Combinatorial Optimization
February 23, 2021

\[E : S \rightarrow \mathbb{R}^n \]

\[c \in \mathbb{R}^n \]

Linear Programming formulation: \(A, b \)

\[\text{conv} (E(S)) = \{ x : A x \leq b \} \]

Integer Programming formulation: \(A, b \)

\[E(S) = \{ x \in \mathbb{Z}^n : A x \leq b \} \]

Matching in non-bipartite graphs

\[\begin{align*}
 x_{e_1} + x_{e_2} & \leq 1 \\
 + x_{e_2} + x_{e_3} & \leq 1 \\
 x_{e_1} + x_{e_3} & \leq 1 \\
 0 & \leq x_{e_i} \leq 1
\end{align*} \]

Graph

\[G = (V, E) \]

\[\sum_{e \in E(i)} x_e \leq 1 \]

\[0 \leq x_e \leq 1 \]
\(x_{e_1} + x_{e_2} + x_{e_3} \leq 1 \)

\(G = (V, E) \)

\[
\sum_{e \in E[V]} x_e = \frac{|U| - 1}{2} \leq \frac{|U|}{2}, \quad \text{odd}
\]

\(E[U] = \{ e \in E : \text{both ends of } e \text{ are in } U \} \)

\[0 \leq x_e \leq 1\]

\(\emptyset \text{ matching}(G) \)

\(\text{matching}(G) = \text{convex hull of all 0/1 matching vectors for } G. \)

Edmonds' Matching Theorem: If \(G = (V, E) \)

\[\text{matching}(G) \leq \emptyset \text{ matching}(G). \]

Def. A perfect matching in \(G \) is a matching where all vertices are covered.

\[\text{p-perfect matching}(G) = \text{convex hull of all 0/1 perfect matchings in } G. \]
\[Q_{p,\text{matching}}(G) = S \rightarrow \sum_{e \in \delta(V)} x_e = 1 \]

\[\sum_{e \in E[V]} x_e \leq \left\lfloor \frac{|V|}{2} \right\rfloor \]

Edmonds' Perfect Matching Form: \(\forall G = (V, E) \),
\[P_{p,\text{matching}}(G) = Q_{p,\text{matching}}(G) \]

Lemma 1: \(A \in \mathbb{R}^{m \times n} \), \(b \in \mathbb{R}^m \)
- All vertices \(x \in \mathbb{R}^n : Ax \leq b \) are rational.
- Characterization of vertices:
 \[x = A^{-1}b \]

Lemma 2: \(P_1, \ldots, P_k \in \mathbb{R}^n \) rational
- Suppose \(\forall x \in \text{conv}(\{P_1, \ldots, P_k\}) \) and \(\nu \) is rational

\[0 = \nu P_1 + \cdots + \nu P_k \]
- for \(0 \leq \nu_i \leq 1 \) with \(\sum \nu_i = 1 \)
- If \(\nu \) follows from applying Lemma 1 to the following polytope
\[0 \leq \nu_i \leq 1 \]

\[\sum \nu_i = 1 \]
If a Perfect Matching then:

\[\sum_{u \in U} \left(\sum_{e \in \delta(u)} x_e \right) = |U| \]

\[\sum_{e \in \delta(U)} x_e + (|U| - 1) \geq \sum_{e \in \delta(U)} x_e + 2 \sum_{e \in \delta(U)} x_e - \frac{|U| - 1}{2} \]

Let \(e : \) one endpoint in \(U \) and another outside \(U \).

\[\sum_{e \in \delta(U)} x_e = 1 \]

We have shown: \(p\text{-matching}(G) = 0 \)

We will show: \(p\text{-matching}(G) = \mathcal{O}(G) \)

\(\subseteq \) easy.

Suffices to show that every vector of \(\mathcal{O}(G) \) is a convex combination of 0/1 perfect matching vectors.

Proof by induction on \(|V| + |E|\).
Base Case: \(e \) \(\notin \mathcal{E}(G) \)

Consider any graph with \(|V| + |E| \geq 3 \).

Let \(\tilde{x} \in \mathcal{Q}(\tilde{G}) \) vertex.

Case 1: \(\exists e \in E \) s.t. \(\tilde{x}_e = 0 \)

Let \(\tilde{G} = G \setminus \{e^*\} \) and define \(\bar{x}_e \)

\[
\bar{x}_e \begin{cases}
\tilde{x}_e & e \in e^* \\
0 & e \notin e^* \end{cases}
\]

Claim: \(\bar{x} \in \mathcal{Q}(\tilde{G}) \)

\[\Rightarrow \text{by I.H., } \tilde{x} \text{ is a convex combination of } 0/1 \text{ perfect matchings in } \tilde{G} \]

\(\Rightarrow \) consider them as \(0/1 \) perfect matchings in \(G \).

\(\tilde{x}_{e^*} = 0 \) \(\Rightarrow \) and all these \(0/1 \) perfect matchings in \(G \) have \(0 \) on \(e^* \).

Case 2: \(\exists e^* \text{uv s.t. } \bar{x}_{e^*} = 1 \)

\[\sum_{e \in \mathcal{E}(u)} \bar{x}_e = 1 \]

\(\Rightarrow \bar{x}_e = 0 \) \(e \in \mathcal{E}(u) \setminus e^* \)

Similarly for \(v \).
\[G = G \setminus \{u,v\} \]

and define \(\tilde{x} \) to be \(x \) restricted to edges of \(\tilde{G} \).

Claim: \(\tilde{x} \in Q(\tilde{G}) \) \(\sum_{e \in S(v)} \tilde{x}_e = 1 \) \(\forall v \in V(\tilde{G}) \)

\[\sum_{e \in S(v)} \tilde{x}_e > 1 \] \(\forall v \in V(\tilde{G}) \) \(\text{odd} \).

\[\sum_{e \in S(v)} \tilde{x}_e > 0 \] \(\forall v \in V(\tilde{G}) \)

so by Ind. \(\tilde{x} \) is a cons. comb. of \(\emptyset \) perfect matching vectors in \(\tilde{G} \).

Extend these perfect matchings to perfect matchings in \(G \) by including \(e^* \).

\(\tilde{x} \) is a cons. comb. of these new perfect matchings in \(\tilde{G} \).

Case 3: \(0 < \tilde{x}_e < 1 \) \(\forall e \in E \).

\(
\Rightarrow \) degree of every vertex \(\geq 2 \)

(Hard shaking)

\[\sum_{v \in V} \text{degree of } v = 2 |E| \] for any \(G = (V,E) \)

\[\sum_{v \in V} \text{degree of } v = 2 |E| \]

\[\Rightarrow 2 |E| = 2 |V| \]

\[\Rightarrow |E| = |V| \]
Case 3a: \(|E| = |V| \Rightarrow \) each vertex has degree 2.

\[
\overline{x} e \times M_1 + (1 - \overline{x}) e \times M_2 = \overline{x} \quad \text{restricted to this cycle.}
\]

\[
\text{Case 3b: } |E| > |V| \quad \text{since } x \text{ is a vertex of } G, \text{ the tight constraint must have rank } |E|.
\]

\[
\Rightarrow \text{ must have at least } |E| \text{ tight constraints.}
\]

\[
\sum_{e \in E(V)} x_e = 1 \quad \text{for } e \in E(V)
\]

\[
\Rightarrow \exists \quad V^* \subseteq V \text{ with } |V^*| \text{ odd s.t. } \sum_{e \in E(V^*)} x_e = 1 \text{ and } |V^*| \geq 3
\]
[Assume w.l.o.g. G has even # vertices]

$\phi \leftrightarrow \text{P-matching } (G) = \emptyset$

and $Q(G) = \emptyset \quad \forall \in V$

Construct \tilde{G},

\begin{align*}
\tilde{G}_1 & \\
\tilde{G}_2 &
\end{align*}

Can apply 1.4 to \tilde{x}_1 and \tilde{G}_1 since $|U^*| = 3$.

Claim: $\tilde{x}_i \in \mathcal{Q}(\tilde{G}_i)$ for $i = 1, 2$.

\[\tilde{x}_1 + \ldots + \tilde{x}_k \]

where M_1', \ldots, M_k' are perfect matchings in \tilde{G}_1.

$\tilde{x}_i \in \mathcal{Q}(G_i)$

(\text{the 0/1 vector corresponding to these matchings})
Similarly \[\tilde{X}_2 = \frac{\alpha^2}{1} X_{M_1} + \ldots + \frac{\alpha^2}{k_2} X_{M_{k_2}} \]

for perfect matchings \(\tilde{G}_2 \).

By Lemmas 1 and 2:

\[\alpha^1 = \frac{p_1}{q_1} \ldots \frac{p_{k_1}}{q_{k_1}} \]

and

\[\alpha^2 = \frac{p_1}{q_1} \ldots \frac{p_k}{q_k} \]

Can further assume all \(q_j \)'s are the same natural number \(Q \).

\[\alpha^1 = \frac{p_1}{Q} X_{M_1} + \ldots + \frac{p_{k_1}}{Q} X_{M_{k_1}} \]

and

\[\alpha^2 = \frac{p_1}{Q} X_{M_1} + \ldots + \frac{p_{k_2}}{Q} X_{M_{k_2}} \]

Then

\[QX_1 = \frac{p_1}{Q} X_{M_1} + \ldots + \frac{p_{k_1}}{Q} X_{M_{k_1}} \]

and

\[QX_2 = \frac{p_1}{Q} X_{M_1} + \ldots + \frac{p_{k_2}}{Q} X_{M_{k_2}} \]
We must have K perfect matchings within $M^1_1, \ldots, M^1_k, M^2_1, \ldots, M^2_k$ that have a 1 on edge e.

For every edge, we can pair up these matchings.
to create perfect matchings in the original graph
and then using the fact that
\[Q X_1 = P_1 X M_1 + \ldots + P_{k_1} X M_{k_1}, \]
and
\[Q X_2 = P_1 X M_2 + \ldots + P_{k_2} X M_{k_2}, \]
\(\tilde{X}_1 \) and \(\tilde{X}_2 \) equal \(\tilde{X} \) on all edges,
we can express \(\tilde{X} \) as a convex combination
of these new perfect matchings in \(G \).

Matching from perfect matchings
\[G : (V, E) \quad \max \sum_{e \in E} w_e x_e = \langle w, \tilde{X} \rangle \]
Matching \(G \) = \{ \(x \in \mathbb{R}^E : \sum_{e \in E} x_e = 1 \land \sum_{e \in E(U)} x_e \leq |U| - 1 \land 0 \leq x_e \leq 1 \) \},
\(G \) is odd \(U \).

\(G \) matching = \{ \(\sum_{e \in E(U)} x_e = 1 \land \sum_{e \in E(V)} x_e = 1 \) \},
all 0/1 perfect matchings.
\(O(m^{1.5} n^L) \)
$G = (V, E)$

$\sum_{e \in E} x_e \leq 1$

$G_1 \cong G$

$G_2 \cong G$

$\times e \in \text{0/1 matching (G')}$

$\times e \in \text{0/1 matching (G')}$

\[x_e = 1 - \sum_{e \in E} x_e \]

\[x_e \in \{0, 1\} \]

\[\text{corr. comb. of 0/1 perfect matching in G'} \]

\[\text{corr. (0/1 matchings) } \]