Combinatorial Optimization: AMS 553.766

Amitabh Basu

Department of Applied Mathematics and Statistics, Johns Hopkins U., Spring 2021
Two types of optimization problems

Type I

\(n \) jobs, \(m \) machines.
Cost \(c_{ij} \) for assigning job \(i \in \{1, \ldots, n\} \) to machine \(j \in \{1, \ldots, m\} \).
Every machine has capacity \(w_j \).
Find the least cost assignment of jobs to machines.

Type II

\(n \) Data points (labeled):
\((x^1, y_1), \ldots, (x^D, y_D)\) where \(x^i \in \mathbb{R}^n \) and \(y_i \in \mathbb{R} \). Find “best fit” linear function, i.e., find \(\beta_1, \ldots, \beta_n \) to minimize

\[
\sum_{i=1}^{D} (y_i - \beta^T x^i)^2.
\]
Two types of optimization problems

Type I

- n jobs, m machines.
- cost c_{ij} for assigning job $i \in \{1, \ldots, n\}$ to machine $j \in \{1, \ldots, m\}$.
- Every machine has capacity w_j.
- Find the least cost assignment of jobs to machines.

Type II

- n Data points (labeled): $(x^1, y_1), \ldots, (x^D, y_D)$ where $x^i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. Find “best fit” linear function, i.e., find β_1, \ldots, β_n to minimize

$$\sum_{i=1}^{D} (y_i - \beta^T x^i)^2.$$

1. Inherent “discreteness” in feasible solutions. Classical techniques available for Type II: Calculus, convexity - Do not apply to Type I
2. Brute force approach for Type I does not scale.
Two types of optimization problems

Type I
Combinatorial Optimization

\(n \) jobs, \(m \) machines.

Cost \(c_{ij} \) for assigning job \(i \in \{1, \ldots, n\} \) to machine \(j \in \{1, \ldots, m\} \).

Every machine has capacity \(w_j \).
Find the least cost assignment of jobs to machines.

Type II
Continuous Optimization

\(n \) Data points (labeled):
\((x_1, y_1), \ldots, (x_D, y_D)\) where \(x^i \in \mathbb{R}^n \) and \(y_i \in \mathbb{R} \).

Find “best fit” linear function, i.e., find \(\beta_1, \ldots, \beta_n \) to minimize

\[
\sum_{i=1}^{D} (y_i - \beta^T x^i)^2.
\]

1. Inherent “discreteness” in feasible solutions. Classical techniques available for Type II: Calculus, convexity - Do not apply to Type I

2. Brute force approach for Type I does not scale.
A Scheduling Problem

Job 1
Job 2
Job 3
Job 4

Machine 1
Machine 2
Machine 3
Machine 4
Machine 5
Transportation problem

1500
2400
3500
1200

1300
2300
1000
2000
2000
A Problem from Astronomy
A Problem from Astronomy
A Problem from Astronomy

Use physics to derive an “evaluation” function that evaluates a given partition (Correlation function in astronomy)
A Problem from Astronomy

Use physics to derive an “evaluation” function that evaluates a given partition (Correlation function in astronomy)
A Problem from Astronomy

Use physics to derive an “evaluation” function that evaluates a given partition (Correlation function in astronomy)
A Problem from Astronomy

1000 galaxies: 2^{1000} possible partitions
Evaluate a partition in 10^{-20} seconds
Will take $\sim 10^{250}$ years!!!!

Use physics to derive an “evaluation” function that evaluates a given partition (Correlation function in astronomy)
Linear regression: Given a bunch of points $x^1, \ldots, x^D \in \mathbb{R}^n$, and “labels” $y_1, \ldots, y_D \in \mathbb{R}$, find the best linear function that “fits” this data.
Linear regression: Given a bunch of points $x^1, \ldots, x^D \in \mathbb{R}^n$, and “labels” $y_1, \ldots, y_D \in \mathbb{R}$, find the best linear function that “fits” this data.

$$\min_{\beta \in \mathbb{R}^n} \sum_{i=1}^{D} (y_i - \beta^T x^i)^2$$
Linear regression: Given a bunch of points $x^1, \ldots, x^D \in \mathbb{R}^n$, and “labels” $y_1, \ldots, y_D \in \mathbb{R}$, find the best linear function that “fits” this data.

$$
\min_{\beta \in \mathbb{R}^n} \sum_{i=1}^{D} (y_i - \beta^T x_i)^2
$$

Better statistical guarantees if we enforce sparsity on β.
Statistical/Machine Learning

Linear regression: Given a bunch of points $x^1, \ldots, x^D \in \mathbb{R}^n$, and “labels” $y_1, \ldots, y_D \in \mathbb{R}$, find the best linear function that “fits” this data.

$$\min_{\beta \in \mathbb{R}^n} \sum_{i=1}^{D} (y_i - \beta^T x^i)^2$$

subject to $\|\beta\|_0 \leq K$

Better statistical guarantees if we enforce sparsity on β.
Linear regression: Given a bunch of points $\mathbf{x}^1, \ldots, \mathbf{x}^D \in \mathbb{R}^n$, and “labels” $y_1, \ldots, y_D \in \mathbb{R}$, find the best linear function that “fits” this data.

$$\min_{\beta \in \mathbb{R}^n} \sum_{i=1}^{D} (y_i - \beta^T \mathbf{x}^i)^2$$

subject to $\|\beta\|_0 \leq K$

Better statistical guarantees if we enforce sparsity on β.

Best Subset Selection via a Modern Optimization Lens by Bertsimas, King, Mazumder in *Annals of Statistics 2016*
Linear regression: Given a bunch of points $x^1, \ldots, x^D \in \mathbb{R}^n$, and “labels” $y_1, \ldots, y_D \in \mathbb{R}$, find the best linear function that “fits” this data.

$$\min_{\beta \in \mathbb{R}^n} \sum_{i=1}^D (y_i - \beta^T x^i)^2$$

subject to $\|\beta\|_0 \leq K$

Better statistical guarantees if we enforce sparsity on β.

Best Subset Selection via a Modern Optimization Lens by Bertsimas, King, Mazumder in *Annals of Statistics 2016*

Similar problem in *Compressed Sensing* or *Sparse Coding*.
Linear regression: Given a bunch of points $x_1, \ldots, x^D \in \mathbb{R}^n$, and “labels” $y_1, \ldots, y^D \in \mathbb{R}$, find the best linear function that “fits” this data.

$$\min_{\beta \in \mathbb{R}^n} \sum_{i=1}^D (y_i - \beta^T x^i)^2$$

subject to $\|\beta\|_0 \leq K$

Better statistical guarantees if we enforce sparsity on β.

Best Subset Selection via a Modern Optimization Lens by Bertsimas, King, Mazumder in *Annals of Statistics 2016*

Similar problem in **Compressed Sensing or Sparse Coding**.

Related problem: Robust statistics with corrupted data: **Trimmed MLE, Trimmed goodness-of-fit**
Statistical/Machine Learning

Linear regression: Given a bunch of points $x^1, \ldots, x^D \in \mathbb{R}^n$, and “labels” $y_1, \ldots, y_D \in \mathbb{R}$, find the best linear function that “fits” this data.

$$\min_{\beta \in \mathbb{R}^n} \sum_{i=1}^{D} (y_i - \beta^T x^i)^2$$

subject to $\|\beta\|_0 \leq K$

Better statistical guarantees if we enforce sparsity on β.

Best Subset Selection via a Modern Optimization Lens by Bertsimas, King, Mazumder in *Annals of Statistics 2016*

Similar problem in Compressed Sensing or Sparse Coding.

Related problem: Robust statistics with corrupted data: Trimmed MLE, Trimmed goodness-of-fit

Check out: Dimitris Bertsimas and Rahul Mazumder at MIT.