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Abstract

The aim of this note is to draw attention on a computational problem related to the (initial) simulation of very large
time-dependant systems. The underlying theoretical problem has been the object of many relevant works in theoretical
mathematical, and in the applied literature as well, but it seems that its computational implications are not familiar to
many; we hope that this Note will help.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recent discussions with distinguished specialists of numerical fluid mechanics have shown that it would be
useful to write a physicist friendly version of the article [14], and this is the aim of this note.

Consider a very simple problem, namely the heat equation in space dimension one:
0021-9

doi:10.

E-m
ou
ot � o2u

ox2 ¼ f ; 0 < x < 1; t > 0;

uð0; tÞ ¼ uð1; tÞ ¼ 0;

uðx; 0Þ ¼ u0ðxÞ:

8><
>: ð1Þ
For u0 and f given sufficiently regular, ‘‘explicit’’ forms of the solution u of (1) are available using the Green
function of the heat equation [2]. Also mathematical results of existence and uniqueness of solutions of (1) are
available when f and u0 are just square integrable, or even less regular [12]. The issues discussed in [14] do not
relate to unsmooth data but rather to smooth ones. Assume for instance that f ” 0, and u0(x) = 1, "x 2 (0, 1).
The existence and uniqueness of solution of (1) is then guaranteed by many theorems, and the solution will be
C1 except near t = 0. The existence of a discontinuity near t = 0 can be seen by just observing that, for f and
u0 as above, u(0, t) = 0, for all t > 0, whereas u(0, 0) = u0(0) = 1. In fact, assuming that f and u0 are C1, the
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solution u of (1) will not, in general, be smooth near t = 0. It will be so only if (when) u0 and f satisfy a se-
quence of conditions called the compatibility conditions, the level of regularity near t = 0 depending on the
number of compatibility conditions that are satisfied. In Section 2 we describe the first and second compati-
bility conditions (CC) for (1), as well as for the convection and wave equations in space dimension one (the
first one for (1) being u0(0) = u0(1) = 0). As another illustration of the results in [14] we present in Section 3,
the substantially more complex case of the Navier–Stokes equations.

The problem of the compatibility conditions has been known and addressed in the mathematical literature
for a long time; see e.g. [13] and the references in [14]. The novelty in [14] was to derive all the necessary and
sufficient conditions for the solutions of certain classes of parabolic equations to be C1 near t = 0, and espe-
cially the incompressible Navier–Stokes equations.

How this issue relates to computation? From the physical (and somehow ‘‘philosophical’’) point of view,
except when considering ab initium problems, any phenomenon considered for t > 0 will just be the continu-
ation of a phenomenon which pre-existed, so that we should in principle be able to solve the problem under
consideration backward in time.1 Now, for an equation like (1), given f smooth for all t 2 R, the u0 for which
(1) can be solved backward are relatively very rare and, for this to be true some (but not all) of the require-
ments on u0 are precisely the compatibility conditions. Hence solving (1) with an u0 which is not physically
suitable in this sense, means, despite the beautiful mathematical theorems, that we are trying to solve this
problem with a non-physical initial data. There is likely a computational price to pay for that, which is neg-
ligible for (1), but is not for more complex equations. For instance those practicing large simulations for the
Navier–Stokes equations or geophysical flows, know very well that they have to ‘‘prepare’’ their initial data
before launching the actual computations. One may wonder if this ‘‘preparation’’ is not related to making
the initial data ‘‘suitable’’ in the sense above. This article does not provide any recipe but, hopefully, by shed-
ding some light on this difficulty, may help the practitioner.

The problem of the choice of initial (and boundary) data has been discussed from many angles, in the
applied and computational literature, the compatibility conditions being implicitly or explicitly mentioned.
For the Navier–Stokes equations (NSE) the problem of the first and second compatibility conditions has been
addressed e.g. by Heywood [9], and Heywood and Rannacher [10]; in [10] the authors emphasize the compu-
tational relevance of the compatibility conditions. In his nice book [3], Gallavotti mentions the numerical dif-
ficulty caused by an inconsistency in the initial conditions for the NS equations; this difficulty relates to the
second compatibility condition (19) below, although the compatibility conditions are not alluded to. See also
the book of Kreisz and Lorenz [11] who address related issues (in particular in Chapter 10, Section 10.3.2) in
the context of the initialization by ‘‘the bounded derivative principle’’. Several articles of Gresho alone or with
co-authors address the initial and boundary conditions issues; see e.g. [4] where the first and second compat-
ibility conditions appear; see also the review articles [5,6]. These issues appear also explicitly in work by Boyd
and Flyer [1], Flyer and Fernberg [7], and Flyer and Swarztrauber [8]; see also the references in these articles.
These articles emphasize the computational impact of the CC and propose a number of remedies (in particular
computing analytically the singularities near t = 0, and ‘‘removing’’ them from the solutions).

2. One-dimensional equations

As indicated before we now describe the first and second compatibility conditions for three very simple
equations in space dimension one, the first ones being that the initial data satisfies the boundary conditions
of the problem, as we already observed in the case of the heat equation.

2.1. Heat equation

As indicated before, u0 and f are smooth, so that the solution u of (1) is smooth for t > 0. We infer from the
boundary condition at x = 0 that
1 We realize that this factual remark somehow contradicts the irreversible nature of certain phenomenas, e.g. those described by
parabolic equations. Irreversibility reappears however in the fact that one can solve initial boundary value problems for parabolic
equations with initial data which are not the final value of an anterior phenomenon.
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� o2u
ox2
ð0; tÞ ¼ f ð0; tÞ; t > 0
so that, if u is C2 up to t = 0, we must have
� d2u0

dx2
ð0Þ ¼ f ð0; 0Þ: ð2Þ
With the similar condition at x = 1 and
u0ð0Þ ¼ u0ð1Þ ¼ 0; ð3Þ
we obtain the necessary and sufficient conditions for u to be C2 up to (near) t = 0, see [14].

Remark 1. The case where the boundary conditions in (1) are not homogeneous can be treated in a similar
manner. If, instead of (1), we have

uð0; tÞ ¼ g ðtÞ; uð1; tÞ ¼ g ðtÞ; ð4aÞ
0 1
we can either address this problem directly or reduce it to the case (1) by considering v(x, t) = u(x, t) � (g1(t) �
g0(t))(x � 1) � g1(t). We thus obtain the first and second compatibility conditions which read:
u0ð0Þ ¼ g0ð0Þ and u0ð1Þ ¼ g1ð0Þ;
dg0ð0Þ

dt ¼
d2u0

dx2 ð0Þ þ f ð0; 0Þ;
dg1ð0Þ

dt ¼
d2u0

dx2 ð1Þ þ f ð1; 0Þ:

8>><
>>:

ð4bÞ
Figs. 1–6 show the evolution of the error in space and/or time for the solution u of (1)–(4b) with
f = 0, g0(t) = 1, g1(t) = 0 and u0(x) = x(1 � x) so that none of the first and second CC is satisfied at x = 0,
and the first CC only is satisfied at x = 1. On these figures one can observe how significant are the initial errors
already induced by the lack of CC for such an elementary problem. A similar example appears in [FF] but
many more similar examples can be constructed.

Remark 2. Unlike the wave equations considered in Section 2.2, the heat equation and the Navier–Stokes
equation considered in Section 3 relate to irreversible phenomena, so that, physically, it is not thinkable to
consider the resolution of these equations backward in time. Nevertheless as explained in Section 1 and as it
appears in this equation, the past does exist and somehow reflects itself in the compatibility conditions.
Fig. 1. Pointwise error, 0 < x < 1, 0 < t < 1, with timestep = 0.001, spacestep = 0.001.
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Fig. 2. Pointwise error, at t = 0.01, 0 < x < 0.1.

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

er
ro

r

Fig. 3. Pointwise error, at x = 0.01, 0 < t < 0.1.
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Fig. 4. Time evolution of the maximum error.
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Fig. 5. Time evolution of the error along the left boundary.
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Fig. 6. Time evolution of the error along the right boundary.
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2.2. Convection and wave equations

Consider the problem
ou
ot þ ou

ox ¼ f ; 0 < x < 1; t > 0;

uð0; tÞ ¼ 0;

uðx; 0Þ ¼ u0ðxÞ:

8><
>: ð5Þ
This problem is well-posed for f and u0 smooth and we have
ou
ox
ð0; tÞ ¼ f ð0; tÞ; t > 0;
so that, if u is smooth near t = 0, then
du0

dx
ð0Þ ¼ f ð0; 0Þ: ð6Þ
Together with
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u0ð0Þ ¼ 0; ð7Þ

we obtain the necessary and sufficient conditions for u to be C1 near t = 0; see [13].

Finally, consider the 1D wave equation
o2u
ot2 � o2u

ox2 ¼ f ; 0 < x < 1; t > 1;

uð0; tÞ ¼ uð1; tÞ ¼ 0;

uðx; 0Þ ¼ u0ðxÞ; ou
ot ðx; 0Þ ¼ u1ðxÞ; 0 < x < 1:

8><
>: ð8Þ
As before we see that if u is C2 near t = 0, then necessarily
u0ð0Þ ¼ u0ð1Þ ¼ u1ð0Þ ¼ u1ð1Þ ¼ 0;

� d2u0

dx2 ð0Þ ¼ f ð0; 0Þ; � d2u0

dx2 ð1Þ ¼ f ð1; 0Þ;

� d2u1

dx2 ð0Þ ¼ of
ot ð0; 0Þ; � d2u1

dx2 ð1Þ ¼ of
ot ð1; 0Þ:

8>><
>>:

ð9Þ
Conversely, it is shown in [14] that if u0, u1, f are smooth and satisfy (9) then u is C2 near t = 0.
3. Generalization: Navier–Stokes equations

In this section, we present the general form of the compatibility conditions and then consider the special
case of the Navier–Stokes equations.
3.1. Generalization

Let X be a domain of Rd with boundary oX and let u be a scalar or vector solution of a partial differential
equation
ou
ot
þ P ðDÞu ¼ f in X� ð0; T Þ; ð10Þ
where P(D) is a linear spatial differential operator. If u is smooth then, by successive time differentiation of
(10), one can compute all time derivatives of u in terms of spatial derivatives of u and f up to the boundary:
o
2u

ot2
¼ of

ot
� P ðDÞ ou

ot
¼ of

ot
� P ðDÞ½f � P ðDÞu�; ð11Þ
etc. If u is smooth up to t = 0 and, say, u vanishes on some part C0 of oX, then
u0 ¼ 0 on C0;

½f � P ðDÞu0� ¼ 0 on C0;
of
ot � P ðDÞf jt¼0 þ P ðDÞ2u0 ¼ 0 on C0; etc:

8><
>: ð12Þ
The conditions (12)1–(12)3 are the first, second and third compatibility conditions on u0 and f, and are neces-
sary, for u to be C0;C1;C2 near t = 0. The kth compatibility condition necessary for u to be Ck near k = 0
reads
o
ku

otk
ðx; 0Þ ¼ 0; x 2 C0; t ¼ 0; ð13Þ
where the left-hand side of (13) has been expressed as in (11) in terms of u0 and its spatial derivatives, and f and
its time and spatial derivatives.

Showing that these conditions are necessary has been easy; showing that they are necessary has been done
in [13] for hyperbolic equations and in a number of references for parabolic or wave equations; see also [14].

Although the brief presentation in this section is for a linear partial differential equations, the approach
applies also to nonlinear problems with of course some additional technical difficulties and we now consider
the case of the Navier–Stokes equations.
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3.2. Navier–Stokes equations

The remarkable feature of the compatibility conditions for the Navier–Stokes equations is that, due to the
incompressibility condition and the presence of the pressure, these CC are global in nature.

Consider the Navier–Stokes equations (NSE) in the smooth bounded domain X of Rd ; d ¼ 2 or 3, with no-
slip boundary condition on oX:
ou
ot � mDuþ ðu � rÞuþrp ¼ f; x 2 X; t > 0;

div u ¼ 0; x 2 X; t > 0;

u ¼ 0 on oX;

uðx; 0Þ ¼ u0ðxÞ; x 2 X:

8>>><
>>>:

ð14Þ
The mathematical theory of the NSEs makes use of the space
H ¼ fv 2 L2ðXÞd ; div v ¼ 0; v � n ¼ 0 on oXg;

with n the unit outward normal on oX. By projecting the first equation (14) onto the space H we obtain (see
e.g. [15]), the weak (Leray) form of the system:
du
dt þ mAuþ Bðu; uÞ ¼ f;

uð0Þ ¼ u0;

�
ð15Þ
where Au = �PDu, B(u, u) = P((u Æ $)u), and P is the Helmholtz–Leray projection from L2(X)d onto H and
f = Pf for simplicity (that is div f = 0, and f Æ n = 0 on oX). One can solve the initial value problem (14)
and (15), at least locally in time, for u0 2 H (see [15]). For more regularity at t = 0, we will require that
u0 2 V ¼ fv 2 H 1
0ðXÞ

d
; div v ¼ 0g: ð16Þ
Here, H 1
0ðXÞ is the Sobolev space of functions in L2(X) with first derivatives in L2(X) and which vanish on oX;

(16) is the first CC for the Navier–Stokes equations. The second CC is that
du

dt

����
t¼0

¼ P fð0Þ � Bðu0; u0Þ � mAu0 2 V : ð17Þ
Since the right-hand side of (17) is divergence free, the only requirement in (17) (see [14]), is that the right-
hand-side of (17) vanishes on the boundary oX. Define the function p0 (the initial pressure) by solving the Neu-
mann problem
Dp0 ¼
Xd

i;j¼1

ou0i

oxj

ou0j

oxi
in X;

op0

on
¼ n � ðmDu0Þ on oX:
Then the right-hand side of (17) is equal to
fð�; 0Þ þ mDu0 � ðu0 � $Þu0 � $p0: ð18Þ

Since the normal component of (18) on oX vanishes by definition of p0, the condition is then that
The tangential component of $p0 on oX is equal

to the tangential component of mDu0 þ fð�; 0Þ:
ð19Þ
This is the second compatibility condition for the Navier–Stokes equations [14], appearing as well in the ref-
erences quoted above [9,10,3(Section 2.1.3),4].

4. Remarks and conclusions

(i) The higher order compatibility conditions for the Navier–Stokes equations appear in [14] (in an abstract
(mathematical) form).

(ii) The difficulty described here has nothing to do with the question of occurrence of singularities in finite
time for the 3D Navier–Stokes equation. Our analysis relates to smooth data and solutions that are
smooth for t > 0.
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(iii) Returning to the computational problem, the unavoidable issue is, for a general u0 not satisfying (19), to
solve an exact or approximate form of the Navier–Stokes equation with this initial data u0 until u(Æ, t)
satisfies (19) for some t0 > 0, after what u(Æ, t0) will be the actual initial data. Finding non-costly proce-
dures of this type remains an open question. It may relate to the ‘‘preparation’’ of the initial data men-
tioned in Section 1.

(iv) We conclude this note with an erratum for [14]: (1.11) read: ‘‘and H is a closed subspace of E0’’ (instead
of H = E0); (1.14) reads: A is an isomorphism from Em+2 \ V2 onto Em \ H, "m P 0; (1.16), read:
"u 2 Em+2 \ V2, m P 0. In the definition of Wm at the bottom of page 76 read ‘‘v 2 Cð½0; T �;
Em \ HÞ’’ instead of ‘‘v 2 Cð½0; T �; EmÞ’’; (1.20) reads ‘‘u 2 Cð½0; T �; Em \ HÞ’’. The first sign in (1.23) is
+ instead of �. The second proof of Theorem 2.1 in Section 2.3 is not valid at this level of generality
and is withdrawn.
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