Now let us discuss the mechanisms of the inure energy cascade and the approximations to stress T_{l} lazed on UV-serle locality. First, note in general that

$$
\pi_{l}=-\bar{S}_{l}: T_{l}<0
$$

requires that the large-scoles do negative work on the small scales. That is, the response of the small-scale stress T_{l} is not to resist the lange-sale strain but instead to assist the strain. Note we can write

$$
\pi_{l}=-\bar{S}_{l}: \stackrel{\circ}{T}_{l}
$$

where $\dot{T}_{l}=\sigma_{l}-\frac{1}{d} \operatorname{Tr}\left(\sigma_{l}\right) I$ is the deviatiric a traceless pat of the stress. In this way, Π_{l} is written as the matrix dot-product of two symmetric, traceless unatrices. The eigenvalues of each matrix ore equal not opposite in magnitude, say $\pm \bar{s}_{l}, \pm \delta \tau_{l}$, resp. and the eigenvectors of each untrix define an orthogonal system, Let θ_{l} be the angle between the eigenframes of \bar{S}_{l} and ${\sigma_{l}}_{l}$, as shawn here:

It is not hand to check that

$$
\pi_{l}=-2 \bar{s}_{l} \delta T_{l} \cos \left(2 \theta_{l}\right)
$$

so that T_{l} is must negative $\theta_{l} \approx 0$ and the two frames are nearly aligned.

How does this come about in 2D? Let us try to use the approximation from UV locality (nonlinear model):

$$
\tau_{l i j}^{N L}=\frac{1}{2} C l^{2} \frac{\partial \overline{u_{k i}}}{\partial x_{k}} \frac{\partial \bar{u}_{2 j}}{\partial x_{k}}
$$

which can be furturen calculated in 20 using

$$
\frac{\partial u_{i}}{\partial x_{j}}=S_{i j}-\frac{1}{2} \epsilon_{i j} \omega
$$

to le

$$
T_{l}^{N L}=\frac{1}{2} C l^{2}\left[\bar{S}_{l}^{2}+\bar{\omega}_{l} \widetilde{\tilde{S}_{l}}+\frac{1}{4}\left|\bar{\omega}_{l}\right|^{2} I\right]
$$

where we introduce the skew-strain matrix

$$
\stackrel{\rightharpoonup}{S}_{i j}=S_{i k} \epsilon_{n j}=-\epsilon_{i k} S_{k j}
$$

Ore can check that it has the same eigenvalues as the strain, but its eisentrame is rotated by 45° so that

$$
S: \tilde{s}=0
$$

But it is a consequence of this that

$$
\pi^{N L}=-\bar{S}_{l}: T_{l}^{N L}=0!!!
$$

In fact,

$$
\bar{S}_{l}^{2}=\bar{S}_{l}^{2} I
$$

is diagonal, as is the term $\frac{1}{4}\left(\bar{\omega}_{l}\right)^{2} I$. Becance the strain is traceless, $\operatorname{tr}\left(\bar{S}_{l}\right)=0$, any diagonal fem also gives zero continuation to the energy flux. Hence, the entire contribution of $\pi^{N L}$ is null.

In fact, this is not surprising. Recall forum Turbulence I, Coursenotes, Section IV (A) that

$$
\pi_{l}^{N L}=\frac{1}{2} C l^{2}\left[-\operatorname{tr}\left(\bar{S}_{l}^{3}\right)+\frac{1}{4} \omega_{l}^{\top} \bar{S}_{l} \omega_{l}\right]
$$

with $\omega_{l}=\bar{\omega}_{l} \hat{z}$. These two terms, the strain skewness and the volex-stretahing rate, both vanish in 2D! In fact, recall from the Betchov relation that

$$
\left.\left\langle\pi_{l}^{N L}\right\rangle_{\text {space }}=\frac{1}{2} C l^{2}<\bar{\omega}_{l}^{\top} \bar{S}_{l} \bar{\omega}_{l}\right\rangle
$$

So the entire contribution in net is proportional to vortex-stretching, which is absent in 2D. This is just a physical-space version of the result of Eraichnan (1971) that the super-local contribution to energy flux vanishes identically in 2D as a cusequence of the conservation of enstroply Ca (ack of vortex stretching). It follows that energy flux, unlike enstrophy flux, is an intrinsically multiscole phenomenon.

To deal wituthis situation, are can generalize the precious single-scale arproximotion by instead introducing a muttiseale decomrusitian of the type of Paley-Littlewood for longtn-scales $l_{n}=2^{-n} l$, as

$$
u=\sum_{n=0}^{\infty} u^{[n]}
$$

where

$$
u^{[0]}=\bar{u}_{l_{0}}=u^{(0)}
$$

and

$$
u^{[n]}=\bar{u}_{l n}-\bar{u}_{l n-1}=u^{(n)}-u^{(n-1)}
$$

ane band-rass filtered fields. Likewise, introduce

$$
\delta u(r ; x)=\sum_{n=0}^{\infty} \delta u^{[n]}(r ; x)
$$

and substithe this expression int the formula for Tl $(\omega, 4)$. The previous approximation couresponded to keeping just the firsts term $n=0$. Furthermore, since all of the baud-pars fields are entire andytic, they have convergent Taylor polynomial approxiouations

$$
\delta u^{(n, m)}(r: x)=\sum_{p=1}^{m} \frac{1}{p!}(r \cdot \nabla)^{p} u^{(n)}(x)
$$

Substituting this ore gets a sequence of convergent approximations

$$
\begin{aligned}
& T^{(n, m)}=\int d^{d} \sigma G_{Q}(r) \delta u^{(n, m)}(r) \delta u^{(n, m)}(r) \\
& -\left(\int d^{d} r G_{\ell}(r) \delta u^{(n, m)}(r)\right)\left(\int d^{d} r G_{l}(r) \delta u^{(n, m)}(r)\right)
\end{aligned}
$$

such that

$$
T=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} T^{(n, m)}
$$

Fa details, see
G. L. Eyink," Multi-scile gradient expansion of the turbulent stress tensor," J. Fluid. Mech. 549 159-190 (2006)

Uufortunstely, the above expansion ,while convergent, has a rate of convergence too slow to be practically useful. It also generates quite a lot of terms, such as those off-diagonal in scale, which ace probably considerably smaller than others. Thus,
a further coherent subregions appoximetion (CSA) was developed in Eying (2006) which was argued to certain the most iignifizant terms in the original expansion and to converge much more rapidly. To first-order in gradients it looks lite

$$
T_{l i j}^{\operatorname{csA}(1)}=\sum_{n=0}^{\infty} \frac{1}{d} c^{[n]} l_{n}^{2} \frac{\partial u_{i}^{[n]}}{\partial x_{k}} \frac{\partial u_{j}^{[n]}}{\partial x_{k}}
$$

where the constants $C^{[n]} \rightarrow C$ as $n \rightarrow \infty$. Thus, each term looks just like the old approximation, but now there is a form for each length-scele \ln.

In 2D, this becomes

$$
\left.\begin{array}{rl}
T_{l}^{\operatorname{csA}(1)}= & \sum_{n=0}^{\infty} \frac{1}{2} c^{[n]} l_{n}^{2}\left[\left(s^{[n]}\right)^{2}\right.
\end{array}+\omega^{[n]} \tilde{S}^{[n]}\right]
$$

As before $\left(s^{[n]}\right)^{2}=\left(s^{[n]}\right)^{2} I$ and the two diagonal terms contribute nothing to energy flux, but the middle term an now contribute for $n \geqslant 1$:

$$
\pi_{l}^{\operatorname{csA}(1)}=\sum_{n=1}^{\infty} \frac{1}{2} C^{[n]} l_{n}^{2} \omega^{[n]}\left(S^{(0)}: \tilde{S}^{[n]}\right)
$$

Here the form for given n represents the contribution of "eddies" ar "vertices" of sade ln to the every flux across scale ℓ. The iumutity $\omega^{[n]}$ represents the vorticity of a small eddy of scale l_{n} and $s^{[n]}$ represents the strain untrix of that eddy. Because the skew-strain is rotated by 45°, we can make the following interesting obsewstion:

The eddy of size en makes a contribution to inverse energy cascade if its strain matrix $S^{[n]}$ is rotated relative to $S^{(0)}=\bar{S}_{l}$ by an angle

$$
-45^{\circ} \text { if } \omega^{[n]}>0
$$

and

$$
+45^{\circ} \text { if } w^{[n]}<0
$$

This is orly a kinematic statement. Why should such a situation occur dynamically?

It turns out that this is exactly what harkens in a mechanism of inverse cascade suggested by R. H. Kraichnan in 1976 :

R,H.Kraichuan," Eddy viscosity in two and three dimensions, "J. Atmos, Sci. 33 1521-1536 (1976)

To quote from that parer (p.1530):
"If a small-solle motion has the form of a compact blob of vorticity, or an assembly of uncowelated blobs, a steady straining will eventuilly draw a typical blob out into an elongated shape, with cowesponding thinning and increase of typical wavenumber. The typical result will be a decrease of the teinctic energy of the small-scale motion and a corresponding reinforcement of the straining field..."

- Kraidman (1976)

It is easiest to explain this passage with a simple picture. Suppose that one kegins with a nearly
circular small-scale vortex in a larger-scale strain field

The vortex blob will became "thinned" and elyygted, as follows, poresening its area,

But notice that the perimeter of the vortex patch increases! Thus, by the Kelvin theorem, the velocity $u^{[n]}$ induced by the vortex $\omega^{[n]}$ must weateen, in order to presence the circulation. The reinlt is turn the smill-srale vortex blob is "spun down "1 and loses energy.

Where does the energy of the vortex llat go? It is not hand to see that it is transferred to the large scale. To see this, consider the subscole stress induced by the blob $T^{[n]} \circ u^{[n]} u^{[n]}$. The induced velocity changes during the process from

As we argued earlier, the velocity is wantoned but it is also rectified. Now the velocity is mainly parallel or auti-panallel to the positive straining direction e_{+}, so that

$$
\tau^{[n]} \text { oc } u^{[n]} u^{[n]} \propto e_{+} e_{+}
$$

Thence, the deviatovic part becomes

$$
\begin{aligned}
& \dot{\sigma}^{[n]}=T^{(n)}-\frac{1}{2} \operatorname{tr}\left(T^{[n]}\right) I \\
& \quad \propto e_{+} e_{+}-\frac{1}{2}\left(e_{+} e_{+}+e_{-} e_{-}\right) \\
& \propto \frac{1}{2}\left(e_{+} e_{+}-e_{-} e_{-}\right) \\
& \propto \overline{S_{e}}
\end{aligned}
$$

Hence, this "thinning process" creates a small-scale stress which is aligned with the large-scole strain, doing negathe work and transferring energy from true small-scale blob to the lange-scole field.

Finally, notice that this process also leads to

$$
\omega^{[n]} \tilde{S}^{[n]} \text { oc } \bar{S}_{l}
$$

The reason is turn the vortex blob is transformed into a sumill, thin shear layer. Zooming in, its velocity field appears as follows:

The corresponding strain un-trix is

$$
S^{[n]}=\left(\begin{array}{cc}
0 & -\omega^{[n]}(y) \\
-\omega^{[n]}(y) & 0
\end{array}\right)
$$

with $w^{[n]}(y)=-\frac{\partial u^{[n]}(y)}{\partial y}$. Its eigenvectors for $\omega^{(n)}(y)>0$ are

$$
e_{+}^{[n]}=\binom{1}{-1}, \quad e_{-}^{[n]}=\binom{1}{1}
$$

which are rotated by -45° relative to those of S_{n}. This leads to $w^{[n]} \tilde{S}^{(n)} \propto \tilde{S}^{[n]} \propto \bar{S}_{2}$. One can easily see that for $\omega^{[n]}<0$ the rotation of $S^{[n]}$ is in the opposite sense $\left(+45^{\circ}\right)$ relate to $\overline{S_{l}}$, So that then $\omega^{[n]} \tilde{S}^{[n]} \propto-\tilde{S}^{[n]} \propto \bar{S}_{l}$. It follows that this simple cartoon picture leads to the same prediction

$$
\stackrel{O}{T}^{[n]} \sim C Q_{n}^{2} w^{[n]} \tilde{S}^{[n]}
$$

as does the formal multiscale gradient expansion! It is interesting to compare these awoments with those for 30 forward energy cascade in Turkilence I, Coursenrtes, Section IV (A).

We shall refer to this picture of the 2D inverse energy cascade as Kraichan's vortex -thinning mechanism. This idea has become very popular in the geophysical fluid dynamics community and was promoted by
P.B. Rhines, "Geostrophic turbulence,"

Annu. Rev. Fluid Mech. I1 401-441 (1979)
R, Salmon," Geostrophic turbulence," in Topics in Ocean Physics, Proc. Intanstimal School of Physics "Enrico Fermi" (ed, A, R, Oshome and P,M, Rizzoli), pp. 30-78 (North-Holland, 1982) among others. Basic ideas of the picture go back to the atmospheric scientist Victor Starr
V.P, Starr," Note concerning the nature of the larse-scile eddies in the atmosphere, "Tellus 5 494-498 (1953) and V.P. Starr, Physics of Negrtive Viscosity, Phenomena (McGram Hill, 1968)

Stern proposed that in many lange-scale, nearly two-dimensianal motions in the atmosphere and the ocean, the smaller scale eddies shall provide a negative eddy-viscosity, so that their stress would be of the form

$$
T_{l}=-2 \nu_{l} S_{l}=+2\left|\nu_{l}\right| S_{l}
$$

and transfer energy int the lanse-sale motions. Notice that this indeedisessentially the effect described by the thinning mechanism, although it is not instantaneously the that $T_{l} \propto{\overline{S_{l}}}$ and the phenomenon is essentially a multiscale one.

How do these ideas and predictions compare with laboratory experiments and numerical simulations? We disurss here results of
S. Chan et al." "Physical mechanism of the twodimensional inverse energy cascade," Phys. Rev. Lett. 96084502 (2006)
and
Z. Xian et al., "physical mechanism of the imerase energy cascade of two-dimensional turkilence: a numerical investigation," J. Fluid. Mech. 619 1-44 (2009)

Fig. 2 of the raper of Kino of al. (2009) [next pase] shows the energy spectra $E(k)$ and fluxes $\Pi(k)$ from four different simulations, at resolutions 512^{3} to 2048^{3} and with various (hyka) vi,costies and inverse Larlocion damping at small and large scales. All of the spectra obsewed in these simulations are very close to $k^{-5 / 3}$ and the energy fluxes are constant and wesatice for up to two decades of wavenumbers be low k_{f}. The spatial PDF of the flux is shown in their Fig. 3 [race after next], which is noticeably skewed to the left. It is interesting that this PDF is less skewed than the covesronding PDF of energy flux in 30 and more skewed than the PDF of enstrophy flux in the 20 forward cascade. The second curve in Fig. 3 is from improvement of the CSA [referred to as "MSG" by Xian et al. (2009)], which shall be discussed later.

Fig. 8 of the parear [pase fila next] shows the fractional contribution of the energy flux at scale l which arises from smaller-scile eddies of size $h_{n}=2^{-n} \ell$ (panel a) or $l_{n}=\left(\frac{2}{3}\right)^{n}$ \& (panel 6). As predicted by Kraichnan ((97)), it is eddies about 2-4 times smaller which make the greatest contribution. Kraichnon's TFM closure gives a pretty good fit to the DNS cure fir the cumulative flux fraction.

Figure 2. Energy spectrum functions $E(k)$ versus k at steady state. (a) RUN 2, (b) RUN 3, (c) RUN 4 and (d) RUN 5. Insets are the mean spectral energy fluxes normalized by large-scale (infrared) energy dissipation $\epsilon_{i r}$.

Figure 4. (a) The cumulative mean energy flux $\left\langle\Pi_{\ell}\right\rangle_{c u m}(\rho)$, normalized by the mean flux $\left\langle\Pi_{\ell}\right\rangle$ versus ρ and (b) PDF of energy flux. Solid line: true flux Π_{ℓ}; dashed line: second-order MSG model flux $\bar{\Pi}_{*}^{\text {2nd }}$ (see $\S 5.2$) with each normalized by its r.m.s. value.

Figure 8. (a) Flux fraction $Q^{[n]}$ from length scale ℓ_{n} versus $n, \lambda=2$, from DNS, TFM and second-order MSG; (b) cumulative flux fraction $W^{(n)}$ versus $n, \lambda=1.5$, from DNS and TFM.

To get some insight where in the flow the inverse cascade is occuring, we reproduce on the next page [from Fig. 3 of Xian et al. (2009)] a plot of the instantemears $\omega(x)$ vorticity fields and, from the same suapshot, a plot of the energy flux $\Pi_{l}(x)$ for $\&$ in the inertial range. One can see that negative flux is nat especially associated with the stronger cortices and there is even some general tendency for the green regions in both plots to coincide [low vorticity regions and low, regrtive flux.]. It hems out that mort of the unean flux arises from the "green" region of bus, nestle flux.

To further quantify this obsewation, Fig. 6 of their paper [next pase, lower panels] plotted the PDF of energy flux conditimed on values of

$$
80=\Delta p=\frac{1}{2} \omega^{2}-|s|^{2}
$$

with $\mathrm{P}<0$ giving "stain regions" and $8>0$ "vortices". The second PDF uses a mare sophisticated criterion of Lapeyre, Klein \& Hua (1999) based on

$$
r=\frac{\omega+2 D_{t} \alpha}{s}, \alpha \text { orientation angl of strain }
$$

with $|r|<1$ giving "strain regions" and $|r|>1$ "vortices." For either criterion, the inverse cascade is not associated with the wrtices and even slightly stronger (move skewed) in stain. regions.

Top left: Instantaneous snapshot of vorticity field ω. Top right: Instantaneous snapshot of energy flux Π_{ℓ}. Bottom left: Conditional PDFs of energy flux with Okubo-Weiss criterion. Bottom right: Conditional PDFs of energy flux with LKH criterion.

The raper of Xian et al. (2009) also computed the quantity $\Pi_{l}^{\operatorname{csA}(1)}$ in Rein simulative and found that

$$
\left\langle\pi_{l}^{\operatorname{csA}(1)}\right\rangle \cong(0.6)\left\langle\pi_{l}\right\rangle
$$

Hence, the CSA first-arder in gradients does imply net inverse energy cascade, but gives only about 60\% of the total mean flux. The spatial corelation of $\Pi_{l}(x)$ and $\Pi_{l}^{\operatorname{csA}(1)}(x)$ point-t-point is also quite poor, only about 0.65 . This is illustrated by Rein Fig. (3, panels (a), (c) reproduced on the next pose [top tho panels]. There is only same geneal similarity between the the plots. Clearly, something is lacking in $\Pi_{d}^{C S A(1)}$!

As a matter of fact, there are important contributions that arise to secand-order in gradients. Sone of these are "super-local" and, while giving little net contribution to mean flux, are strongly correlated with $\Pi_{l}(x)$ point-to-point. Other 2nd-order contriuntions that are less local nevertheless contribute substantially to the mean value. These 2nd-oder contributions were calculated in detail in
G. Eying," A turbulent constitutive law for the two-dimensional inverse energy cascade, "J. Finid. Mech. 549 191-214 (2006)

Top left: Instantaneous snapshot of energy flux Π_{ℓ}. Top right: Instantaneous snapshot of energy flux $\Pi_{\ell}^{C S R,(1)}$. Bottom left: Same as top left. Bottom right: Instantaneous snapshot of energy flux $\Pi_{\ell}^{C S R,(2)}$.

The full 2ud-order result for the deviatoic stress contains terms that are diagonal in scale

$$
\begin{aligned}
& \left.\quad \stackrel{O}{C S A, l}[n, 2]_{T_{C N}}^{[n}=\frac{1}{16} C_{4}^{[n]} l_{n}^{4}\left(\nabla \omega^{[n]}, \nabla\right) \tilde{S}^{[n]}\right\} \frac{\text { differential }}{\text { strain-rotation }} \\
& \frac{\text { vorticity }}{\text { stretchinient }}
\end{aligned}\left\{+\frac{1}{64} C_{4}^{[n]} l_{n}^{4}\left[\nabla^{1} \omega^{[n]} \nabla^{\perp} \omega^{[n]} \nabla \omega^{[n]} \nabla \omega^{[n]}\right] .\right.
$$

and another set off-diagonal in scale

$$
{\stackrel{\circ}{\operatorname{T}}{ }_{\operatorname{CSA}, \ell}^{\text {off, }(N, 2)}}^{(N)}=\frac{1}{2}\left[\nabla \psi_{*}^{(N, 2)} \nabla \psi_{*}^{(N, 2)}-\nabla^{1} \psi_{*}^{(N, 2)} \nabla^{1} \psi_{*}^{(N, 2)}\right]
$$

with

$$
\nabla \psi_{*}^{(N, 2)}=\frac{1}{4} \sum_{n=1}^{N} \frac{C^{[n]}}{\sqrt{N_{n}}} \ln ^{2} \nabla \omega^{[n]}, N_{n}=\lambda^{2 n}
$$

Of these, the most physically transparent is the term we have described as due to vorticity -gradient stretching. It is easily explained by Kraichnan's vortex -thinning picture. Note that thinning aligns $\nabla \omega^{[n]}$ with e_{-}, the strain compressing direction, so that

$$
\begin{gathered}
\nabla^{\perp} \omega^{[n]} \nabla^{\perp} \omega^{[n]}-\nabla \omega^{[n]} \nabla \omega^{[n]} \\
o c e_{+} e_{+}-e_{-}-\infty \overline{S_{l}} .
\end{gathered}
$$

It can be interpreted as a Ind-order effect associated to vortex-thinning. Notice that its contribution to flux

$$
\begin{aligned}
\Pi_{c S A, l}^{[n], v g s} & =-\bar{S}_{l}: \dot{\sim}_{C S A}^{[n], l}[n g \\
& =\frac{1}{32} C_{4}^{[n]} l_{n}^{4}\left(\nabla_{\omega}^{[n]}\right)^{\top} \bar{S}_{l}\left(\nabla_{\omega^{(n)}}^{[n]}\right)
\end{aligned}
$$

which is proportional to the rate of vorticity-gradient stretching of blobs at sade l_{n} by the strain ${\overline{S_{l}}}_{l}$.
It will tend to be negative because of the alignment of $\nabla \omega^{[n]}$ and E_{n}.. Notice also that this term does not vanish for $n=0$! As we can see from Fig. 8 of Xian et al. (2009), that term also does not vanish for the the flux:
Kraichnan's argument does not rule out such a term for coarse-graining flux, but suggests that it should be small.

What about the other diagonal contribution? We say this term is associated to differential strain rotation because its contribution to energy flux for $n=0$ is

$$
\pi_{\operatorname{csA}, l}^{[0], d s r}=\frac{1}{8} C_{4}^{[n]} l_{n}^{4}\left(\nabla \omega_{l} \cdot \nabla \alpha_{l}\right)\left|\overline{S_{l}}\right|^{2}
$$

and α_{l} is the orientation angle of the eigenframe of \bar{S}_{l} to a fixed (laboratory) frame. Thus,

$$
\pi_{c B A, l}^{[0], d s r}<0
$$

\bar{S}_{l} rotates clockwise moving in the direction of increasing \bar{w}_{l}.

Interestingly, there is a $2 D$ version of the Betchov relation for $2 n d$-order gradients which implies that

$$
\left.2<\left|\bar{S}_{l}\right|^{2} \nabla \bar{\omega}_{l} \cdot \nabla_{\alpha_{l}}\right\rangle=\left\langle\left(\nabla \bar{\omega}_{l}\right)^{T} \bar{S}_{l}\left(\nabla \bar{w}_{l}\right\rangle\right.
$$

Hence, the differential strain rotation term gives a net negative contribution if and only if the vorticity-gradient stretching term does 50 .
See Eying (2006). For general n the contriutition

$$
\pi_{c S A, l}^{[n], d s r}=\frac{1}{16} C_{4}^{[n]} l_{n}^{4} \bar{S}_{l}:\left(\nabla_{\omega}^{[n]} \cdot \nabla\right) \tilde{S}^{[n]}
$$

is associated not only to differential strain rotations but also to" differential strain magnification "(i.e. The change in the magnitude of the strain in space). As we shall now discuss, this term is one of the most significant 2ud-orter terms in the simulation of $X_{i \text { ia et }}$ al. (2009).

Let us now compare in detail with those simulations, The contributions of the various CSA terms to the mean every flux are given in the following table:

CSA term
skew-strain (1st-order)
differential strain rotation \& magnification (2nd-order)
varticity-gradient stretching
(2nd-order)
off-diagonal stretching
(2nd-ordar)
TOTAL
fractional contribution to mean energy flux

$$
60 \%
$$

$$
40^{\circ} \%
$$

2170

$$
-16 \%
$$

105%

As can be seen the CSA flux to $2 n d$-adder slightly overestimates the true mean flux. Also, the
(diagonal) vorticity-gradient stretching and the off-diagonal stretching contributions nearly cancel each other. Fhally, $2 / 3 r^{\text {rds }}$ of the mean comes from the 1st-arder term and $1 / 3$ rd of the mean comes from the 2 ud-order toms.

However, the addition of the 2nd-order tams greatly improves the spatial corelation of the model with the true flux. Whereas $\rho\left(\Pi_{l}^{\operatorname{csA}(1)}, \pi_{l}\right) \cong 0.65$,
now

$$
\rho\left(\pi_{l}^{\operatorname{csA},(2)}, \pi_{l}\right) \cong 0.89
$$

The improved agreement can be seen visually in Fig.13, panels (a) \& (f) of Xiao et al. (2009), where $\Pi_{l} \operatorname{CSA},(2)$ is now a recognizable facsimile of Π_{l}.

Finally, fig. 8 of Xian et al. (2000) shows the scale distribution of the energy flux, ie the fraction $Q^{[n]}$ of the flux that arises from interaction of the scales $>l$ with those at scale $l_{n}=\lambda^{n} l$. The predictions are in reasonable agreement with those of the the flux and also with the results of Kraichnan's TFM closure. It is interesting that the "super-local" $n=0$ terms (which are all 2 ud-order), although they contribute only about 20% of the mean flux are highly correlated with the exact flux suttially $[\rho \cong 817 \%]$. This is shown visually in Figs. 18 \& 19 of Xian et. all. (2009), not reproduced here. Thus, despite the weak locality of the cascade, a reliable indicator of inverse cascade is large-scale vorticity-gradient stretching and/or differential strain rotation!

To summarize: We have derived a set of analytical formulas for subscale stress and energy flux in the $2 D$ inverse cascade regime by a muttiscale-gradient expansion based on UV-locality. The terms in this expansion can be interpreted physically and be argued to produce inverse cascade based on a simple Vortex-thinning picture of Kraichnan. Furthermore, the approximate expansion to $2 n d$-order in gradients is in quite reasonable agreement with the the flux when evaluated by a DNS of forced,stendy-state 2D turbulence.

We cannot, of course, claim that the vortex -thinning mechanism is "proved." An interesting cinticism of the thinning picture is presented in
G. Holloway, "Eddy stress and shear in 2D flow, "J. Turbulence $1114(2010)$
Among other points, Holloway correctly notes that energy is not additive over vortices, kecanse of the long-range Coulomb (inverse Laplacian) potertial $G(x, y)$. Hence, individual varices could all be thinned and yet their total energy increase, because of long-ranze pairnenergies. This means that inverse energy cascade is intrinsically a multi-vortex effect and one cannot claim to understand the phenomenon from a simple single-vortex cartoon. However, it is surprising how well the cartoon explains all of the terms in the systematic expansion. The good agreement with numerics argues that it contains an essential element of the truth!

Comparison of forced and decaying 2D turbulence. It is now a good time to compare some essential aspects of 2D steady-state, forced turkilence and 2D freely decaying turbulence.

We have seen that one of the prominent phenomena in decaying $2 D$ turbulence is the appearance and merger of coherent vortices. It is very common in the literature to see this equated with inverse energy cascade. In fact, it is quite often that one unqualified
encounters \wedge statements such as: "Vortex merger is the mechanism of 2D inverse energy cascade. "The idea was already suggested by R,H. Kraichnan in his seminal 1967 paper. He wrote of his dual cascade picture of energy and enstrophy as follows:

11 This is consistent with a picture of the transfer process as a clumping-together and coalescence of similarly signed vortices, with the high-wavenumber excitation confined principally to thin and infrequent shear layers attached to the ever-larger eddies thus formed.

If this suggestion is correct, then why did we make no mention of merger in our previous discursion on inverse energy cascade?

In fact, Xian et al. (2009) caved out a detailed imestyation of the role of mergers in their simulations. See their Fig. 11 [next page]. Mergers were defined in a conventional topological manner as a saddle-node bifurcation of one of a pair of vortex maxima/minima with an intervening saddle, leading to a single maximum/minimum, The first observation was that mergers were exceedingly rare events in the simulations of Xian et. al. (2009). Talang as the "neighborhood" of a merger the set of points within a distance of 0.8 l of the saddle-node bifureation Which was larger than the typical radius of the merger region obsewed by eye - there was a pobabilility of less than 0.08% to lie in such a neighborhood! Furthermore, vorkx "splittings" - which appear as reverse saddle-node bifurcations with a new node and saddle appearing "out of the blue" were about as common as mergers.

Finally, Xiao al. (2009) found essentially no spatial cowelation of negative energy flux with the (rare) merger events. This is illustrated in the bottom panel of Fig.11, where the neighborhoods of mergers are indicated by the "rainbow rings" and the regions of ne native flux are the black contours. There was found to be a slightly elevated Level of negative flux in the neighborhood of mergers. This was of the order of 20% and might simply be due to the higher strains associated to mergers. However, because of their great rarity, mergers made less than 0.19. contribution to the total mean energy flux.

Figure 10. Snapshot of a merger event captured in our DNS, at times well before, immediately before and immediately after a saddle-node bifurcation; black circles represent nodes and white circles saddle points.

Figure 11. Vortex merger events, with colours indicating radial distance in units of filter length ℓ, overlaid by contour lines of energy flux, in black, showing regions of inverse cascade.

On the other hand, there really must be transfor of energy to large- scales associated with mergers in decaying $2 D$ turklence! Recall that in the simulations of A. Bracco et. al. (2000) there was a clear increase of $E(k)$ at low-warenumbers. This implies $\Pi(k)<0$ at some intermediate wavenumbers, and it is reasonable to associate this with the olsowed, frequent mergersin those decay simulations. As a matter of frat, a number of studies of individual merger events have show that merger is associated to transfer of energy to larger scales/lover wavenumbers:
A.H. Nielsen et al., "Vortex merger and spectral cascade in two-dimensional flows," Phys. Fluids 8 2263-2265 (1996)

Ch. Josserand \& M, Rossi, "The merger of two corrotating vortices: a numerical study," European J. Mech, B/Flnids 26 779-794 (2007)

As fan as we know, there has never keen carried out a study of the local energy flux $\Pi_{l}(x)$ in decaying 2D turbulence. However, it seems plausible that the negative values of $\pi_{l}(x)$ should here be associated mainly with vortex -mergers.

Recently, a detailed study of spectral energy flux $\Pi(k)$
for decaying 2D turbulence has been carried out in
P.D. Mininni and A. Pouquet, "Inverse cascade behavior in freely decaying two-dimensional fluid turbulence," Phys.
Rev. $E 81033002$ (2013)
50 simulations of decaying $2 D$ therbulence
These authors carried out A simulations of decaying $2 D$ therbulence at resolutions 2048^{2}, with an initial energy spectrum sharply beaked around $k_{0}=20$. Their results are shown in Figs. 1 and 5 reproduced on the next two pages.

Shown in Fig.I is the time development of a single such simulation of $2 D$ decay, for energy spectra $E(k, t)$, energy flux $\Pi(k)$, and enstrophy flux $Z(k)$ Cwhich is denoted $\left.\sum(k)\right]$. There is clearly a range with $\Pi(k)<0$ for $k<k_{0}$ and $Z(k)>0$ for $k>k_{0}$. Because of the shortness of the ranges, there is also considerable "leakage" of flux in the "wrong" directions. To get better statistics, averages over 50 runs and times $t=0.5-6$ are considered in Fig. 5. Now the ranges with $\Pi(k)<0$ and $Z(k)>0$ are quite clear, although the fluxes are not nearly constant over these ranges. Nevertheless, Fig. $5(a)$ shows a narrow range of $k^{-5 / 3}$ energy spectum where $\Pi(k)<0$ and also a spectrum of about k^{-4} (distinctly steeper than k^{-3}) where $Z(k)>0$.

FIG. 1. (Color online) Time evolution of the (a) energy spectrum, (b) energy flux, and (c) enstrophy flux in a single 2048^{3} simulation from $t=0.5$ (black line) to $t=6$ (light gray or light blue line). Slopes in the energy spectrum are indicated as references. The curves corresponding to $t=0.5$ and 6 are indicated in all panels by arrows and the vertical dashed lines indicate the initial energy containing wave number k_{0}. In (b) and (c), note the displacement to smaller wave numbers of the minimum of energy flux and to larger wave numbers of the maximum of enstrophy flux. The inset in (a) shows the time evolution of the energy (solid line) and of the enstrophy (dashed line) in this run, with the color changing with time following the colors used for the different curves in the spectrum and fluxes.

FIG. 5. (a) Time- and ensemble-averaged energy spectrum, (b) energy flux, and (c) enstrophy flux over the fifty 2048^{2} simulations and from $t=0.5$ to 6 . Slopes in (a) are indicated as references. The vertical dashed lines correspond to the initial energy-containing wave number k_{0}.

These various results seem to suggest that inverse cascades in 2D forced and $2 D$ decaying turbulence are rather different (hut related) phenomena. All these matters are still controversial and subject to much debate. However, we would like to suggest the following general picture:

ANTITHESIS OF OD INVERSE CASCADES

Locality

PHYSICAL
MECHANISM

SPECTRAL
ENERGY
FLUX

POWER LAW
SPECTRAL
RANGE
("InERTIAL Range"

FORCED
DECAYING

Spectral cascade (local in scale)

Vortex thinning
Vortex merger

Non-constant in scale

Finite ranges only possible (?)

A few comments are required to explain this proposal. Regarding locality, we have already seen that forced, steady-state inverse cascades with any power-law of the type currently proposed must be (asymptotically) local-in-scale. On the other hand, vortex-merger is a process (mainly pairwise) which is local in physical space. In fact, it is well-bnoun that merger requires approach of tow vertices to a critical ratio of the vortex separation distance to their radii. Egg. see Josserand \& Rossi (2007). After the vortices approach to within this critical ratio, merger becomes inevitable. We have already discussed the physical mechanisms. We have also seen that it is easy to prove existence of long ranges of constant (negative) energy flux for the forced case, under reasonable assumptions. There is no evidence that we know of the possibility of constant energy -flux ranges in the case of 2D decaying turbulence. Perhaps the
most questionable proposal in the above dichotomy is that the scale range with power-law energy spectrum $\left(k^{-5 / 3}-k^{-2}\right)$ and negative flux TC) <0 must necessarily be finite for $2 D$ decaying turkience.
At issue here is whether an initial datum with large amounts of energy spectral localized around initial wavenumber k_{0} can mimic a spectrally localized body-force at that wavenumber. There is certainly no difficulty in providing os large a reservoir of initial energy as desired:

The difficulty is that that keak will successively spread in wavenumker and no longer remain well-localized at ko and thus give spectrally wonder \& broader forcing, unlike a fixed force.

Finally, let us comment briefly on the finding of Mirinni \& Coquet (2013) that the forward anstroply cascade regime has a spectrum steeper than Batchela's prediction of k^{-3} and more lite Saffron's ke^{-4} prediction. However, there are other simulations which show that a simulation which is at high enough Reyndds number and which is sufficiently resolved at high wavenumbers k shows after the range with rapidly decaying skoctrum $k^{-4}-k^{-5}$ (and containing most of the energy) there is a high-waverumker "tail" with a k^{-3} spectrum, as originally proposed $\%$ Batcholor. On the following page we show Figs, I \& 4 from the previously mentioned packer of Fox \& Davidson (2010). Their data show reasonable evidence of a range $\left[k_{1}(t), k_{2}(t)\right]$ of k^{-1} enstroply spectrum $\Omega(k, t)\left[\right.$ denoted $\left.E_{\omega}(h, t)\right]$ which is growing in time. They find, however, that these are not constant enstrophy flux ranges and do not sale with the viscous dissipation $\left.\mathcal{F}_{\text {dis }}^{t-} v<|\nabla \omega(t)|^{2}\right\rangle$. They instead propose that $\Omega(k, t) \sim\left[Z\left(k_{1}(t), t\right)\right]^{2 / 3} \frac{1}{k}$. We shall now present rigorous results which justify that $\eta_{\text {dis }}(t)$ is apoor choice.

Figure 1. The evolution of (a) energy and enstrophy normalized by their initial values, and (b, c) the enstrophy spectra in runs N and H .

(b)

Figure 4. The enstrophy flux, Π_{ω} in (a) run N and (b) run H. k_{1} and k_{2} mark the limits of the k^{-1} region in the corresponding enstrophy spectrum E_{ω}.

Enstrophy cascade and the DiPerna-Lions W'I -theory

We shall now explain the implications for 2D enstaphy cascade of the celebrated "W", -theory" of DiPerna \& Lias:

R,J.DiPerna \& P, L. Lions, "Ordinary differential equations, transport theory and Sobolev spaces," Invent, Math, 98 511-547 (1989)

This payer developed a theory of "renormalized solutions" of linear transport equations

$$
\partial_{t} \theta+u \cdot \nabla \theta=9
$$

and the associated ODE's for the characteristics (flow mops)

$$
\frac{d x}{d t}=u(x, t)
$$

in the care of rather rough velocity fields $u \in W^{\prime}, p, p \geqslant 1$. (This will be explained in a moment). Their theory has the important implication for 20 turbulence that any weak/distributional/singular solution of $2 D$ incompressible Euler equation

$$
\partial_{t} w+\nabla \cdot(u \omega)=0, \quad \nabla \cdot u=0
$$

for which the time-average enstrophy is finite

$$
\frac{1}{T} \int_{0}^{T} d t \cdot \frac{1}{2} \int d^{2} x|\omega(x, t)|^{2}<+\infty
$$

must cousewe enstrophy, a

$$
\Omega(t)=\frac{1}{2} \int d^{2} x|w(x, t)|^{2}=\text { (canst.) }
$$

If tums out that the basic ideas of this theory are not hard to explain in physical terms. We shall do so now.

First, we should observe that the Euler solutions under consideration have actually keen proved to exist as zero-viscosity limits of 2D NS solutions. It has keen shown in

R, J, DiPerua \& A, J. Majda, "Concentrations in resubuizations for $2 D$ incompressible flow," Commune. Pure Appl. Math.

$$
X_{L} 301-345(1987)
$$

that the solutions W_{r} of the incompressible 2D NS equation

$$
\partial_{t} u+(u \cdot \nabla) u=-\nabla p+v \Delta u
$$

in the keviodic domain Π^{2} (and also, with move assumptions, is \mathbb{R}^{2})
for which the initial data have $w_{0} \in L^{p}$ with $p>1$ converge (strongly in $L^{p^{\prime}}$ for some $p^{\prime}>2$) to a distrimationa) solution" of 2D incompressible Euler

$$
\partial_{t} u+\nabla \cdot(u u)=-\nabla_{p}
$$

with $w \in L^{\infty}\left([0, T] ; L^{p}\right)$, ie.

$$
\sup _{t \in[0, T]} \int d^{2} x|w(x, t)|^{p}<+\infty
$$

This is equivalent to saying that $u \in L^{\infty}\left([0, T] ; W^{1, p}\right)$ where $W^{1, P}$ is the pth-ader Sobolev space of functions $u \in L^{p}$ whose distribution derivatives are also in L^{p} :

$$
\|u\|_{W^{\prime, p}}=\|u\|_{L^{p}}+\left\|\nabla_{u}\right\|_{L^{p}} .
$$

As just a remark, we note that $W^{\text {sip }}$ can be defined for any real $s \in \mathbb{R}$ and is a kind of "Besou space" closely related to those which we have discussed. In fact,

$$
B_{p}^{5-\epsilon, \infty} \subset W^{5, p}=B_{p}^{s, p} \subset B_{p}^{5, \infty} \text {, any } \epsilon>0
$$

Thus, $W^{3, p}$ is "nearly" the same as $B^{s, \infty}$. In any case, returning to the Encer solutions obtained by DiPerna - Majdn (1982), it was shown that they conserve kinetic energy and furthermore are
distributional solutions of the vorticity equation

$$
\partial_{t} w+\nabla \cdot(u w)=0
$$

when $p>\frac{4}{3}$. Unfortunately, it is not known whether there is a unique solution for given $\omega_{0} \in L^{p}$ and, ingrincirle, ore might obtain different limits along different subsequences of viscosity $\nu_{k} \rightarrow 0$ as $k \rightarrow \infty$.

We now consider the enstroply canseration properties of the solutions (or any solutions satisfying the basic bound $\omega \in L^{\infty}\left([0, T] ; L^{P}\right)$). One of the Key ideas of DiPerna-Lions was to consider the higher-order eustrophy invariants of Euler. Recall that for any local function $h, I_{h}(t)=\int d^{2} x h(\omega(x, t))$ is a formal invariant of $2 D$ Euler. In fact, if h is a convex function with $h^{\prime \prime}>0$, then for a $2 D$ NS solution w_{V}

$$
\begin{aligned}
\partial_{t} h\left(w_{\nu}\right)+\nabla \cdot\left[w_{\nu} h\left(w_{\nu}\right)-\nu \nabla h\left(w_{v}\right)\right] & \\
& =-\nu h^{\prime \prime}\left(w_{\nu}\right)\left|\nabla w_{v}\right|^{2} \leqslant 0
\end{aligned}
$$

and these higher-ander invariants are expected to be dissipated at high wavenumkers together with the enstroply, which corresponds to $h(w)=\frac{1}{2}|w|^{2}$,

These higher-order invariants have been a focus of attention since the work of Kraichnan in 1967, who remarked:
"One important difference between two and three dimensions is the existence of an infinite number of local inviscid constants of motion in the former: the vorticity of each fluid element. This implies that inertial forces alone cannot produce universal statistical distributions in the similarity ranges, independent of the statistical distributions of the driving forces,

- R.H. Kraichuan (1967)

We shall return to the above argument a little later, when we talk about intermittency in 20 turmience. Returning to the DiPerna- Majda solutions with $\omega \in L^{P}$ we note that not all of these invanimits need be well-defined, but only those for which h las $k^{\text {th }}$-order growth. Move precisely, we take $h \in \mathbb{H}_{p}$ with

$$
\begin{gathered}
H_{p}=\left\{h \in C^{\prime}(\mathbb{R}):\left|h^{\prime}(w)\right| \leqslant C|w|^{p-1} \text { for }|w| \geqslant R,\right. \\
\text { with some } C, R>0\}
\end{gathered}
$$

In that case the invariants $I_{n}(t)=\int d^{2} x h(w(x, t))$ are finite numbers.

What can be said about the consewation of these invariants for the DiPema-Majda solutions? It appears a prior that they may suffer anomalies. For example, it is not hand to study the hisherader fluxes by arguments analogous to those of Duchon - Robert (2000), which we discussed in Turbulence I, Coursenotes, Section III (C). If we use the caarse-graining approach, then it is elementary to denve the higher-ader balance relations for the DiPerna - Majda solutions:

$$
\begin{array}{r}
\partial_{t} h\left(\bar{w}_{l}\right)+\nabla \cdot\left[\bar{u}_{l} h\left(\bar{w}_{l}\right)+\sigma_{l} h^{\prime}\left(\bar{w}_{l}\right)\right] \\
=+h^{\prime \prime}\left(\bar{w}_{l}\right) \sigma_{l} \cdot \nabla \bar{w}_{l}
\end{array}
$$

for $h \in I_{p}$ and we see that

$$
z_{l}^{(h)}=-h^{\prime \prime}\left(\bar{w}_{l}\right) \sigma_{l} \cdot \nabla \bar{w}_{l}
$$

is the subscale flux of the invariant associated to h. It is interesting that

$$
z_{e}^{(n)}=h^{\prime \prime}\left(\bar{w}_{e}\right) z_{e}
$$

where Z_{l} is the enstrophy flux. Now taking the limit
$l \rightarrow 0$ of both sides it can be shown using the arguments of Ouchon-Robert-tyke that

$$
\partial_{t} h(w)+\nabla \cdot(u h(w))=-z^{(h)}(w)
$$

with the anomaly term

$$
z^{(h)}(\omega)=\infty-\lim _{l \rightarrow 0} z_{l}^{(h)}(\omega)
$$

Thus, the anomaly form represents flux to infinitesimally small length-scales.

The above results hold for any $h \in$ It p when $p>2$ and for any $h \in \mathcal{H}_{p^{\prime}}, p^{\prime}<2$ when $p=2$. The difference for $p=2$ is an annoyance that we need to discuss. Recall that the Duckon-Rokert argument is lased on showing that

$$
\begin{aligned}
& \infty-\lim _{l \rightarrow 0} h\left(\bar{w}_{l}\right)=h(w) \\
& \infty-\lim _{l \rightarrow 0} \bar{\omega}_{l} h\left(\bar{w}_{l}\right)=\omega h(w) \\
& \infty-\lim _{l \rightarrow 0} \sigma_{l} h^{\prime}\left(\bar{w}_{l}\right)=0
\end{aligned}
$$

so that $\infty-\lim \left\{\partial_{t} h\left(\bar{w}_{l}\right)+\nabla \cdot\left[\bar{u}_{l} h\left(\bar{w}_{l}\right)+\sigma_{l} h^{\prime}\left(\bar{w}_{l}\right)\right]\right\}$ $=\partial_{t} h(\omega)+\nabla \cdot[u h(\omega)]$.

This turns out to be easy for $p>2$, because it is known that

$$
W^{1, p} \subset L^{\infty} \quad p>2, d=2
$$

and thus 4 is bounded for $p>2$, so that

$$
\left\|u\left(h\left(\bar{w}_{l}\right)-h(w)\right)\right\|_{L^{\prime}} \leqslant\|u\|_{L^{\infty}}\|w\|_{L^{p}}^{p-1}\left\|\bar{w}_{l}-w\right\|_{L^{p}}
$$

using $h \in J t_{p}$ and this vanishes as $l \rightarrow 0$. However, 4 can be unbounded for $p=2$! This can be seen for vary simple examples, such as

$$
f(r)=|\ln r|^{a} \quad, \quad 0<a<\frac{1}{2}
$$

which ir unbounded for $r \rightarrow 0$, but such that

$$
\begin{aligned}
\int_{0}^{1} 2 \pi r d r\left|f^{\prime}(r)\right|^{2} & =2 \pi a^{2} \int_{0}^{1} \frac{d r}{r(\ln r)^{2(a-1)}} \\
& =2 \pi a^{2} \int_{0}^{\infty} \frac{d u}{u^{2(1-a)}} \\
& <\infty=\ln r)
\end{aligned}
$$

It tums out that for $p=2$, the condition $u h(w) \in L^{\prime}$ is orly guaranteed when $h \in \mathcal{f}_{p^{\prime}}$ with $p^{\prime}<2$. This explains the (annoying) restriction in the statement of the Duchon-Robert-type result above.

This annoying restriction means that one only gets the enstroply balance

$$
\partial_{t}\left(\frac{1}{2}|w|^{2}\right)+\nabla \cdot\left(\frac{1}{2}|w|^{2} u\right)=-Z(w)
$$

with

$$
Z(w)=\underset{l \rightarrow 0}{ } Z_{e}(w)
$$

in the case $p>2$. However, in that case one can prove by the same Duchon-Rdert-tyke arguments that a form of the " $\frac{4}{5}$ th-law in 20 " holds, ie.

$$
z(\omega)=\lim _{l \rightarrow 0} \frac{1}{4} \int_{l} d^{2} r(\nabla G)(r) \cdot \delta u(r)|\delta \omega(r)|^{2}
$$

for any smooth, compactly supported fo Her kernel 6 . The detailed derivation of all these Ouchon-Robert-tyece results can be found in
G.L. Eyink, "Dissipation in turbulent solutions of $2 D$ Euler equations," Nonlinearity 14 787-802 (2001)
which also derives corresponding results for any $p>\frac{4}{3}$ (but whose statement is just slightly move complicated).

It tums out that all of the above anomalies actually vanish, as can be shown from the DiPerna-Lions theory. Their idea was to define the coarge-grained enstrophy flux in a slightly different way, via

$$
\partial_{t} h\left(\bar{w}_{l}\right)+\nabla \cdot\left[\bar{u}_{l} h\left(\bar{w}_{l}\right)\right]=-h^{\prime}\left(\bar{w}_{l}\right) \nabla \cdot \sigma_{l}
$$

so that

$$
\tilde{z}_{l}^{(h)}=+h^{\prime}\left(\bar{\omega}_{l}\right) \nabla \cdot \sigma_{l}
$$

They also confined themselves, initially, to

$$
h \in C^{\prime}(\mathbb{R}), \quad h^{\prime} \in L^{\infty}(\mathbb{R})
$$

For this class of h 's they show directly that
$(-A)$

$$
\lim _{l \rightarrow 0}\left\|\tilde{z}_{e}^{(n)}\right\|_{p / 2}=0, \quad p \geqslant 2
$$

i.e. the flux of all these imariants vanishes in L' (and thus the average over space vanishes). The estimate () is what DiPerna \& Lions describe as the "fundamental technical tool" of their entire theory of renormalized solutions!

Lot's show how to get the estimate (A). Since h^{\prime} is (for now) assumed bounded

$$
\left\|\tilde{Z}_{e}^{(n)}\right\|_{p / 2} \leqslant\left\|n^{\prime}\right\|_{\infty}\left\|\nabla \cdot \sigma_{l}\right\|_{p / 2}
$$

and we must show that

$$
\lim _{l \rightarrow 0}\left\|\nabla \cdot \sigma_{l}\right\|_{p / 2}=0
$$

Let us first symmetrize the definition of σ_{l} as

$$
\sigma_{l}(u, v)=\frac{1}{2}\left[\sigma_{l}\left(u, \omega_{v}\right)+\sigma_{l}\left(v, \omega_{u}\right)\right]
$$

for $\omega_{u}=\nabla \times u, \omega_{v}=\nabla \times v$, so that $\sigma_{l}=\sigma_{l}(u, u)$. As in our earlier proof of UV -locality, we make use of the vector calculus identity

$$
\begin{aligned}
\frac{1}{2}[u \times & (\nabla \times v)+v \times(\nabla \times u)] \\
& =-\frac{1}{2} \nabla \cdot(u v+v u)+\frac{1}{2} \nabla(u \cdot v)
\end{aligned}
$$

to show that

$$
\begin{aligned}
\sigma_{l}^{1}(u, v)=\quad \frac{1}{2} \nabla \cdot \sigma_{l} & (u, v) \\
& +\frac{1}{2} \nabla \tau_{l}(v, u) \\
& +\frac{1}{2} \nabla T_{l}\left(u_{i}, v_{i}\right)
\end{aligned}
$$

and thus

$$
\nabla \cdot \sigma_{l}(u, v)=\frac{1}{2} \nabla \nabla^{\perp}:\left(T_{l}(u, v)+T_{l}(v, u)\right)
$$

Again as in our proof of UV-locality we use the "shift trick" for generalized central moments to write $\nabla \cdot \sigma_{e}(u, v)$ entively in tams of increments

$$
\begin{aligned}
& \nabla \nabla^{\perp}: \tau_{l}(u, v) \\
& =\frac{1}{l^{2}}\left[\int \alpha^{2} r\left(\nabla \nabla^{\perp} G\right) l^{(r): \delta u(r) \delta v(r)}\right. \\
& \begin{array}{l}
>0 \\
-\left(\int d^{2} r(\nabla \nabla+\sigma)_{l}(r) \delta u_{i}(r)\right)
\end{array} \\
& \left(\int d^{2} r G_{e}(r) \delta v_{j}(r)\right) \\
& -\left(\int d^{2} r G_{l}(r) \delta u_{i}(r)\right) \\
& \left(\int d^{2} r\left(\nabla_{i} \nabla_{j}^{\perp} G\right)_{e}(r) \delta v_{j}(r)\right) \\
& -\left(\int d^{2} r\left(\nabla_{i} \sigma_{j}\right)(r) \delta u_{i}(r)\right) \\
& \left(\int d^{2} r\left(\nabla_{j}^{\perp} G_{l}\right)(r) \delta v_{j}(r)\right) \\
& -\left(\int d^{2} r\left(\nabla_{j}^{\perp} G\right)_{l}(r) \delta u_{i}(r)\right) \\
& \left.\left(\int d^{2} r\left(\nabla_{i} G\right)_{l}(r) \delta v_{j}(r)\right)\right]
\end{aligned}
$$

and likewise for $u \longleftrightarrow V$. From this formula it follows
by Holder inequality that

$$
\begin{aligned}
\left\|\nabla \cdot \sigma_{l}(u, v)\right\|_{p / 2} \leqslant \frac{(\text { cart.) }}{l^{2}} \int & d^{2} r\left|(\nabla \nabla G)_{l}(r)\right| \\
& \times\|\delta u(r)\|_{p}\|\delta v(r)\|_{p} \\
& + \text { similar terms }
\end{aligned}
$$

But recall

$$
\left\|\delta_{u}(r)\right\|_{p} \leqslant|r| \cdot\left\|\nabla_{u}\right\|_{p} \leqslant|r| \cdot\|u\|_{w^{1} p}
$$

It therefore holds that

$$
\left\|\nabla \cdot \sigma_{l}(u, v)\right\|_{p / 2}<C\|u\|_{w^{1, p}}\|v\|_{w^{1, p}}
$$

with a constant C that depends only on the fitter kernel G.

Yon will notice that this bound does not vanish as $\ell \rightarrow 0$! So how Could DiPerna- Liars show that its limit is zero? They used a density argument. Notice because of the identity (A possible tr check that, for smooth 4 , the limit

$$
\lim _{l \rightarrow 0} \nabla \cdot \sigma_{l}(u, u)=0 \quad \begin{gathered}
\text { pointuise } \\
(u \text { smooth })
\end{gathered}
$$

This must be the be cause there can be no non-wanishing
$f(u x$ as $\ell \rightarrow 0$ if u is smooth. Thus, Diperma-Lions approximate u by a smooth function u_{ε} so that

$$
\left\|u_{\varepsilon}\right\|_{w^{\prime, p}} \leqslant\|u\|_{w^{\prime, p}},\left\|u-u_{\varepsilon}\right\|_{w^{\prime, p}} \longrightarrow \varepsilon
$$

For example, ore may take $u_{\varepsilon}=\bar{u}_{\varepsilon}=G_{\varepsilon} \times u$. Now, write

$$
\begin{aligned}
& \left(\nabla \cdot \sigma_{l}\right)(u, u)=\left(\nabla \cdot \sigma_{l}\right)\left(u_{\varepsilon}+\left(u-u_{\varepsilon}\right), u_{\varepsilon}+\left(u-u_{\varepsilon}\right)\right) \\
& =\left(\nabla \cdot \sigma_{l}\right)\left(u_{\varepsilon}, u_{\varepsilon}\right) \\
& \quad+2\left(\nabla \cdot \sigma_{l}\right)\left(u_{\varepsilon}, u-u_{\varepsilon}\right) \\
& \quad+\left(\nabla \cdot \sigma_{l}\right)\left(u-u_{\varepsilon}, u-u_{\varepsilon}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
& \left\|\nabla \cdot \sigma_{l}(u, u)\right\|_{p / 2} \leqslant\left\|\nabla \cdot \sigma_{l}\left(u_{\varepsilon}, u_{\varepsilon}\right)\right\|_{p / 2} \\
& +2 C\|u\|_{w^{\prime}, p}\left\|u-u_{\varepsilon}\right\|_{w^{\prime, p}} \\
& +C\left\|u-u_{\varepsilon}\right\|_{W^{\prime, p}}^{2}
\end{aligned}
$$

For any $\delta>0$ there is an $\varepsilon_{\delta}>0$ so that

$$
\left\|\nabla \cdot \sigma_{l}(u, u)\right\|_{p / 2} \leqslant\left\|\nabla \cdot \sigma_{l}\left(u_{2}, u_{\varepsilon}\right)\right\|_{p / 2}+\delta
$$

for $\varepsilon<\varepsilon_{\delta}$.

Hence, because U_{ε} is smooth

$$
\begin{aligned}
\limsup _{l \rightarrow 0} & \left\|\nabla \cdot \sigma_{l}(u, u)\right\|_{p / 2} \\
& \leqslant \lim _{l \rightarrow 0}\left\|\nabla \cdot \sigma_{l}\left(u_{\varepsilon}, u_{\varepsilon}\right)\right\|_{p / 2}+\delta \\
& =\delta
\end{aligned}
$$

Because $\delta>0$ is arbitrary, it follows that

$$
\lim _{l \rightarrow 0}\left\|\nabla \cdot \sigma_{l}(u, u)\right\|_{p / 2}=0
$$

$Q \in D!$

This completes the proof of $(\mathbb{*})$, that $\left\|\tilde{z}_{l}^{(h)}\right\|_{p / 2} \rightarrow 0$ as $l \rightarrow 0$ for $h \in C^{\prime}$ with h^{\prime} bounded. Far such types of h it follows that

$$
\partial_{t} h(w)+\nabla \cdot(u h(\omega))=0
$$

and there is no anomaly! But what about more general $h \in \mathcal{I l}_{p}$ (including enstroply for $p>2$)? Diperna \& Lions show that this follows from the above result by approximating general $h \in$ Hep $_{p}$ with the above tyke of h. This is a bit technical hat here is the argument:

For any $h \in \mathcal{H}_{p}$ and $M>0$ define

$$
h_{M}(\omega)=h(0)+\int_{0}^{\omega} d \bar{w} \operatorname{sign}\left(h^{\prime}(\bar{\omega})\right) \min \left\{\left|h^{\prime}(\omega)\right|, M\right\}
$$

so that $h_{M} \in C^{1}$ with

$$
h_{M}^{\prime}(w)=\operatorname{sign}\left(h^{\prime}(\omega)\right) \min \left\{\left|h^{\prime}(\omega)\right|, M\right\}
$$

and $\left|h_{M}^{\prime}(w)\right| \leqslant M . A l s o$,

$$
\lim _{M \rightarrow \infty} h_{M}(w)=h(w) \quad \text { pointuise in } w
$$

by dominated convergence, using the properties of h. But furthermore $h(\omega)=h(0)+\int_{0}^{\omega} d \bar{\omega} \operatorname{sign}\left(h^{\prime}(\bar{\omega})\right)\left|h^{\prime}(\bar{\omega})\right|$, so that

$$
h(w)-h_{M}(w)=\int_{0}^{w} d \bar{w} \operatorname{sign}\left(h^{\prime}(\bar{w})\right) \max \left\{\left|h^{\prime}(\bar{w})\right|-M, 0\right\}
$$

and

$$
\begin{aligned}
\left|h(\omega)-h_{m}(\omega)\right| & \leqslant \int_{0}^{\omega} d \bar{\omega} \max \left\{\left|h^{\prime}(\bar{\omega})\right|-M, 0\right\} \\
& \leqslant \int_{0}^{\omega} d \bar{\omega}\left|h^{\prime}(\bar{\omega})\right| \\
& \leqslant C_{1}+C_{2}|\omega|^{p}
\end{aligned}
$$

by the properties of $h \in$ Hep.

Now, since $h_{M} \in C^{\prime}$ and h_{M}^{\prime} is bounded, it follows from ($\$$) that

$$
\partial_{t} h_{M}(\omega)+\nabla \cdot\left(u h_{M}(\omega)\right)=0
$$

But for $p>2$ we know that $u \in L^{\infty}$ and thus $u|\omega|^{P} \in L^{\prime}$. Hence, are can use dominated convergence to show that

$$
\begin{aligned}
\| u h(\omega) & -u h_{M}(\omega) \|_{L^{\prime}} \\
& \leqslant \int d^{2} x|u(x)|\left|h(w(x))-h_{M}(w(x))\right| \\
& \longrightarrow 0 \text { as } M \rightarrow 0
\end{aligned}
$$

It follows that we can take the limit as $M \longrightarrow \infty$ and obtain

$$
\partial_{t} h(w)+\nabla \cdot(u h(w))=0
$$

for all $h \in \mathcal{H}_{p}$. The same argument wortes for $p=2$ except one is then restricted to $h \in I f_{p}$, for some $p^{\prime}<2$, so that $u|w|^{p^{\prime}} \in L^{\prime}$.

Putting this result together with the Duchon-Rolert type result, we see that for $p>2$

$$
\lim _{l \rightarrow 0} \tilde{z}_{l}^{(n)}=0
$$

for any $h \in \mathcal{H t}_{p}$ and also

$$
D_{l \rightarrow 0} z_{l}^{(x)}=0
$$

if $h \in H_{p} \cap C^{2}$. This holds in particular if $h(w)=\frac{1}{2}|\omega|^{2}$ and then

$$
\underset{l \rightarrow 0}{\mathcal{D}-\lim _{l \rightarrow 0}} Z_{l}=0
$$

Likewise,

If $p=2$, then the first two results still hold if one takes instead $h \in \mathcal{H}_{p}$, and $h \in \mathcal{H}_{p}, \cap C^{2}$, respectively, for $p^{\prime}<2$. However, for $p=2$ one cannot obtain a local consewation law for the enstrophy itself!

On the other hand, for $p=2$ it is still possible to obtain global conservation of enstroph. Note that for $h(w)=\frac{1}{2}|\omega|^{2}$

$$
h_{M}(w)= \begin{cases}\frac{1}{2}|\omega|^{2} & |\omega|<M \\ M|\omega|-\frac{1}{2} M^{2} & |\omega|>M\end{cases}
$$

and $h_{m}(w) \uparrow h(w)$ as $M \rightarrow \infty$. Integrating

$$
\partial_{t} h_{M}(w)+\nabla \cdot\left(u h_{M}(w)\right)=0
$$

over space gets rid of the dangerous $u h_{M}(w)$ term

$$
\frac{d}{d t} \int d^{2} x h_{M}(w(x, t))=0
$$

If one also integrates in time from 0 to t, one gets

$$
\int d^{2} x h_{M}(w(x, t))=\int d^{2} x h_{M}\left(w_{0}(x)\right)
$$

Taking the limit $M \rightarrow \infty$ and using monotone convergence yields

$$
\int d^{2} x h(w(x, t))=\int d^{2} x h\left(w_{0}(x)\right)
$$

for $h(y)=\frac{1}{2}|\omega|^{2}$ and $p=2$. Thus, finiteness of enstorhy implies that enstrophy is (globally) conserved.

We have now completed our technical discussion of the DiPerua- Lions results as applied to 2D Euler, with just few mare remarks.

Remark \#1. All of the above results still hold if one adds a smooth body-force f to the momentum equation

$$
\partial_{t} u+\nabla \cdot(u u)=-\nabla p+f
$$

or, equimently, a source $g=\nabla \times f$ to the vorticity equation

$$
\partial_{t} w+\nabla \cdot(山 w)=g
$$

The coasc-grain balance tom now contains a contribution from the force

$$
\begin{aligned}
\partial_{t} h\left(\bar{w}_{l}\right)+\nabla \cdot\left(\bar{u}_{l} h\left(\bar{\omega}_{l}\right)\right)=- & h^{\prime}\left(\bar{\omega}_{l}\right) \nabla \cdot \sigma_{l} \\
& +h^{\prime}\left(\bar{w}_{l}\right) \bar{g}_{l}
\end{aligned}
$$

but for smooth g as usually considered in turbulence theory (and even rougher things) it is easy to show for $h \in \mathcal{H}_{p}$ that

Remark\#2, The DiPerna-Lions theory gives for move detailed information about the 2D Euler solutions and their Lagrangian representation.
For a genera linear transport equation
(1) $\quad \partial_{t} \theta+(u \cdot \nabla) \theta=g, \nabla \cdot u=0$
with $u \in W^{\prime 1}$ and θ only measurable, DiPerna \& Lions showed that there always's exist unique "renormalized solutions" (for given u field), defined by the condition that

$$
\partial_{t} h(\theta)+\nabla \cdot(u h(\theta))=h^{\prime}(\theta) g
$$

for all $h \in H_{2}$ that are also bounded and vanish at the origin $(h(0)=0)$. Notice that our precious discussion has shown that the DiPerna-Majda solutions of 2DEilefor $p>2$ are, in fact, "renoumalized solutions" of the 2D vorticity equation! DiPerna \& Lions furthermore showed that the general $O D E$

$$
\begin{equation*}
\frac{d x}{d t}=u(X, t), \quad x(a, 0)=a \tag{2}
\end{equation*}
$$

with $u \in W$ ", has a unique "renormalized solution"
defined by the condition that

$$
\frac{d}{d t} \beta(X)=\psi(x, t) \cdot \nabla \beta(x), \beta(X(a, 0))=\beta(a)
$$

for all $\beta \in C^{\prime}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that $|\beta(x)|$ and $\frac{|\nabla \beta(x)|}{1+|x|}$ are bounded for $x \in \mathbb{R}^{d}$. These flows are volume-presewing when the velocity field is incompressible, $\nabla \cdot u=0$.
Finally, the two notions of "renormalized solutions" are related by the fact that

$$
\begin{equation*}
\theta(x, t)=\theta_{0}(x(x,-t)) \tag{3}
\end{equation*}
$$

which means that the standard method of characteristics holds for this tass of "renormalized solutions."

These results give a Lagrangian interpretation of the consewation properties of the DiPerna-Majda solutions for $p>2$. Because of the property (3), for any $h \in$ It p $_{p}$

$$
\begin{aligned}
I_{n}(t) & =\int d^{2} x h(w(x, t)) \\
& =\int d^{2} x h\left(w_{0}(x(x,-t))\right) \\
& =\int d^{2} x h\left(\omega_{0}(x)\right)=I_{h}(0)
\end{aligned}
$$

using the volume-presening propaty of X. It is
very tempting to conjecture that hypothetical 2D Euler solutions of the "Kraichnan-Batekelor tyke" with $\omega \in B_{2}^{0, \infty}$ will dissipate enstrophy because of the non-uniqueness of the flows. This is suggested partly by the andlosy with the Kraichnan model of turbulent passive scalar, where the mechanism of anomalous dissipation of such integrals as $I_{n}(t)$ is the non-unizueness of Lagrangian flaws, or "spontaneous stochasticity." Also, DiPerna \& Lions have shown, by example, that uniqueness of flows can fail if the velocity field is just a bit less smooth than W^{111}, even $u \in W^{s, 1}$ for any $s<1$. Because of the standard embedding results for $d=2$

$$
B_{2}^{1, \infty} \subset W^{s, 1} \text { any } s<1
$$

one can see the velocities $u \in B_{2}^{1, \infty}$ (or voiticities $\omega \in B_{2}^{0, \infty}$) appropriate to the Kraichna--Batehela theory lie just outside the chis where DiPerm-Lions work guarantees the existence of unique flows,

Remark \#3. The argument we have presented above is lased on estimates of enstroptry flux rather than viscous enstroplng dissipation. One can obtain results on viscars dissipation á la Duchon - Robert, if one assumes that the $2 D \mathrm{NS}$ solution ω_{ν} converges to the 2D Euler solution ω in an L^{P} nom for any $p>2$ as $\nu \rightarrow 0$:

$$
\lim _{v \rightarrow 0}\left\|w-\omega_{\nu}\right\|_{p}=0 \quad \text { some } p>2
$$

then it is not hand to shay that

$$
\begin{aligned}
& \underset{\nu \rightarrow 0}{\infty} \frac{\lim _{v}}{} \frac{1}{2} \omega_{\nu}^{2}=\frac{1}{2} \omega^{2} \\
& \underset{\nu \rightarrow 0}{\infty}-\lim _{\nu} \frac{1}{2} \omega_{\nu}^{2} \omega_{\nu}=\frac{1}{2} \omega^{2} \omega
\end{aligned}
$$

and so

$$
\begin{gathered}
\underset{\nu \rightarrow 0}{\infty-\lim _{\nu}\left\{\partial_{t}\left(\frac{1}{2} \omega_{\nu}^{2}\right)+\nabla \cdot\left[\frac{1}{2} \omega_{\nu}^{2} \omega_{\nu}-v \nabla\left(\frac{1}{2} \omega_{\nu}^{2}\right)\right]\right\}} \\
=\partial_{t}\left(\frac{1}{2} \omega^{2}\right)+\nabla \cdot\left(\frac{1}{2} \omega^{2} u\right)
\end{gathered}
$$

It follows immediately that

$$
\partial_{f}\left(\frac{1}{2} \omega^{2}\right)+\nabla \cdot\left(\frac{1}{2} \omega^{2} u\right)=-D(\omega)
$$

with.

$$
D(\omega)=\alpha-\lim _{\nu \rightarrow \infty} \nu\left|\nabla \omega_{\nu}\right|^{2} \geqslant 0 .
$$

However, because the limiting solution $\omega \in L_{p}$ with $p>2$, the DiPerna-Lions theory applies and one can infer in fact that the above inequality is strict equality

$$
\alpha_{\nu \rightarrow 0} \nu\left|\nabla \omega_{\nu}\right|^{2}=0!
$$

Thus, viscous dissipation also vanishes on the above assumptions. Far related results on vanishing enstroph dissipation in decaying $2 D$ turbulence, by an entirely different approach, see
C.V. Tran \& D, G. Dritsckel, "Vanishing enstrorky dissipation in two-dimensional Navier-Stokes turbulence in the inviscid limit," J, Fluid. Mech. 559 101-116 (2006)
and
D.G. Dritschel et al., "Revisiting Batahela's theory of twordimensianal turbulence," J. Fluid Mech. 591 399-391 (2007)

Remark \#4. The above results from DiPerna-Lions theory show that no 2D Euler solutions with an enstropley spectrum of the form

$$
\Omega(k) \sim k^{-(1+2 s)}, 0<5<1
$$ (4)

can have a non-vanishing enstroply flux to infinitely high uavenumbers. In fact, such a skectum implies

$$
w \in B_{2}^{s, \infty} C L_{p} \text { for } p=\frac{2}{1-5}>2
$$

by Besor embedding theorem. This mules out a wide class of alternatives to the Batchela-Kraichnan k^{-3} skecturm for forced steady-states, including these of Saffman, Moffatt and Polyakov.

The contradiction is particularly striking for Polyakou's conformal theory, becurse he claimed to construct exact inviscid solutions of the stationary Firedman-Reller hierarchy for vorticity cowelations of $2 D$ Euler equatims, having spectrum (4) and also laving a non-ronishing enstroply flux to arbitranib high wavenumbers! Where was the error? There are, in fact, mary incomplete "details" in Polyakov's construction. Egg. he does not

Solve the problem of "matching" his ineotial-range conformal models to the forcing scale (infrared problem) and to the viscous scale (ultraviolet problem). However, we would like to focus have on the realizability problem. It is known that exact solutions of hierarchy equations can fail to correspond to statistical ensembles of solutions of the underlying PDE (here, $2 D$ Euler). Egg. see
G.L. Eying \& J.Xin, "Sol f-similar decay in the Kraichman model of a passive solar," " J, Stat. Phys. 100 679-741 (2000)
which gives an example of "parasitic solutions" of the hierarchy equations -in an example where they are even closed! - which are not realizable by the underlying statistical model. This issue of "realizability" was long emphasized by R.H. Kraichnan as fundamental in statistical approaches to turbulence, e.g.
R.H. Kraichunan, "Variational method in turbulence theory," Phys. Rev. Lett. 42 1263-1266 (1979)
R. H. Kraichnan," Realizability inequalities and closed moment equations," Ann. N.Y. Acad. Sci. 357 37-46 (1980)

The first pager, in particular, contain some very interesting ideas on how to constmet statistically realizable approximations by a variational method.

The only obvious way to account for the failure of Polyateou's approach is a realizability publem.
In fact, even without solving the matching problem, he claimed to construct a statistical ensemble of 2D Euler solutions whose properties contradict those shown to hold for any solution of the $2 D$ Euler equations by the Diperna \& Liars theory. This seems to imply that his conformal solutions of the Friedman-Keller hierarchy for vorticity are not realized by any Euler solutions!
The same problem is possible for any approach which only yields solutions of the stationary Friedman-Keller hierachy without establishing their realizabilits by 20 Euler solutions. Egg.
M. Flotir, " 2 -dimensimal conformal turbulence: Yet another conformal field theory solution,"
arXiv: hep-th/9606130
shows by an approach very similar to Polyakou's that one may obtain conformal "solutions" of the "D Euler hierachy consistent with the Kraichman. Batzkela k^{-3} energy spectrum. But realizability is not established.

On the other hand, Polyateon's proposal that 2D turmient cascades may possess conformal symmetry of some tyke may still be correct. Recently, numerical evidence for this has been obtained in the work of
D. Bernard et al., "Conformal invariance in two-dimensiaral turbulence," Nat. Phys, 2 124-128 (2006)

Rather than the forward enstrophy cascade, this work studied the inverse energy cascade and also followed a very different approach than that of Polyakou.
Instead of focusing on the conformal properties of the random fields themselves, they focussed on the conformal properties of their level cures (eg. the vorticity isolines). These were found to have the same properties as those of a well-tenoun conformal model, 2D critical percolation. Similar results have so far keen obtained in numerical studies of several other 2D turbulence models. Unfortunately, there has sofar been little progress analytically in understanding these obeewations or in exploiting them for a deeper understanding of 2D turbulence.

