
































,

8 Z. Xiao, M. Wan, S. Chen and G. L. Eyink

1 0 100 1000
k

–2

–1

0

1

2

3

1 10 100

100

10–5

10–2

10–8

10–14

10–20

10–26

10–10

10–15

10–20

E
(k

)
E

(k
)

1 10 100 1000
k

10–2

10–4

10–6

10–8

10–10

10–12

1 10 100 1000
k

10–1

10–6

10–11

10–16

10–21

10–26

1 10 100
k

–2

–1

0

1

2

3
Π

(k
)/
ε ir

Π
(k

)/
ε ir

Π
(k

)/
ε ir

Π
(k

)/
ε ir

1 10 100 1000k
–3

–2

–1

0

1

2

1 10 100 1000
k

–2

–1

0

1

2

3

1 10 100 1000

(a)

(c) (d)

(b)

Figure 2. Energy spectrum functions E(k) versus k at steady state. (a) RUN 2, (b) RUN 3,
(c) RUN 4 and (d ) RUN 5. Insets are the mean spectral energy fluxes normalized by large-scale
(infrared) energy dissipation εir.

(a) n = 1.65, (b) n = 1.71, (c) n= 1.69 and (d) n =1.65 for the four cases. Thus, the
spectral exponent is 5/3 with a deviation of, at most, 0.04. We see also that – except
for RUN 4 – the energy flux is a negative constant, very close to −εir , over the range
where the k−5/3 law is satisfied. RUN 3, in particular, exhibits a constant-flux inertial
range of about two decades. Note that in RUN 4, with normal viscosity, the UV
dissipation is not really confined to k > kf and thus Π(k) drops in magnitude for
k ! kf and has only a very short range where it is constant. For all the runs, our
findings are in remarkably good agreement with the predictions of Kraichnan (1967),
consistent with earlier numerical results of Lilly (1969, 1972), Frisch & Sulem (1984),
Maltrud & Vallis (1991), Boffetta et al. (2000) and Boffetta (2007).

It is worth commenting briefly on some papers of Borue (1994), Danilov & Gurarie
(2001) and Tran & Bowman (2004) who failed to observe Kraichnan’s predictions in
their simulations and whose authors were led to question the universality/robustness
of the classical theory. As has been observed by others, e.g. Sukoriansky, Galperin &
Chekhlov (1999), the vortex structures that form once energy reaches the large scales in
forced two-dimensional turbulence are very sensitive to the low-wavenumber damping
mechanism. For example, Borue (1994) employed a very high-order hypoviscosity with
pi = 8 and he observed large coherent vortices and a k−3 spectrum much steeper than
Kraichnan’s prediction. It is natural to believe that the very sharp spectral onset of
damping with large pi will lead to a ‘blockage’ of cascade and a pile-up of energy at
the scale of the damping, similar to the dissipation-range ‘bottleneck’ in the energy
spectrum of three-dimensional turbulence (Falkovich 1994). The analogy of low-
wavenumber energy pile-up in two-dimensional inverse cascade with the ‘bottleneck’
phenomenon in three-dimensional has been noticed before by Boffetta et al. (2000).
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Figure 4. (a) The cumulative mean energy flux 〈Π"〉cum(ρ), normalized by the mean flux 〈Π"〉
versus ρ and (b) PDF of energy flux. Solid line: true flux Π"; dashed line: second-order MSG

model flux Π
2nd
∗ (see § 5.2) with each normalized by its r.m.s. value.

three intense vortices in the centre and lower, right corner of figure 3(b) and the
corresponding flux quadrupoles in figure 3(a). This structure of energy flux in the
vicinity of strong vortices is quite similar to the quadrupolar structure of vorticity
gradient stretching, or ‘palinstrophy production’, which has been observed by Kimura
& Herring (2001) to be associated to such vortices. In fact, there is a close connection
between local energy flux and vorticity gradient stretching, as we shall see below, and
thus the analytical argument presented by Kimura & Herring (2001) to explain the
quadrupole pattern of ‘palinstrophy production’ carries over to energy flux.

The strong vortices with their quadrupole flux structures give rise to the largest
magnitudes of the local fluxes, with both positive and negative signs. However, they
give little net contribution to the mean inverse cascade, both because of their relative
rarity and because of cancellation between oppositely signed flux from the four
quadrants. To show this quantitatively, we consider a ‘cumulative mean flux’ which is
defined by

〈Π"〉cum(ρ) =

� + ρΠ",r.m.s.

−ρΠ",r.m.s.

dΠ ΠP"(Π), (3.8)

with P"(Π) the probability density function for the values of Π"(x) over the spatial
domain and Π",r.m.s. the r.m.s. value. This quantity is plotted in figure 4(a), normalized
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Figure 8. (a) Flux fraction Q[n] from length scale !n versus n, λ= 2, from DNS, TFM and
second-order MSG; (b) cumulative flux fraction W (n) versus n, λ= 1.5, from DNS and TFM.

which consists of the terms in (3.19) with k, l ! n and at least one of k, l = n. We
see that !n/! = (2π/!)/(2π/!n) then corresponds closely to v = kmin/kmed in the spectral
analysis, that is, v ! vn = λ−n.

To examine these issues with our numerical data, we calculate

Π
[n]
! = −S!:τ

[n]
! , (3.21)

the flux contribution due to work against stress from the modes at length scale !n.
We then determine the fraction of mean flux fraction from each length scale !n,

Q[n]
DNS =

�
Π

[n]
!

�

〈Π!〉
, (3.22)

and also a cumulative mean flux fraction from length scales greater than equal to !n,
via W (n) =

�n
k = 0 Q[k]. These DNS results are plotted in figure 8 for the length scale

! = π/15, in the inertial range of RUN 3. (Note we shall use filter length ! = π/15
hereafter, unless stated otherwise.) We also plot the TFM predictions of Kraichnan
(1971), which we have obtained by scanning the results for Q(v) from his figure 1
and then numerically integrating

Q
[n]
TFM =

� vn

vn +1

Q(v)
dv

v
, (3.23)

for n =0, 1, 2, . . . This quantity is not precisely the same as that defined for DNS
in (3.22), since the latter was based on a Gaussian filter function G. However, they
measure essentially the same thing and may be meaningfully compared. We show
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Figure 3. Instantaneous snapshot of (a) vorticity field ω and (b) energy flux Π#, with each
normalized by its r.m.s. value.

this filtering approach has promise for analysis of geophysical data on irregular and
inhomogeneous domains.

In figure 3(a) we plot a typical snapshot of the energy flux Π#(x), taken from a
1282 subdomain of the entire 20482 domain. Red/orange regions represent positive
flux and blue/green negative flux. The filter length scale in that plot – and for all
hereafter in this section – is taken to be # = π/50, in the middle of the inverse cascade
range for RUN 3. For comparison, we plot also in figure 3(b) an instantaneous
snapshot of the vorticity field at exactly the same spatial location as in figure 3(a)
for the flux. Each field is plotted normalized by its r.m.s. value. The vorticity field
consists of vortices of both signs of circulation, with a distribution of sizes from
the forcing scale to somewhat less than the damping scale. However, there are no
large vortices of the box size and no apparent large-scale coherent organization of
smaller-size vortices either. One striking feature is a ‘quadrupolar’ structure of the
energy flux associated to the strongest observed vortices. For example, consider the
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Figure 6. Conditional PDFs of energy flux with (a) Okubo–Weiss criterion and (b) LKH
criterion. Solid line: strain region; dashed line: vortex region.

defined in terms of vorticity as

〈Π"〉′
cum(ρ) =

� ρωr.m.s.

−∞
dω

� + ∞

−∞
dΠ ΠP"(Π, ω), (3.9)

where P"(Π, ω) is the joint probability density function for the values of Π"(x) and
ω(x) over the spatial domain. This quantity is shown in figure 5(b), normalized by the
mean flux 〈Π"〉 and plotted as a function of the real parameter ρ. The figure shows
that almost 90 % of the mean flux is given within regions such that |ω(x)| < ωr.m.s.,
and 99 % within regions where |ω(x)| < 2ωr.m.s.. Although, some others have argued
for an important role of coherent vortices in the inverse energy cascade (e.g. Babiano
& Dubos 2005), we see no statistical connection. In particular, the strong vortex
structures with very large vorticity magnitudes make little direct contribution to the
mean energy flux.

We have found instead that most of the mean inverse cascade comes from strain-
dominated regions rather than vorticity-dominated regions. To distinguish the two,
we have employed the well-known criterion of Okubo (1970) and Weiss (1991), which
is framed in terms of the pressure Laplacian:

℘ ≡ 'p = 1
2
ω2 − |S|2. (3.10)

Regions are considered to be strain dominated if ℘ < 0 and vortex dominated if ℘ > 0.
Shown in figure 6(a) are the conditional PDFs of the energy flux in both strain (solid
line) and vortex (dashed line) regions. The PDF in the strain region is skewed further
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Top left: Instantaneous snapshot of vorticity field !. Top right: Instantaneous snapshot of energy flux ⇧`.

Bottom left: Conditional PDFs of energy flux with Okubo-Weiss criterion. Bottom right: Conditional

PDFs of energy flux with LKH criterion.





28 Z. Xiao, M. Wan, S. Chen and G. L. Eyink

(a) (b)

(c) (d)

(e) ( f )

Figure 13. Instantaneous contours of energy flux from DNS data. (a) True flux Π", (b)
first-order MSG flux Π1st

∗ " before refiltering, (c) first-order MSG flux Π1st
∗ " after refiltering, (d )

‘tensile stress’ term of second-order MSG flux after refiltering, (e) ‘Newtonian eddy-viscosity’
term of second-order MSG flux after refiltering and (f ) refiltered second-order MSG model
flux Π2nd

∗ " , with each normalized by its r.m.s. value. The blue–green regions are dominated by
negative flux and the red–orange by positive flux.

must decrease, and its energy is therefore reduced. The energy lost by the small-scale
vortex is transferred to the large scale. In fact, the stress τ [n] created by the thinned
vortex is primarily along the stretching direction, positive, and of magnitude |u[n]|2.
Hence, the deviatoric stress τ̊ [n] is positively aligned with the large-scale strain S(0),
which thus does negative work. This argument shows also that τ̊ [n] ∝ "2

nω
[n]�S

[n]
, in

agreement with first-order MSG.
We can use the data from our DNS to test further the basic elements of this

thinning picture. The most crucial feature is the relative rotation between strain at
scale "0 and strain from scale "n. We have calculated the conditional PDFs of the
relative angle δα[n] =α[n]−α(0) given the sign of the small-scale vorticity ω[n]. These are
plotted in figure 14, with (a) for negative sign and (b) for positive. The PDF for n= 1
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Top left: Instantaneous snapshot of energy flux ⇧`. Top right: Instantaneous snapshot of energy flux

⇧CSR,(1)
` . Bottom left: Same as top left. Bottom right: Instantaneous snapshot of energy flux ⇧CSR,(2)

` .
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Figure 10. Snapshot of a merger event captured in our DNS, at times well before, immediately
before and immediately after a saddle-node bifurcation; black circles represent nodes and white
circles saddle points.

0 1 2

Figure 11. Vortex merger events, with colours indicating radial distance in units of filter
length !, overlaid by contour lines of energy flux, in black, showing regions of inverse cascade.

enough to compensate for the extreme rarity of mergers. We find that merger events
make less than 0.1 % contribution to the total mean energy flux.

We have performed a variety of other analyses to test the importance of mergers
in inverse energy cascade, but they have all found essentially no role for mergers. We
shall not report these other studies in detail here, but just describe them in outline.
In addition to the instantaneous Eulerian average over merger ‘neighbourhoods’,
we have also calculated Lagrangian statistics. Since merger is a process of vortex
interaction, not just a single state, and may persist for some time, our instantaneous
averaging may appear inadequate. Thus, we have also taken Lagrangian averages,
both forward and backward in time, along fluid particles conditioned to be initially in
the merger neighbourhood. Precisely, we put as many particles as possible uniformly
inside a circle around the merger centres and tracked these fluid particles. However,
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of two-dimensional hydrodynamic flows in the absence of
external forces, freely decaying in periodic boxes.

In high-resolution numerical simulations, because of the
computational cost, seldom an ensemble of simulations with
different initial conditions is done. Instead, only one simulation
is done and ergodicity is assumed in order to obtain statistical
quantities by averaging in space. Experiments of decaying
turbulence are characterized instead by single- or multiple-
point measurements of quantities downstream for very long
times. The multiple-point measurements can be at similar
stages of the evolution or at different stages (e.g., when
measuring at different distances downstream from the place
where turbulence is generated). The procedure actually results
in an average over multiple realizations of decaying flows.

To mimic such a procedure in our simulations, we per-
formed 50 two-dimensional simulations of the Navier-Stokes
equations on a regular grid of 20482 points. Initial conditions
were a random superposition of harmonic modes between
wave numbers k = 18 and 22, with the spectrum peaking at
k0 = 20. Viscosity was ν = 2.5 × 10−4 in all these runs and
the box had length 2π . The initial rms velocity Urms in all runs
was 1, corresponding to a turnover time of τNL = L0/Urms =
2π/20 ≈ 0.3 (L0 = 2π/k0). As a result, the runs differed only
by their random initial phases.

To study the effect of scale separation between the initial
energy-containing scale and the box size, a second set of
ten simulations was done with a resolution of 40962 grid
points. The initial random excitation with Urms = 1 was placed
between k = 30 and 34, with the spectrum peaking at k0 = 32.
The initial integral scale of the flow was thus decreased by a
factor 1.6 and the initial turnover time was τNL ≈ 0.2. The
viscosity in these runs was ν = 9.9 × 10−5 and as in the
previous data set, the runs in this data set differed only in
the choice of initial phases.

The equations were integrated up to t = 6 using a paral-
lelized pseudospectral code, with the 2/3 rule for dealiasing,
and the second-order Runge-Kutta method to evolve in time
[25]. Neither friction nor forcing was employed. Note that
although the spatial resolutions considered in this study are
moderate, the computational cost of computing the whole data
set (the fifty 20482 runs and the ten 40963 runs) is equivalent
to that of computing a 16 3842 simulation of two-dimensional
turbulence [26].

III. RESULTS

Since the first set has more realizations (50), resulting in
more reliable ensemble averages, we focus first on this set
and compare at the end with the second data set to identify
the effect of increasing resolution. Figure 1 shows the time
evolution of the energy spectrum, of the energy flux, and
of the enstrophy flux in one of the 20483 simulations, i.e.,
for a single realization. At large wave numbers the energy
spectrum develops a direct enstrophy cascade range with an
energy spectrum steeper than ∼k−3 but shallower than ∼k−4.
Such spectra have been reported before and for details we refer
the reader to the discussion in [11] and references therein. We
simply note that, given the separation of scales in this run
kmax/k0 ≈ 34, with kmax = N/3 the maximum wave number,
one does not expect to be able to resolve sufficiently the

(a)

(b)

(c)

FIG. 1. (Color online) Time evolution of the (a) energy spectrum,
(b) energy flux, and (c) enstrophy flux in a single 20483 simulation
from t = 0.5 (black line) to t = 6 (light gray or light blue line).
Slopes in the energy spectrum are indicated as references. The curves
corresponding to t = 0.5 and 6 are indicated in all panels by arrows
and the vertical dashed lines indicate the initial energy containing
wave number k0. In (b) and (c), note the displacement to smaller
wave numbers of the minimum of energy flux and to larger wave
numbers of the maximum of enstrophy flux. The inset in (a) shows
the time evolution of the energy (solid line) and of the enstrophy
(dashed line) in this run, with the color changing with time following
the colors used for the different curves in the spectrum and fluxes.

small-scale range. Recent simulations of forced two-
dimensional turbulence, with more scale separation between
k0 and kmax, indicate a clear ∼k−3 energy scaling at small
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normalized by the total energy as a function of time. In both
runs, the small-scale energy decreases rapidly, while the large-
scale energy grows. When not normalized by the total energy,
E< still grows and then slowly decays as a result of viscous
forces (with a slower decay in the 40962 run). In the absence
of a transfer of energy towards large scales (i.e., without a
negative energy flux), E< would only decrease in time.

The time evolution of the integral scale for all 20482 runs
is shown in Fig. 3. In spite of the fact that the runs differ
only by their initial phases, there is a large dispersion in the
time evolution of L, more so than for the energy [see the
inset of Fig. 3(a)]. The actual dispersion in the evolution of
L and E in the different runs is also quantified in Fig. 3(b),
by means of the standard deviation σ . For both quantities,
σ first grows exponentially (at very early times) and later
seems to follow an approximate linear growth with time. From
pioneering works on the predictability of two-dimensional
turbulence [30–32] (see also [33,34] for recent studies), we
can expect differences in the initial conditions to grow first
at the initial energy-containing scale (resulting in the early
exponential phase) and later to propagate towards larger scales
if an inverse cascade develops (see [34] for a numerical study).
In that regime, the time it takes for the differences to propagate
is that of the turnover time, which if a Kolmogorov spectrum is
assumed, results in linear growth of the error with time [30,34].
Note that the integral scale L is obtained from the energy
spectrum weighting the most energetic wave numbers and as
such more deviation can be expected than in the case of the total
energy.

Although the standard deviation observed in Fig. 3 can be
expected in an ensemble, numerical simulations often deal
with only one of the realizations. What are the implications
of the dispersion in the integral length (and energy) in the
different simulations at a given time? Figure 4 shows the
energy spectrum at t = 1.5 and 6 for ten randomly picked

FIG. 4. (Color online) Energy spectra for ten 20482 runs at t =
1.5 (no averaging performed here). Slopes are indicated as references.
The vertical dashed line corresponds to the initial energy-containing
wave number k0. The inset shows the same ten spectra at t = 6.
Note that the large-scale spectra look like ∼k, which could be
interpreted as eddy noise in two dimensions (see [35]). However,
unlike three-dimensional turbulence, the amplitude of the peak of the
energy spectrum is larger than its initial value (at t = 0) at the same
wave number.

20482 runs. At t = 1.5, a narrow range seems to emerge at
large scales, with a slope shallower than ∼k−3, between the
energy-containing scale and the enstrophy range. Exploration
of the energy flux (not shown) indicates that its ensemble
average may display a short range with approximate constancy.
Moreover, at later times (see, e.g., the inset in Fig. 4), this
shallower range in the energy spectrum increases in width and
moves to smaller wave numbers.

Based on this result, we show in Fig. 5 the time- and
ensemble-averaged energy spectrum, energy flux, and enstro-
phy flux for the set of simulations with 20482 grid points.

(a)

(b)

(c)

FIG. 5. (a) Time- and ensemble-averaged energy spectrum,
(b) energy flux, and (c) enstrophy flux over the fifty 20482 simulations
and from t = 0.5 to 6. Slopes in (a) are indicated as references. The
vertical dashed lines correspond to the initial energy-containing wave
number k0.
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Figure 1. The evolution of (a) energy and enstrophy normalized by their initial values, and
(b, c) the enstrophy spectra in runs N and H.

with kp =8. The second, run H, used hyperviscosity with p = 4, 40962 grid points and
kp = 10. We performed 10 realizations of run H with different initial conditions in
order to obtain ensemble averages.

For run N we used the algorithm outlined in Fox & Davidson (2008). In run H,
time stepping was performed using a leap-frog scheme with a weak Robert filter for
the advection term, and a Crank–Nicholson scheme for the diffusive term. Dealiasing
in run H was performed using the usual 2/3 rule.

We define an inverse time scale ω0 based on the initial enstrophy as ω0 = 〈ω2〉1/2

and a non-dimensional time τ = ω0t . Run N was integrated up to τ = 88, whilst
run H was integrated until τ = 100. In both runs νp was chosen to give a well-
resolved dissipation range, and the initial Reynolds number for run N, defined as
Re = ω0/(k2

pν), is 2.9 × 104.

3. Results
Figure 1 shows the evolution of the energy, enstrophy and enstrophy spectra (in

compensated form) in runs N and H. It can be seen that 〈ω2〉 falls off as 〈ω2〉 ∼ τ−n

where 0.85 <n< 0.95, which is consistent with other studies (see Lowe & Davidson
2005, and references therein). Also, it is clear that after an initial transient of τ ∼ 30 a
definite k−1 region forms. Note that Eω is pre-multiplied by k so that the k−1 region
appears as a plateau. This allows the use of a linear scale for the vertical axis and
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Figure 4. The enstrophy flux, Πω in (a) run N and (b) run H. k1 and k2 mark the limits of
the k−1 region in the corresponding enstrophy spectrum Eω .

the small scales of the turbulence are not fully developed at this time, and hence the
enstrophy dissipation rate does not give a good estimate of the flux. The numerical
value of C is also comparable between the two cases: 1.3 for run N and 1.4 for run H.

At first sight, it appears that Batchelor’s theory is sufficient to explain the emergence
of a k−1 enstrophy spectrum in freely decaying two-dimensional turbulence. However,
it rests on the hypothesis that β can be used as a surrogate for the enstrophy flux Πω,
which in turn requires that Πω is uniform throughout the inertial range, and we have
seen that the usual justification for these assumptions is unlikely to hold in practice.
Figure 4 shows Πω in our simulations for the times where the enstrophy spectrum
shows a significant k−1 region. The vertical lines k = k1 and k = k2 represent the limits
of the Eω ∼ k−1 range, and the significance of the line k = k0 will be explained shortly.
It is clear from the run H results that the enstrophy flux is not constant throughout the
inertial range, and increases with increasing wavenumber. Strikingly, the variation in
Πω throughout the k−1 region is not small, and is consistent with the log k dependence
predicted by (1.5). The trend is less obvious in run N, presumably due to the shorter
inertial range and the lack of ensemble averaging. Nevertheless, there is still some
indication of the enstrophy flux increasing at higher wavenumbers.

A wavenumber-dependent enstrophy flux does not necessarily invalidate the central
assumption of Batchelor’s hypothesis that β is the only relevant dynamical parameter
in the inertial range. It does, however, make it seem most improbable. One obvious
modification to Batchelor’s theory is to replace β by Πω(k), giving

Eω(k) = CΠω(k)2/3k−1. (3.1)

However, since Πω is a function of k (3.1) no longer predicts a k−1 enstrophy spectrum.
Figure 5 shows both the compensated spectrum kEω and the form predicted by (3.1)
using the measured flux, i.e. CΠω(k)2/3. We have used a value of C = 2 as this makes the
magnitudes similar in the inertial range. It is clear that the results are not consistent,
so we must discard (3.1) as a modified theory and search for some alternative.

It appears that the success of Batchelor’s scaling demonstrated in figure 3 is
somewhat coincidental, as we have shown that the underlying assumptions leading
to (1.1) are not well satisfied. We do, however, observe a k−1 enstrophy spectrum, so
our results should be consistent with the predictions of the model of Davidson (2008)
which were outlined above; we now confirm this.
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