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the ideal case of an infinite inertial range all the energy !en-
strophy" injected should be transferred to large !small"
scales. This can be thought as a limit case of a realistic
situation in which the inertial range has a finite extension
because of the presence of large and small scale dissipation.
The characteristic viscous scale !! and friction scale !" can
be expressed in terms of the energy !enstrophy" viscous dis-
sipation rate #!!$!" and friction dissipation rate #"!$"" by
the relations !!

2=#! /$! and !"
2 =#" /$". Energy and enstro-

phy balance equations in stationary conditions give #1,7,8$

#!

#"
= %!!

! f
&2% ! f

!"
&2 !!"/! f"2 − 1

1 − !!!/! f"2 , !2"

$!

$"
=

!!"/! f"2 − 1
1 − !!!/! f"2 . !3"

Therefore with an extended direct inertial range, !!%! f, one
has #! /#"�0, i.e., all the energy injected goes to large
scales. Moreover, if !"&! f one obtains $" /$!�0, i.e.,
all the enstrophy goes to small scales to generate the direct
cascade. Indeed, from Table I we see that increasing the res-
olution, i.e., ! f /!!, the fraction of energy which flows to
large scales increases. Because in our runs !" /! f is constant
with resolution and because !!'!1/2 we expect that, accord-
ing to Eq. !2", #! /#"'! #1$ as indeed is shown in the inset of
Fig. 1.

Most of the enstrophy !around 90%" is dissipated by
small scale viscosity. We observe a moderate increase of the
large-scale contribution to enstrophy dissipation $" by going
from run A to D. This is a finite size effect because we have
to increase the friction coefficient " with the resolution N in
order to keep the friction scale !"'"−3/2#"

1/2 constant when
#" grows. Indeed, for the run E without large-scale friction,
the enstrophy flux to small scales almost balances the input.

Figure 1 shows the energy and enstrophy fluxes in Fourier
space defined as (E!k"(−!t)0

kE!k!"dk! and (Z!k"
(−!t)0

kk!2E!k!"dk! !where E!k" is the energy spectrum and
the time derivative keeps the contribution from nonlinear
terms in Eq. !1" only #9$". We observe that, because reso-

lution is changed by keeping !"&! f constant, the only effect
of increasing resolution on the inverse cascade is the growth
of #" /#I !i.e., (E!k" /#I" as discussed above, while the exten-
sion of the inertial range does not change. Despite the limited
resolution of the inverse cascade inertial range !kf =100", we
observe an almost constant energy flux which develops inde-
pendently on the presence of a direct cascade inertial range
!run A". Of course, because of the presence of the two energy
sinks !viscosity and friction" a plateau indicating a constant
energy flux is clearly observable for the largest resolution
simulation E only. On the contrary, the direct cascade does
not develop for the small resolution runs as the dissipative
scale is very close to the forcing scale !see Table I". A con-
stant enstrophy flux (Z!k" which extends over about one
decade is on the other hand obtained for the most resolved
run E.

The behavior of the fluxes around k'kf depends on the
details of the injection: transition from zero to negative
!positive" energy !enstrophy" flux is sharp in the case of forc-
ing on a narrow band of wave number !run D and E" while it
is more smooth for the Gaussian forcing which is active on
more scales.

TABLE I. Parameters of the simulations. N spatial resolution, ! viscosity, " friction, ! f =) /kf forcing
scale, R*=Z3/2 /$! Reynolds number for the direct cascade #6$, !!=!1/2 /$!

1/6 enstrophy dissipative scale, #I
energy injection rate, #" friction energy dissipation rate !large-scale energy flux for run E", $I enstrophy
injection rate, $! viscous enstrophy dissipation rate, + correction to the Kraichnan spectral exponent in the
direct cascade. Viscosity is tuned to have for all runs kmax!!'3. For the run E, for which "=0, #" is kinetic
energy growth rate.

Label A B C D E

N 2048 4096 8192 16384 32768
! 2,10−5 5,10−6 2,10−6 1,10−6 2.5,10−7

" 0.015 0.024 0.025 0.03 0.0
! f /!! 13 26 40 57 116
R* 7.9 15.4 21.5 26.0 36.0
#" /#I 0.54 0.83 0.92 0.95 0.98
$! /$I 0.96 0.92 0.90 0.88 0.98
+ 1.8 1.1 0.75 0.50 0.35
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FIG. 1. !Color online" !a" Energy and !b" enstrophy fluxes in
Fourier space for the runs of Table I. Fluxes for runs D and E are
computed from a single snapshot. Inset !c": ratio of viscous over
friction energy dissipation versus kinematic viscosity for the 5 runs,
the line represents a linear fit.
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FIG. 1. Energy and enstrophy fluxes in Fourier space for the runs of Table I. Fluxes for runs D and E are computed from a single

snapshot. Inset (c): ratio of viscous over friction energy dissipation versus kinematic viscosity for the 5 runs, the line is a linear fit.

In Fig. 2 we plot the energy spectra of the different runs
compensated with the energy flux. In the inverse range k
!kf a Kolmogorov spectrum E!k"=C"#

2/3k−5/3 is clearly ob-
served for all simulations. The value of the Kolmogorov con-
stant C#6 is compatible with those obtained from more re-
solved inertial range $10% and it is found to be independent
on the resolution. For what concerns the direct cascade, the
spectrum is steeper than the Kraichnan prediction k−3. This
effect is due to finite size effects, as it reduces by increasing
the resolution. In order to quantify the recovery of the Kra-
ichnan exponent, we computed for all runs the local slope of
the energy spectra in the range of wave number kf $k$k%. A
plateau for the slope in this range of scales defines the scal-
ing exponent −!3+&" of the energy spectrum in the direct
cascade. In the inset of Fig. 2 we plot the measured value of
the correction & as a function of the viscosity of the run. It is
evident that, despite the fact the classical exponent −3 is not
observed, the indication is that it should eventually be recov-
ered in the infinite resolution limit %�0. It is interesting to
observe that for the most resolved run E, for which the en-
strophy flux is almost constant over a decade of wave num-
bers !see Fig. 1", the exponent of the energy spectrum still
has a significant correction &#0.35. We remark that a clear
observation of Kraichnan k−3 spectrum in simulations is ob-
tained using some kind of modified viscosity only $7,11,12%,
while steeper spectra has also been observed in simulations
of Eq. !1" with a large-scale forcing, i.e., resolving the direct
cascade only $13%. Therefore also for the direct cascade our
simulations support the picture for which the statistics of one
cascade is independent on the presence of the other cascade.

We now consider small scale statistics in physical space,
starting from velocity structure function Sp!r"&'$&u(!r"%p)
with &u(!r"= $u!x+r"−u!x"% ·r /r. The Kolmogorov relation,
a consequence of constant energy !or enstrophy" flux in the
inertial range, together with assumptions of homogeneity and
isotropy, gives an exact prediction for the third-order longi-
tudinal velocity structure function S3!r" $14–16%. For the in-
verse cascade it predicts

S3!r" =
3
2

"#r for r ' ! f !4"

while for the direct cascade

S3!r" =
1
8

(%r3 for r ) ! f . !5"

The third-order velocity structure function for the simulation
E is shown in Fig. 3. Both Kolmogorov laws are clearly
visible with the predicted coefficients. We remark that this is
the first time that the two fundamental laws Eqs. !4" and !5"
are observed simultaneously.

In Fig. 4 we plot velocity structure functions of different
orders together with the compensation with Kolmogorov
scaling Sp!r"#!"#r"p/3. Although the range of scaling is very
small, the presence of a plateau in the inverse cascade range
of scales confirms that intermittency corrections are very
small or absent in the inverse cascade range $10%.

Velocity structure functions are trivially dominated by the
IR contribution in the direct cascade range. Therefore to in-
vestigate higher order statistics of the direct cascade one has
to consider either increments of velocity derivatives !e.g.,
vorticity increments" or velocity second-differences !the lat-
ter having the advantage of being Reynolds-number-
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FIG. 2. !Color online" Energy spectra for the simulation of Table
I compensated with the inverse energy flux. Lines represent the two
Kraichnan spectra Ck−5/3 !dashed" with C=6 and k−3 !dotted". The
inset shows the correction & to the Kraichnan exponent for the
direct cascade 3 obtained from the minimum of the local slope of
the spectra in the range kf $k$k% as a function of the viscosity.
Error bars are obtained from the fluctuations of the local slope. The
line has a slope 0.38 and is a guide for the eyes.
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FIG. 3. !Color online" Third-order longitudinal velocity struc-
ture function S3!r"&'$&u(!r"%3) for run E at final time. The two
lines represent the Kolmogorov laws Eq. !4" !continuous" and Eq.
!5" !dotted". Inset: compensation of S3!r" with "#r !circles" and
with (%r3 !triangles". Lines are the coefficient 3/2 !continuous" and
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FIG. 4. !Color online" Longitudinal velocity structure function
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triangles" from run E and compensated with Kolmogorov-
Kraichnan prediction !"#r"p/3.
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FIG. 2. Energy spectra for the simulation of Table I compensated with the inverse energy flux. Lines represent the two Kraichnan spectra

Ck�5/3
(dashed) with C = 6 and k�3

(dotted). The inset shows the correction � to the Kraichnan exponent for the direct cascade 3 obtained

from the minimum of the local slope of the spectra in the range kf  k  k⌫ as a function of the viscosity. Error bars are obtained from the

fluctuations of the local slope. The line has a slope 0.38 and is a guide for the eyes.
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FIG. 2. Temporal evolution of energy (solid) and enstrophy (dashed) for set A (a) and set B (b). The dashed-dotted lines
correspond to the theoretical growths.

For k ! kb, the enstrophy drops sharply with a slope which, at intermediate times, is close to 4,
but which decreases as soon as the energy at the domain scale becomes significant, this occurring
around t = 20 for set A and around t = 30 for set B. In the meantime, kb decreases and the length of
the plateau increases. The presence of the plateau, which corresponds to an energy spectrum of k−2,
is in line with the results of Scott2 and Vallgren17 and provides further evidence that Kraichnan’s
similarity hypotheses is not valid.

The spectra are next fit to a simple analytical form to examine their evolution more precisely.
Given the observed shape of the enstrophy spectra, we propose the following analytical form:

Z (k) =
{

c (k/kb)4 0 ≤ k < kb

c kb ≤ k < k f
, (2)

where kb is an unknown time dependent wavenumber corresponding to the front of the enstrophy
plateau moving up-scale and c is the constant value of the plateau. This model is limited to wavenum-
bers smaller than the forcing wavenumber since for k > kf the observed spectra are approximately
independent of time. We fit the numerical spectra up to kf by simply integrating the analytical
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FIG. 3. Enstrophy spectra at increasing times t = 1, 5, 10, 20, 30, 40, and 50 (from right to left) for set A (a) and set B (b).
Spectra are normalised by total enstrophy.
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FIG. 6. Decomposition of the vorticity field (left) into coherent (middle) and incoherent part (right). The images are
screen-shots of one of the simulations in set B at time t = 10. Only one sixteenth of the domain is shown.

the coherent enstrophy as

Zcoh =
∫

Zcoh(k) dk = 1
As

∫
ω2

v A nv(A) d A , (6)

where As is the size of the domain considered. Identifying A with k−2, it follows that

Zcoh(k) ∝ k−5+2q . (7)

Figure 8 shows the characteristics of the vortex population for set B, averaged over two periods:
from t = 5 to t = 30 and from t = 30 to t = 50. Considering the vortex number density distribution,
one can identify a change in the slope occurring at an area that corresponds to the scale of forcing,
i.e., A f ∼ k−2

f . For vortices having an area smaller than Af, the number density distribution scales
like A−1.5 over two decades. These trends are not significantly modified by the finite size effects
from t = 30 as curves superimpose. The average vorticity ωv shown in the lower panel grows with
vortex area, though varies by less than a factor of about 3 from the smallest to the largest areas.

By (7), the number density distribution nv(A) ∝ A−1.5 would correspond to the (coherent)
enstrophy spectrum Zcoh ∝ k−2 in the enstrophy inertial range, a form consistent with a prediction of
Saffman31 who considered the effect of discontinuities in the vorticity field. For big vortices having
an area larger than Af, the distribution seems to scale like A−2.5, consistent with the k0 slope observed
in the energy inertial range. However, because the separation between the forcing scale and the box
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FIG. 7. Decomposition of the enstrophy spectra (solid) into coherent (dashed-dotted) and incoherent (dashed) parts. These
figures correspond to set A at t = 15 (left) and set B at t = 20 (right). Spectra are normalised by total enstrophy.
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FIG. 6. Decomposition of the vorticity field (left) into coherent (middle) and incoherent part (right). The images are
screen-shots of one of the simulations in set B at time t = 10. Only one sixteenth of the domain is shown.
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where As is the size of the domain considered. Identifying A with k−2, it follows that
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Figure 8 shows the characteristics of the vortex population for set B, averaged over two periods:
from t = 5 to t = 30 and from t = 30 to t = 50. Considering the vortex number density distribution,
one can identify a change in the slope occurring at an area that corresponds to the scale of forcing,
i.e., A f ∼ k−2

f . For vortices having an area smaller than Af, the number density distribution scales
like A−1.5 over two decades. These trends are not significantly modified by the finite size effects
from t = 30 as curves superimpose. The average vorticity ωv shown in the lower panel grows with
vortex area, though varies by less than a factor of about 3 from the smallest to the largest areas.

By (7), the number density distribution nv(A) ∝ A−1.5 would correspond to the (coherent)
enstrophy spectrum Zcoh ∝ k−2 in the enstrophy inertial range, a form consistent with a prediction of
Saffman31 who considered the effect of discontinuities in the vorticity field. For big vortices having
an area larger than Af, the distribution seems to scale like A−2.5, consistent with the k0 slope observed
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Figure 4. Mean enstrophy fluxes averaged over the quasi-stationary time periods for
H8192S (t ∈ [48, 73]), H8192SD (t ∈ [92, 200]) and N32768S (t ∈ [63, 73]). The abscissa is
the wavenumber scaled by the forcing wavenumber.
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Figure 5. Mean compensated enstrophy spectra for H8192S, H8192SD and N32768S, over
the same time intervals as in figure 4, where the abscissa is the wavenumber scaled by the
forcing wavenumber.
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Figure 6. Time evolution of (a) energy and (b) enstrophy for N8192L, N16384L and
H16384L. Note that the energy evolution is identical for the simulations, so the individual
lines are coinciding. The two more resolved simulations have been continued from the less
resolved simulation N8192L.

the forcing in the wavenumber range k ∈ [1, 5], centred at kf =3, not including any
hypo-diffusion. Beginning with N8192L, we obtain a quasi-stationary state, which we
have run for about 27 non-dimensional time units (see figure 6). Here we observe
an inertial range extending over two decades, as seen in figure 7. Note that despite
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which corresponds to Gk(t) = rk(2t) and exponential a,($), yields curves for &(v) 
which lie between those plotted, both in three dimensions and in two dimensions. 
The Q(v) curve for the abridged Lagrangian-history direct-interaction approxi- 
mation (Iiraichnan 1966)) which has been evaluated only for three dimensions, 
lies comparably close. The Galilean-invariant almost-Markovian model 
(Kraichnan 1971)) which we shall use to estimate C and C', gives precisely 
(2.1 7 a). 

0.4 

1 0.1 
2) 

0.01 

FIGURE 1. Localness of energy transfer. Curves 1 and 2:  three dimensions, with ( 2 . 1 7 ~ ~ )  
and (2.17b), respectively. Curves 3 and 4: two dimensions, with ( 2 . 1 7 ~ ~ )  and (2.17b), 
respectively. 

Figure 2 shows the curves for W ( v )  obtained in three and two dimensions, 
using ( 2 . 1 7 ~ ) .  Together with figure 1, it suggests a substantial difference in the 
structure of the energy transfer in the two geometries. In  three dimensions, the 
transfer is already not very local; 65 yo of the transfer involves wave-number 
triads in which the smallest wave-number is less than one-half of the middle 
wave-number. In two dimensions, 60 yo of the transfer involves triads where this 
ratio is less than one-fifth. The extreme diffuseness of transfer in two dimensions 
suggests that a very extensive inertial range may be needed to give a really close 
approach to asymptotic spectrum levels. 

In both two and three dimensions, we find (from either ( 2 . 1 7 ~ )  or (2.17b)) 

&(v) = O[v+In(~/v)] (v < 1). (2.19) 

This corroborates the localness of interaction needed for the qualitative argument 

The calculations of II(k) with (2.17) give n ( k )  > 0 in three dimensions, and 
of $ 1 .  
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I’I(k) < 0 in two dimensions, again corroborating qualitative arguments. The 
vanishing of Q ( l )  in two dimensions, but not in three, is because, in the former 
case, each triad interaction conserves both energy and enstrophy, a property 
that is preserved in (2 .14 ) .  This implies that T(k,p ,q)  is zero if any two of the 
three wave-numbers are equal, as can be seen from (2 .6)  and (2 .7 ) .  

1 0.1 0.01 

2) 

FIGURE 2. The function W ( v )  in three dimensions (30) 
and two dimensions ( 2 0 ) .  

3. Estimation of C 
With the quadratures carried out, ( l . l ) ,  (2 .5 ) ,  (2 .12) ,  (2.14) and (2 .17a)  give 

C = 3.022p5 (three dimensions), C = 8-94,& (two dimensions). (3.1) 
To evaluate p, we shall use the almost-Markovian Galilean-invariant turbulence 
model (Kraichnan 1971), in which the memory times O,, are fixed by the inter- 
action between the solenoidal and compressive parts of an advected test field. 
For convenience, we shall call this the ‘test-field model ’. In  the three-dimensional 
steady state, the test-field model determines rk by the coupled equations, 
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and !!A denotes integration over all of the p ,  q plane where k, p ,  q can form 
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of the solenoidal and compressive parts of the test field, respectively 
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The importance of such a quantity for studying the 3D
energy cascade was first emphasized by Kraichnan [14],
who defined the local flux by a banded Fourier series.
Instead, we distinguish the large- and small-scale modes
using a smooth filter as in the large-eddy simula-
tion (LES) modeling scheme [15,16]. We apply the
filter to the vorticity form of the 2D Euler equation @t!!
"v # r$! % 0. That is, we consider the ‘‘large-scale vor-
ticity’’ defined by the convolution !‘ & G‘ '! and the
large-scale velocity defined by v‘ & G‘ ' v, where G‘ is
taken to be the Gaussian filter. The equation obtained by
low-pass filtering is

@t!‘"r; t$ ! r!(v‘"r; t$!‘"r; t$ ! !‘"r; t$) % 0; (2)

where !‘ & "v!$‘ * v‘!‘ is the space transport of vor-
ticity due to the eliminated small-scale turbulence. From
the previous equation, a balance is derived for the local
density h‘"r; t$ % 1

2!
2
‘"r; t$ of the large-scale enstrophy,

@th‘"r; t$ ! r!K‘"r; t$ % *Z‘"r; t$ in which the current
K‘"r; t$ & h‘"r; t$v‘"r; t$ !!‘"r; t$!‘"r; t$ represents the
space transport of large-scale enstrophy, and

Z‘"r; t$ & *r!‘"r; t$!!‘"r; t$ (3)

is the enstrophy flux out of large scales into small-scale
modes. This quantity is odd under time reversal—an
irreversible forward cascade of enstrophy occurs precisely
when it develops a positive mean value. From Eq. (3), we
see that in order for Z‘ to have a net positive value the
turbulent vorticity transport !‘ should tend to be ‘‘down
gradient,’’ that is, antiparallel to the large-scale vorticity
gradient r!‘. The required statistical anticorrelation of
!‘ and r!‘ is an alignment property characteristic of the
2D enstrophy cascade. It is analogous to the much-studied
alignment of the stress tensor !‘ due to small scales and
the large-scale strain S‘, which underlies the energy
cascade to high wave numbers in 3D [10–12]. Applying
the definitions above to our numerical data computed
from (1), we obtain the probability density function
(PDF) of the enstrophy flux in the steady-state cascade,
P"Z‘$, shown in Fig. 2(a) for several filtering lengths ‘ in
the forward cascade range.

These PDF’s have growing tails going to smaller
scales, indicating increasing intermittency of the flux.
However, the most striking feature of the PDF’s are their
near symmetry, especially in the far tails. Despite its
positive mean (equal to the plateau value in Fig. 1), the
skewness of the PDF is quite small, only 1.5. In contrast,
the PDF of energy flux in 3D has a skewness of 11 in the
inertial range [17]. The forward cascade is made more
apparent in Fig. 3(a), where we plot the PDF of the angle
of alignment ! between the vectors !‘ and r!‘ for a
filtering length ‘ % "=130 in the inertial range (the
results are similar throughout that range). There is a
greater probability that ! > "=2, which occurs about
62% of the time. Since Z‘ % j!‘j # jr!‘j cos""* !$,

this is the same as the probability that enstrophy flux is
positive. The amplitudes of the flux when positive also
tend to be somewhat larger than when negative. This can
be seen in Fig. 3(b), which plots the conditional average
of Z‘ given !, where the plateau to the right is greater than
that to the left. This fact, together with the higher proba-
bility of ! > "=2; demonstrates that net flux is forward.
There is, however, a somewhat greater reluctance of ens-
trophy in 2D to cascade forward than for energy in 3D.
About 70% of the realizations in 3D have positive values
of energy flux [17]. Also, the angle between the eigen-
frames of the minus stress tensor and the filtered strain in
3D is about 32+ [12]. It is remarkable that in 2D the most
probable value of "* !, the angle between *!‘ and
r!‘; is about 77+, much larger than the corresponding
angle in 3D. A scalar eddy-viscosity model, as proposed
by Leith [18], would give a 0+ angle between *!‘ and

FIG. 2. (a) PDF of "Z‘ * hZ‘i$=#Z with Z‘"r; t$ enstrophy
flux and #2

Z % h"Z‘ * hZ‘i$2i, at different filter lengths ‘.
(b) PDF’s of the true flux (solid line) and the ‘‘nonlinear
model’’ (dashed line) at ‘ % "=130. The two lines are
indistinguishable.

FIG. 3. (a) PDF of the angle ! between !‘ and r!‘ and
(b) conditional mean hZ‘j!i, for ‘ % "=130.
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r!‘. Because vorticity gradients tend to be perpendicular
to streamlines, Fig. 3(a) shows there is more of a tendency
for vorticity transport !‘ to be parallel to velocity than to
be down the local vorticity gradient.

The classical picture of the enstrophy cascade [2,19] is
that there is stretching of small-scale vorticity gradients
by the strain arising from larger-scale vortices. This
suggests that the forward flux should occur mainly in
strain-dominated regions of the flow. By the Weiss crite-
rion [20] this corresponds to regions where !‘ < 0
(hyperbolic), with !‘ ! det"rv‘# $ 1

2!
2
‘ % S2‘. Regions

with!‘ > 0 (elliptic) are vorticity dominated. In Fig. 4(a)
is plotted the instantaneous !‘"r; t# from one snapshot of
the simulation, with strain regions in red and vorticity
regions in green. In Fig. 4(b) is plotted the instantaneous
enstrophy flux in the same domain. The plots show that
flux is either forward or backward with almost equal
likelihood in vorticity regions, but flux tends to be pre-
dominately forward in the strain regions. This is verified
quantitatively in Fig. 5(a) which shows the conditional
PDF’s of the enstrophy flux in both the strain and vor-
ticity regions. The PDF in the strain region is clearly
skewed to the right, while the PDF in the vorticity region

remains nearly symmetric. The difference between the
two regions is seen even more clearly in Fig. 5(b), which
plots the conditional PDF’s of the angle " between !‘ and
r!‘. The PDF in the strain region is clearly shifted to
values of " > #=2; , whereas the PDF in the vorticity
region is more nearly symmetric. These results demon-
strate that forward enstrophy cascade indeed occurs pre-
dominately in strain regions.

The physics of the cascade is further illuminated by a
simple approximation for !‘ [9]. To derive this expression
we introduce a new length scale ~‘‘ & ‘ and low-pass filter
~vv of v with scales less than ~‘‘ removed. Then, for ~‘‘ < ‘ it
should be true that !‘ ' ~vv ~!!% ~vv ~!! . The scales less than
~‘‘ are believed to make only a disorganized, uncoordi-
nated contribution to the vorticity transport !‘ [13].
Although vorticity increments at smaller scales decrease
only very slowly, in mean square as log"~‘‘#, contributions
of those scales are subject to large cancellations, produc-
ing an extra small factor ~‘‘. The resulting approximation is
a 2D analog of the similarity model [15], a computational
LES model in 3D. We emphasize, however, that our ap-
proximation does not rely on any phenomenological as-
sumption of self-similarity, but only on the assumption
that scales ~‘‘ < ‘ contribute negligibly. We have verified
that the approximate formula for the transport vector is
almost indistinguishable from the exact one for all ~‘‘ < ‘.
For the extreme choice ~‘‘ $ ‘ the fields appearing in the
formula for !‘ are smooth on the filter scale ‘ and their
increments over such lengths can be approximated by a
local Taylor expansion. The leading-order term is the
analog of the 3D nonlinear model [15]:

! NL
‘ $ C2‘2D‘!r!‘; (4)

FIG. 4 (color). Instantaneous snapshot of (a) !‘"r; t# and
(b) Z‘"r; t#, for ‘ $ #=130 in a 5122 subdomain. The red
regions in (a) are dominated by strain and the green by
vorticity.

Strain region
Vortex region

(a)

-0.2 0 0.2
0.01

0.1

1

10

100

Zl

P(
Z l)

Strain region
Vortex region(b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

θ/π

P(
θ)

π
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where Dij ! @vi=@xj is the large-scale velocity gradient
(or deformation) tensor and C2 is the second moment of
the filtering function G. The expression C2‘2D‘ in (4) is a
‘‘tensor eddy viscosity,’’ which scales dimensionally the
same as the scalar eddy viscosity proposed by Leith [18].
The arguments of Kraichnan [21] cast doubt on the
validity of a scalar eddy viscosity, and, indeed, we have
verified that a perfect antiparallel alignment of !‘ and
r!‘ is not observed. However, the tensor eddy-viscosity
model of the transport vector in (4) is correlated with
the exact one at the 99% level. The two vector fields,
!‘"r; t# and !NL

‘ "r; t#, in a plot together (not shown) are
almost identical to the eye. The PDF of the nonlinear
model approximation to the enstrophy flux, ZNL

‘ !
$C2‘2"r!‘#>D‘!r!‘, shown in Fig. 2(b), is likewise
nearly indistinguishable from the exact PDF.

The close agreement of the exact transport vector !‘
and !NL

‘ allows us to connect the forward flux more
clearly with the physical picture of the enstrophy cascade.
This is believed to be due to the stretching and compres-
sion of ribbons of vorticity by the large-scale strain field.
In fact, the squeezing together of very different vorticity
levels amplifies the gradient along the compressive direc-
tion. Therefore, one expects that r!‘ will tend to align in
the strain regions along l$‘ , the left eigenvector of D‘ for
the negative eigenvalue. In Fig. 6 is plotted the PDF of the
angle between r!‘ and l$‘ . There is an increas-
ing tendency for these vectors to align as ‘ decreases
through the inertial range. The corresponding alignment
for the dissipation-range quantities, with ‘ ! 0, was al-
ready observed in [22,23]. In view of the formula for ZNL

‘
this typical alignment explains the tendency for flux
to be positive. If the alignment were perfect, then a
scalar eddy-viscosity model would result, with !‘ !
$C2"‘‘2r!‘, where %"‘ are the eigenvalues of D‘
(both real in the strain region). As shown in Fig. 6 this

alignment is the most likely, but not overwhelmingly so.
Thus, the enstrophy flux is often negative as well as
positive, but preferentially positive in the strain region.

In conclusion, we have shown that the 2D enstrophy
cascade is surprisingly time symmetric. Turbulent vortic-
ity transport tends to be along streamlines, not down
gradient as predicted by a scalar eddy viscosity. A tensor
viscosity model, the nonlinear model, predicts well the
transport vector, making the model attractive for geo-
physical applications. Our work has clarified the funda-
mental connection of 2D enstrophy cascade to stretching
of inertial-range vorticity gradients.
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