

\(e_2 \rightarrow \{v_2, v_3\}\)

\(e_3 \rightarrow \{v_1, v_2\}\)
Directed $f^D: E \rightarrow \text{ordered pairs from } V \subseteq V \times V$

$e_1 \rightarrow v_1 v_2$
$e_2 \rightarrow v_2 v_1$
$e_3 \rightarrow v_1 v_2$

A (directed) path in a (directed) graph $G = (V, E)$ is a sequence

$\forall v, e_1, e_2, ..., e_k \in V$

such that

$\forall e_k = \{v_{k-1}, v_k\}$ (undirected)

$\Rightarrow v_{k-1} v_k$
v_1, v_2, v_3, v_4
directed

Example:

$3 \neq v_2 \neq v_6 \neq v_5 \neq v_7$

and 2) $e_i \neq e_j \neq i \neq j$

and 3) $v_i \neq v_j \neq i \neq j$

Complexity of Algorithms

Algorithm \rightarrow

\[\# \text{ of arithmetic operations that we perform:} \]

\[+, -, *, /, \text{ and comparisons} \]

Notion of problem size \approx roughly, $\# \text{ bits needed to write down problem data.}$

Linear regression: N data pts, d dimension
size of numerical data: \mathbf{D} \\
"dimensional size" / "Numerical size" data: \mathbf{S} \\
$\mathbf{f}(\mathbf{D}, \mathbf{S})$ bound on the running time / complexity \\

sorting: n numbers a_1, \ldots, a_n \\

$O(n^2)$ \\
$O(n \log n)$ \\

Polynomial time algorithms: when \mathbf{f} is a polynomial of \mathbf{D} and \mathbf{S} \\

Strongly polynomial time: where \mathbf{f} is a polynomial of \mathbf{D} and is independent of \mathbf{S}.
Maximum Flow Problem:

Data: \(G = (V,E) \) directed

- \(u_e : e \in E \) capacity.
- Designated source \(s \in V \), sink \(t \in V \)

Problem: Assign flow values

\[x_e : e \in E \]

s.t.

1. \(0 \leq x_e \leq u_e \)
2. \(\sum_{e \in V \setminus \{s,t\}} x_e = 0 \)

\[f(v) = \sum_{e = vv} x_e - \sum_{e = uv} x_e = 0 \]

and we maximize \(f(s) \).

\[\sum_{e = ws} x_e - \sum_{e = su} x_e \]