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Abstract We study the local balance of momentum for weak solutions of incom-
pressible Euler equations obtained from the zero-viscosity limit in the presence
of solid boundaries, taking as an example flow around a finite, smooth body.
We show that both viscous skin friction and wall pressure exist in the invis-
cid limit as distributions on the body surface. We define a nonlinear spatial
flux of momentum toward the wall for the Euler solution, and show that wall
friction and pressure are obtained from this momentum flux in the limit of van-
ishing distance to the wall, for the wall-parallel and wall-normal components,
respectively. We show furthermore that the skin friction describing anomalous
momentum transfer to the wall will vanish if velocity and pressure are bounded
in a neighborhood of the wall and if also the essential supremum of wall-normal
velocity within a small distance of the wall vanishes with this distance (a precise
form of the non-flow-through condition). In the latter case, all of the limiting
drag arises from pressure forces acting on the body and the pressure at the
body surface can be obtained as the limit approaching the wall of the interior
pressure for the Euler solution. As one application of this result, we show that
Lighthill’s theory of vorticity generation at the wall is valid for the Euler solu-
tions obtained in the inviscid limit. Further, in a companion work, we show that
the Josephson-Anderson relation for the drag, recently derived for strong Navier-
Stokes solutions, is valid for weak Euler solutions obtained in their inviscid limit.

1. Introduction

It was proposed by Taylor as early as 1915 [44] that in turbulent fluid flows
interacting with a solid boundary there may be a “finite loss of momentum at
the walls due to an infinitesimal viscosity”, and he suggested also an analogy
with weak solutions of the fluid equations describing shocks. The corresponding
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phenomenon of “inertial energy dissipation” has been much investigated since
Onsager pointed out the criticality of 1/3 Hölder singularity of the velocity field
for such dissipation [38]: see [10, 11, 19, 22] for proofs of the necessity of these
singularities and [6,31] for proofs that such dissipative solutions exist. This line of
investigation has been recently extended to wall-bounded turbulence by Bardos
& Titi [2] and by several following works [3,9,16], which all consider the balance
of kinetic energy rather than momentum. However, there is a well-developed
phenomenology of spatial “momentum cascade” in wall-bounded turbulent flows,
closely analogous to the energy cascade through scales in the bulk of the flow
away from solid boundaries [32, 45, 49]. As discussed in our previous work [26],
the mathematical methods applied to study Onsager’s dissipation anomaly due
to energy cascade should apply as well to the spatial momentum cascade.

We make such a study here in the context of flow around a finite solid
body with smooth surface, which was the subject of the famous paradox of
d’Alembert [12, 13]. The type of situation we consider is illustrated in Fig. 1,
which shows a finite body B and the exterior flow domain Ω = R3 \B on which
the incompressible Navier-Stokes equation is assumed to be satisfied

∂tu
ν +∇ · (uν ⊗ uν + pνI)− ν4uν = 0, ∇ ·uν = 0, x ∈ Ω (1)

subject to the boundary conditions

uν |∂B = 0, uν ∼
|x|→∞

V. (2)

Here the pressure pν is to obtained from the Poisson equation with Neumann
boundary conditions inherited from the previous equations:

−4pν =∇⊗∇ : (uν ⊗ uν), x ∈ Ω;
∂pν

∂n
= νn ·4uν , x ∈ ∂Ω. (3)

where n is the normal vector at the boundary ∂B directed into the domain Ω.
We shall assume in this work that B ⊂ R3 is closed, bounded, and connected and
that the boundary ∂B = ∂Ω is a C∞ manifold embedded in R3. See [42] for a
mathematical treatment of Navier-Stokes solutions in such unbounded domains
(and even when the solid boundary is non-smooth) and see [43] and references
therein for discussion of the closely related problem of the rigid motion of the
solid body B through an incompressible fluid filling the complement. We con-
sider this particular situation because of a new mathematical approach to the
d’Alembert paradox based on a Josephson-Anderson relation inspired by quan-
tum superfluids [24], which will be the subject of a following paper [41] that
builds upon our analysis here. However, our results in this paper apply with mi-
nor changes to other flows involving solid walls, including interior flows within
bounding walls such as Poiseuille flows through pipes and channels.

Our results and analysis here are modelled closely after those of Duchon &
Robert [19], who established a kinetic energy balance distributionally in space-
time for weak solutions of incompressible Euler and Navier-Stokes equations.
In particular, under suitable assumptions, [19] showed that the (viscous and
inertial) dissipation ν|∇uν |2 + D(uν) for a sequence of Leray solutions with
viscosity tending to zero must converge to a positive distribution (Radon mea-
sure) which agrees also with the inertial dissipation D(u) for weak solutions of
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Figure 1. Flow around a finite body B in an unbounded region Ω filled with an incompressible
fluid moving at a velocity V at far distances.

Euler equations obtained in the inviscid limit. In order to generalize the Duchon-
Robert analysis to obtain a momentum balance distributionally in space-time,
we have had to make two key modifications. First, we do not treat admissable
Leray weak solutions of the Navier-Stokes equations, but instead assume that
all Navier-Stokes solutions are strong. The technical reason for this decision is
that our argument requires consideration of the global momentum balance of
the Navier-Stokes solution, in which spatial integration by parts yields an in-
tegral over ∂B of the viscous Newtonian stress. However, the known regularity
of Leray solutions does not suffice to take the trace of the velocity-gradient at
the boundary and thus the validity of the global momentum balance, to our
knowledge, remains open for Leray solutions. There seems to be no loss of phys-
ical significance of our results by assuming strong solutions, however, since there
is no empirical evidence for Leray-type singularities in any known fluid flow.
The second and related difference is that our argument involves smearing the
Navier-Stokes solutions with elements of an enlarged space of test functions,
which need not be compactly supported in the open set Ω but which may in-
stead be non-vanishing on ∂Ω and have there one-sided derivatives of all orders.
A convenient definition of this non-standard class of test functions on Ω̄× (0, T )
is as restrictions of standard test functions on R3 × (0, T ):

D̄(Ω̄ × (0, T )) :=
{
ϕ = φ|Ω̄×(0,T ) : φ ∈ C∞c (R3 × (0, T )),

supp(φ) ∩ (Ω × (0, T )) 6= ∅} (4)

This class of test functions is employed precisely to obtain crucial surface con-
tributions from the pressure and Newtonian stress after integration by parts. As
an aside, we note that for the initial-value problem the space D̄(Ω̄ × [0, T ))
:=

{
ϕ = φ|Ω̄×[0,T ) : φ ∈ C∞c (R3 × (−T, T )), supp(φ) ∩ (Ω × (0, T )) 6= ∅

}
could

be similarly introduced, requiring slight elaboration of the arguments below.
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Our first result is that, under stated assumptions, distributional limits exist
as viscosity tends to zero both for the normal stress or pressure and for the
tangential Newtonian stress on the body surface, when these are considered
as distributional sections of the normal and tangent bundles of the surface,
respectively. More precisely, since we consider space-time distributions, we define
the manifold (∂B)T := ∂B × (0, T ) ⊂ R3 × R with the natural product C∞

structure and with no boundary, or ∂(∂B)T = ∅. Recalling that n is the normal
vector at ∂B pointing into Ω, we define pressure stress acting on the wall by

− pνwn := −pν |(∂B)Tn ∈ D
′((∂B)T ,N (∂B)T ) (5)

as a distributional section of the normal bundle N (∂B)T and wall shear stress

τ νw = 2νSν |(∂B)T · n = ν
∂u

∂n

∣∣∣∣
(∂B)T

= νων |(∂B)T ×n ∈ D′((∂B)T , T (∂B)T )

(6)
as a distributional section of the tangent bundle T (∂B)T . Here we have intro-
duced the strain-rate tensor and the vorticity vector

Sνij =
1

2

(
∂uνi
∂xj

+
∂uνj
∂xi

)
, ων =∇×uν , (7)

and note that the second equality in Eq.(6) is a well-known consequence of the
stick b.c. on the velocity field [35]. See section 2 for our notations and conventions
on differential geometry.

We then prove the following result:

Theorem 1. Let (uν , pν) be strong solutions of Navier-Stokes equations (1)-
(3) on Ω̄ × (0, T ) for ν > 0. Assume that (uν)ν>0 converges strongly to u in
L2((0, T ), L2

loc(Ω)) :

uν
ν→0−−−−−−−−−−−→

L2((0,T ),L2
loc(Ω))

u. (8)

and that (pν)ν>0 converges strongly to p in L1((0, T ), L1
loc(Ω)) :

pν
ν→0−−−−−−−−−−−→

L1((0,T ),L1
loc(Ω))

p. (9)

Further assume that for some ε > 0 arbitrarily small, with Ωε := {x ∈ Ω :
dist(x, ∂B) < ε},

uν uniformly bounded in L2((0, T ), L2(Ωε)) (10)

pν uniformly bounded in L1((0, T ), L1(Ωε)). (11)

Then, the limit (u, p) is a weak Euler solution on Ω× (0, T ), and τ νw, p
ν
wn have

limits as surface distributions, i.e.

τ νw
ν→0−−−→ τw in D′((∂B)T , T (∂B)T ) (12)

pνwn
ν→0−−−→ pwn in D′((∂B)T ,N (∂B)T ) (13)
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Remark 1. This theorem is analogous to Proposition 4 of Duchon & Robert [19]
who proved that the inviscid limit of the local dissipation in Leray solutions, or
limν→0[ν|∇uν |2 +D(uν)], exists in the sense of space-time distributions, under
similar assumptions as ours. The essential identities (83),(100) employed in our
proof have been previously exploited to formulate error estimates for drag and
lift forces, for the purpose of adaptive mesh refinement in numerical simulation;
see [30], Eq.(25). The assumption (8) on strong L2 convergence of velocities
is motivated by results established and reviewed in [18], which provide phys-
ically reasonable conditions for such convergence in the case of interior flows
in bounded domains. Our assumptions (10)-(11) on boundedness in a small
ε-neighborhood of the boundary are motivated by the similar assumptions in
Theorem 1 of [17], but are much weaker and modelled on our hypotheses (8),(9).
The latter do not, of course, imply (10)-(11) because the Lploc(Ω) conditions in
(8),(14) imply boundedness of Lp(U)-norms only for U ⊂⊂ Ω.

Remark 2. The assumption (9) on the pressure is much stronger than required.
All that is needed is an hypothesis which guarantees that along a suitable subse-
quence of ν, pν → p ∈ L1((0, T ), L1

loc(Ω)) distributionally. For example, it would
suffice to replace (9) instead with the following:

pν is uniformly bounded in Lq((0, T ), Lqloc(Ω)), for some q > 1. (14)

The assumption (14) means more precisely that there exists an increasing se-
quence of open sets Ωk ⊂⊂ Ωk+1 with ∪kΩk = Ω such that for each k ≥ 1

sup
ν>0
‖pν‖Lq((0,T ),Lq(Ωk)) <∞. (15)

Thus, by the Banach-Alaoglu theorem applied iteratively in k, we can find for

each k a subsequence (ν(k)) so that pν
(k)
j ⇀ p weakly in Lq((0, T ), Lq(Ωk)) as

j → ∞ and such that (ν(k+1)) is a further subsequence of (ν(k)). In that case,

it is easy to see that the diagonal subsequence ν∗j = ν
(j)
j has limj→∞ pν

∗
j = p

weakly in Lq((0, T ), Lq(Ωk)) for all k ≥ 1, thus also distributionally, and then
p ∈ Lq((0, T ), Lqloc(Ω)).

Remark 3. The proof of Theorem 1 is based on the concept of an extension
operator for smooth test functions on the boundary into the interior flow domain.
To prove (12) we must consider test functions ψ on D′((∂B)T , T ∗(∂B)T ), which
are smooth sections of the cotangent bundle, and an extension is then a map
Ext : ψ ∈ D((∂B)T , T ∗(∂B)T ) 7→ ϕ ∈ D̄(Ω̄ × (0, T ),R3) which is linear and
continuous in the appropriate sense, with the pointwise equality

ϕ|(∂B)T = (Projs ◦ ιT )(ψ) (16)

where ιT is the natural inclusion map of the tangent bundle into its ambient
Euclidean space:

ιT : T (∂B)T → (R3 × R)× (R3 × R) (17)

and Projs is the projection onto the spatial vector component

Projs : (R3 × R)× (R3 × R)→ R3 (18)

((x, t), (u, v)) 7→ u. (19)



6 H. Quan & G. Eyink

We define similarly the projection Projst onto the space-time component (u, v).
See section 2 where we define the set ET of such extensions and prove that it
is non-empty, by constructing an explicit example. Likewise, the proof of (13)
requires the definition of a set EN consisting of continuous linear extensions
Ext : ψ ∈ D((∂B)T ,N ∗(∂B)T ) 7→ ϕ ∈ D̄(Ω̄ × (0, T ),R3) which satisfy the
analogous pointwise equality as (16) for smooth sections of the conormal bundle.

The weak Euler solutions obtained in Theorem 1 are “viscosity solutions”
resulting from the inviscid limit. Weak solutions are equivalent to “coarse-grained
solutions” in the sense of [16], with slight modifications made due to the presence
of boundaries. As in [16], we introduce the spatial coarse-graining operation

f ∈ L1
loc(Ω) 7→ f̄`(x) =

∫
R3

G`(r)f(x + r)V (dr), x ∈ Ω` := Ω \Ω` (20)

with G`(r) := `−3G(r/`) a standard mollifier, assumed supported on the unit
ball for simplicity. To take into account the domain boundary, following [2,17] we
introduce a smooth window function θh,` : R 7→ [0, 1], which is non-decreasing,

0 on (−∞, h], and 1 on [h+ `,∞), with derivative
∥∥∥θ′h,`∥∥∥

L∞(R)
≤ C`−1 for some

constant C independent of h and `. We then denote ηh,`(x) := θh,`(d(x)), where
d is the distance function

d(x) := min
y∈∂B

|x− y| (21)

noting that for x ∈ Ωε with sufficiently small ε > 0, d(x) = |x−π(x)| for a unique
choice π(x) ∈ ∂B and ∇d(x) = n(π(x)) := n(x). See [2, 17] and also section 2.
If the Navier-Stokes momentum balance equation (1) is both coarse-grained and
windowed, then for ` < h it yields:

∂t(ηh,`ū
ν
` ) +∇ · (ηh,`T̄ν

` + ηh,`p̄
ν
` I) =∇ηh,` · T̄ν

` + p̄ν`∇ηh,` + νηh,`4ūν` (22)

where we have introduced the advective stress tensor T̄ν
` = uν ⊗ uν . The follow-

ing result describes the inviscid limit:

Proposition 1. Assume conditions (8)-(14) as in Theorem 1. Then as ν → 0,
the coarse-grained momentum equation (22) converges pointwise for x ∈ Ω and
distributionally for t ∈ [0, T ] to the following equation,

∂t(ηh,`ū`) +∇ · (ηh,`T̄` + ηh,`p̄`I) =∇ηh,` · T̄` + p̄`∇ηh,`. (23)

with T̄` = u⊗ u for the limiting Euler solution (u, p) in Theorem 1. The set of
equations (23) for all h > ` > 0 are equivalent to the standard weak formulation
of the momentum balance for incompressible Euler equations.

The proof of this proposition is straightforward and left to the reader. For the
final statement, see [16], Section 2. The importance of the proposition is that it
identifies nonlinear spatial flux of momentum toward the wall at distance h as

− (∇ηh,` · T̄` + p̄`∇ηh,`) ∈ D′((0, T ), C∞c (Ω)), (24)

where recall that ∇ηh,` = η′h,`(d(x))n(π(x)), when h is sufficiently small.
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Our next main theorem states that this spatial flux of momentum (both
its components wall-parallel and wall-normal) matches onto the corresponding
components of the limiting wall stress which were established in Theorem 1.
Since those inviscid limits were defined as sectional distributions of the tangent
and normal bundles, we must identify momentum flux (24) with similar sectional
distributions. To accomplish this, we use the idea of extensions in Theorem 1 to
define e.g. Ext∗(∇ηh,` · T̄` + p̄`∇ηh,`) ∈ D′((∂B)T , T (∂B)T ) with Ext ∈ ET as

〈Ext∗(∇ηh,` · T̄` + p̄`∇ηh,`),ψ〉 = 〈∇ηh,` · T̄` + p̄`∇ηh,`,Ext(ψ)〉

for all ψ ∈ D((∂B)T , T ∗(∂B)T ). The righthand side is meaningful and defines
a sectional distribution of the tangent bundle because of regularity (24) and
linearity and continuity of Ext ∈ ET . Likewise, with Ext ∈ EN one can define
Ext∗(∇ηh,` · T̄` + p̄`∇ηh,`) ∈ D′((∂B)T ,N (∂B)T ). For details, see Section 2.

We then have:

Theorem 2. Under the assumptions (8)-(11) of Theorem 1, then for 0 < ` < h
and for all Ext ∈ ET

− lim
h,`→0

Ext∗(∇ηh,` · T̄` + p̄`∇ηh,`) = τw in D′((∂B)T , T (∂B)T ) (25)

Likewise, for 0 < ` < h and for all Ext ∈ EN

− lim
h,`→0

Ext∗(∇ηh,` · T̄` + p̄`∇ηh,`) = −pwn in D′((∂B)T ,N (∂B)T ). (26)

Remark 4. This result is analogous to the second part of Proposition 4 of Duchon
& Robert [19], stating not only that D(u) = limν→0[ν|∇uν |2 +D(uν)] exists but
also that it coincides with the “inertial energy dissipation” of [19], Proposition
2, which defines it as a distributional limit of energy flux to vanishingly small
length scales, D(u) = lim`→0D`(u). In fact, our proof of Theorem 2 is a direct
adaptation of the proof in [19].

Remark 5. It is not geometrically natural that pressure stress should contribute
to the cascade of wall-parallel momentum, as it apparently does in (25). In fact,
as previously noted,∇ηh,` = θ′h,`n for sufficiently small h, and the term p̄`∇ηh,`
should give vanishing contribution in the tangent bundle. This can be shown if
we define a class of natural extensions ẼT which consists of those Ext ∈ ET such
that ∀ψ ∈ D((∂B)T , T ∗(∂B)T ), ϕ = Ext(ψ) satisfies

‖ϕ · n‖L∞((Ωh+`\Ωh)×(0,T )) ≤ C` (27)

(possibly with `/h bounded from below) for constant C independent of h, `. We

show in Section 2 that ẼT 6= ∅ by explicit construction. We then obtain from the
preceding theorem the following simple corollary:

Corollary 1. For Ext ∈ ẼT , then under the assumption (11) of Theorem 1,
limh,`→0 Ext∗(p̄`∇ηh,`) = 0. Thus, under all of the assumptions (8)-(11) of
Theorem 1,

− lim
h,`→0

Ext∗(∇ηh,` · T̄`) = τw in D′((∂B)T , T (∂B)T ) (28)

for any Ext ∈ ẼT .
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Finally, we establish sufficient conditions for vanishing cascade of momentum
to the wall via spatial advection:

Proposition 2. Assume that u ∈ L2((0, T ), L2
loc(Ω)) so that T` = u⊗ u is

well-defined. Assume further for some ε > 0 the boundedness property in the
vicinity of the wall

u ∈ L2((0, T ), L∞(Ωε)) (29)

and the no-flow-through condition at the boundary in the sense

lim
δ→0
‖n · u‖L2((0,T ),L∞(Ωδ))

= 0. (30)

Then, for all Ext ∈ ET ,

lim
h,`→0

Ext∗(∇ηh,` · T̄`) = 0 in D′((∂B)T , T (∂B)T ) (31)

and for all Ext ∈ EN ,

lim
h,`→0

Ext∗(∇ηh,` · T̄`) = 0, in D′((∂B)T ,N (∂B)T ). (32)

Remark 6. This result can be regarded as an analogue of Duchon & Robert, [19]
Proposition 3, which showed that lim`→0D`(u) = 0 when the velocity field satis-

fies a regularity condition slightly stronger than u ∈ L3((0, T ), B
1/3,∞
3 (Ω)). Our

assumption (30) can be regarded as a corresponding assumption on continuity
of the normal velocity at the wall, the importance of which has been recognized
in prior work: see Remark 3.2 in [2], assumption 1, Eq.(4.3b) of Theorem 4.1
in [3], and assumption (12) of Theorem 1 in [17]. Our near-wall boundedness
assumption (29) is likewise motivated by assumption (11) of Theorem 1 in [17],
but requiring only L2 rather than L3 sense in time.

Combining Proposition 2 with Theorems 1 & 2, and Corollary 1 yields our
main result:

Theorem 3. Make all of the assumptions (8)-(11) of Theorem 1, and assume
further that the limiting weak Euler solution (u, p) in that theorem satisfies the
near-wall boundedness (29) and no-flow-though condition (30) in Proposition 2.

Then, for all Ext ∈ ẼT ,

− lim
h,`→0

Ext∗(∇ηh,` · T̄`) = τw = 0 in D′((∂B)T , T (∂B)T ) (33)

and for all Ext ∈ EN ,

− lim
h,`→0

Ext∗(p̄`∇ηh,`) = −pwn, in D′((∂B)T ,N (∂B)T ). (34)

where the distributions τw ∈ D′((∂B)T , T (∂B)T ), pwn ∈ D′((∂B)T ,N (∂B)T )
are those obtained in Theorem 1.
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Remark 7. The result (33) implies that Taylor’s conservation anomaly for tan-
gential momentum, under the stated hypotheses, can be only a “weak anomaly”.
Here we employ the terminology from [5] (also [26]) according to which τ νw is
“weakly anomalous” if it vanishes as Re→∞, but more slowly than it does for
laminar flow where τ νw ∝ 1/Re. Such a weak anomaly for tangential momentum
conservation would imply that all drag in the inviscid limit arises from the “form
drag” due to pressure stress (34) acting in the direction of the external flow V.

There is a great deal of empirical evidence from experiments and numerical
simulations which supports this picture. For example, in the experimental study
[1] for high-Reynolds flow around a smooth sphere, τ νw ∝ Re−1/2 in the front of
the sphere, consistent with the boundary-layer theory of Prandtl [20,35,39], and
vanishes a bit slower in the turbulent wake region after flow separation behind
the sphere (see [1],Fig.7(a)). The form drag from pressure stress thus becomes
becomes dominant for very large Reynolds numbers (see [1], Fig.10). For flow
through a straight, smooth-walled pipe, as reviewed in [26], geometry does not
permit wall pressure stress to act parallel to the mean flow direction and drag
vanishes as Re → ∞. If, instead, the pipe walls are mathematically smooth
but “hydraullically rough”, then form drag is again geometrically possible and
it becomes dominant over the contribution from τ νw in the large-Re limit; e.g.
see [7], Fig.10. For related evidence in many other flows, see [8, 24].

The only possible exception of which we are aware comes from a 2D numerical
simulation of a vortex quadrupole impinging on a flat wall [37]. Evidence was
presented in [37], Figure 12, that the maximum vorticity at the wall in that flow
scales ∼ Re, which would imply τw 6= 0 at least at one point. It is possible
that our strong non-flow-through assumption (30) is invalid in this flow, since
reference [37] reports “a blow-up of the wall-normal velocity associated with
an abrupt acceleration of fluid particles away from the wall,” corresponding
to explosive boundary-layer separation. Another possible reconciliation of our
Theorem 3 with the numerical observations of [37] is that the nonzero τw values
reported may occur at only a zero-measure set of points of ∂Ω, so that still
τw = 0 in the sense of distributions and limδ→0 ess.supx∈Ωδ |u(x)| = 0.

Remark 8. On the other hand, the assumptions (29), (30) invoked in Theorem 3
imply the strong-weak uniqueness property for the resulting viscosity solutions
of Euler equations, e.g. see [48]. (We thank T. Drivas for insisting on this fact.)
This result is immediate when the flow domain Ω is a bounded open set with C∞

boundary ∂Ω and if there is an incompressible Euler solution U ∈ C∞(Ω×[0, T ))
which satisfies U · n = 0 everywhere on the boundary. In that case, we may
consider U as an extension ϕ into Ω of a smooth section of the surface cotangent
bundle and from the proof of Theorem 3 we obtain that the limiting viscosity
solution u must satisfy for a.e. τ ∈ (0, T )∫

Ω

[u(·, τ) ·U(·, τ)− u0 ·U0] dV =

∫ τ

0

∫
Ω

[∂tU · u +∇U : u⊗ u] dV dt. (35)

Strong-weak uniqueness for the admissable weak solution u then follows by a
remark of E. Feireisl recorded in [48], section 5. This argument may not apply
if U · n 6= 0 on part of the boundary (as for open flows through pipes), since
the above equation then gets a surface contribution from the pressure p of the
weak solution. This argument also does not apply for flow around a smooth finite
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body B as discussed in the present paper, because the smooth Euler solution
U will not generally be compactly supported in Ω and cannot be regarded as
a smooth extension. However, we shall see in our companion paper [40] that
strong-weak uniqueness nevertheless holds by a relative energy argument when
U is the potential Euler solution of d’Alembert and when assumptions (29), (30)
of Theorem 3 hold L3-in-time. In particular, if initial data uν0 for the Navier-
Stokes solution converge to U0 strong in L2(Ω) (allowing a vanishing boundary
layer to enforce stick conditions at the surface), then the limiting weak Euler
solution u must coincide with U, unless the conditions (29), (30) are violated. It
should be emphasized that, in fact, it is the consequence τw = 0 of Theorem 3
which implies strong-weak uniqueness for viscosity weak solutions, even if τw = 0
follows from assumptions weaker than (29), (30). Since τ νw = νωνw×n, a thin
enough boundary layer in the initial data uν0 may correspond to τ νw ∼ O(1) in
the surface vortex sheet and subsequent explosive separation of such a boundary
layer may violate our assumptions (29), (30) at early times.

Remark 9. The result (34) of Theorem 3 is a statement that pressure is contin-
uous at the wall in the inviscid limit, in the sense that the limit of zero distance
to the wall and the limit of infinite Reynolds-number commute with each other.
Such continuity helps to justify one of the fundamental assumptions in the theory
of Prandtl [20, 35, 39], which posited that pressure would be continuous across
thin viscous boundary layers at solid walls.

This result has further important implications for turbulence modelling, be-
cause it suggests that the asymptotic drag arising from pressure forces might be
calculated from Euler solutions in the fluid interior which arise from the infinite-
Re limit [18], without the need to resolve small viscous lengths at the wall. To
obtain the pressure field p from the Euler solution velocity field u involves the
solution of a Poisson equation analogous to Eq.(3), and this requires suitable
boundary conditions on the pressure. For smooth Euler solutions, the following
Neumann problem is generally solved:

−4p =∇⊗∇ : (u⊗ u), x ∈ Ω;
∂p

∂n
= (u⊗ u) :∇n, x ∈ ∂Ω, (36)

where the latter condition arises from the normal component of the Euler equa-
tion at the wall, assuming u · n = 0. Recently, in an interesting work [14] (follow-
ing [4]) it has been shown, assuming a weak Euler solution in a bounded domain
Ω with velocity u ∈ Cα(Ω), α ∈ (0, 1) and u · n = 0 on ∂Ω, that the pressure p
must satisfy the Neumann problem (36) in the weak form∫

Ω

[p4ϕ+ u⊗ u : (∇⊗∇)ϕ] dV =

∫
∂Ω

p
∂ϕ

∂n
dA, ∀ϕ ∈ C2(Ω̄) (37)

and, furthermore, that there is a unique weak solution of (37) with zero space-
mean which is at least Cα up to the boundary. This result offers hope that the
drag on the body in the infinite Reynolds limit can be computed entirely from
the limiting weak Euler solution.

Remark 10. The methods of this paper can be applied to another fundamental
cascade process in wall-bounded turbulence, which is the “inverse cascade” of
vorticity away from the wall; e.g. see [23, 24]. This topic will be discussed in
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detail in another work [25]. Here we just note a key result for inviscid-limit
Euler solutions which follows directly from the considerations in the present
paper: with the assumptions of Theorem 3, then for all Ext ∈ ET ,

lim
h,`→0

Ext∗
[
∇η`,h× ∂tū` +∇ηh,`× (∇ · T̄`)

]
= −(n×∇)pw. (38)

The quantity on the righthand side of this equation is the Lighthill vorticity
source [24, 35, 36], which describes the rate of generation of tangential vorticity
due to pressure gradients at the body surface. The term involving T̄` on the
lefthand side represents a spatial flux of vorticity away from the solid surface;
see [25]. One might naively expect the Lighthill source to be in balance with this
vorticity flux into the flow interior Ω. However, the time-derivative term has also
a simple physical interpretation, representing the rate of change of a tangential
vortex sheet of strength n×u at the body surface ∂Ω [25]. The meaning of (38)
is thus that vorticity generated at the surface by pressure gradients is either
cascaded into the flow interior or else accumulates in the surface vortex sheet.

It is worth sketching here briefly the derivation of this important result. For
any ψ ∈ D((∂B)T , T ∗(∂B)T ), let ϕ = Ext(ψ). Then it is not hard to show
that ((n×∇) ·ψ)n ∈ D((∂B)T ,N ∗(∂B)T ) and that (n · (∇×ϕ))n ∈ D̄(Ω̄ ×
(0, T ),R3) extends this test section into the interior. Since

− 〈(n×∇)pw,ψ〉 = 〈pwn, ((n×∇) ·ψ)n〉 (39)

we obtain from (34) in Theorem 3 that

− 〈(n×∇)pw,ψ〉 = lim
h,`→0

∫ T

0

∫
Ω

(∇×ϕ) · ∇ηh,` p̄` dV dt. (40)

On the other hand,∫ T

0

∫
Ω

(∇×ϕ) · ∇ηh,` p̄` dV dt = −
∫ T

0

∫
Ω

ϕ · ∇ηh,`×∇p̄` dV dt

=

∫ T

0

∫
Ω

[
−(∂tϕ) · ∇ηh,`× ū` +ϕ · ∇ηh,`× (∇T̄`)

]
dV dt (41)

where in the final line we used the coarse-grained momentum balance (23).
Combining the two results (40),(41) yields exactly (38), thus showing that the
Lighthill theory of vorticity generation is valid even in the infinite Reynolds-
number limit. The inviscid nature of vorticity production by tangential pressure
gradients was already emphasized by Morton [36].

Remark 11. A further application of the results of this work is given in the
companion paper [41], where the infinite-Reynolds limit will be established for
the Josephson-Anderson relation, which precisely relates vorticity flux from the
body to drag [24]. That relation decomposes the velocity into a contribution
uφ = ∇φ from the smooth, potential Euler solution studied by d’Alembert
[12,12] and the complementary contribution uνω = uν −uφ which represents the
rotational fluid motions. Most importantly, this field satisfies an equation for
conservation of “rotational momentum”

∂tu
ν
ω+∇ · (uνω⊗uνω+uνω⊗uφ+uφ⊗uνω+pνωI)−ν4uνω = 0, ∇ ·uνω = 0, x ∈ Ω

(42)
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subject to the boundary conditions

uνω|∂B = −uφ|∂B , uνω ∼
|x|→∞

0. (43)

and with the pressure pνω determined by the incompressibility constraint. Of
course, Eqs.(42),(43) are equivalent to the incompressible Navier-Stokes equa-
tions in their standard representation, Eqs.(1),(2). Because the equations (42)
are conservation-type, they have a weak formulation and therefore all of the re-
sults of the present work are valid also for Eqs.(42),(43) and, in particular, the
Theorems 1-3. Note in this context that the weak Euler solutions obtained in
the inviscid limit satisfy in distributional sense the equations

∂tuω+∇ · (uω⊗uω+uω⊗uφ+uφ⊗uω+pωI) = 0, ∇ ·uω = 0. x ∈ Ω (44)

The resulting weak solutions u = uφ + uω of incompressible Euler equations in
their standard form differ from the potential solution uφ of d’Alembert, with
non-vanishing vorticity corresponding to the rotational flow uω in the turbulent
wake behind the solid body.

2. Preliminaries

In this section, we summarize our notations and conventions on differential ge-
ometry and introduce the concept of extensions that we employ in our proofs.

2.1. Manifolds and Vector Bundles Associated to a Smooth Body. We consider
a body B that is a connected, compact domain in R3, with Ω = R3\B also
connected, and with common C∞ boundary ∂B = ∂Ω. The boundary ∂B is
then a connected compact C∞ hypersurface in R3, which is thus a level set of
a C∞ function f : B → [0,∞). That is, ∂B = f−1(0) and ∇f(x) 6= 0 for all
x ∈ ∂B. By the Regular Level Set Theorem ( [33], Corollary 5.14) the tangent
space at any x ∈ ∂B is given by

Tx∂B = ker(∇f(x)) = (∇f(x)R)⊥. (45)

Furthermore, the vector field

n(x) =
∇f(x)

|∇f(x)|
(46)

defines a unit normal vector of ∂B, and n is also smooth on ∂B by definition.
See chapter 5 in [33] for more details on submanifolds with a boundary.

Since ∂Ω is a compact C∞ submanifold of Ω, there exists η(Ω) > 0 such
that Ωε for any ε < η(Ω) is a neighborhood of ∂B ⊂ Ω with the unique nearest
point property : for any x ∈ Ω̄ε, there exists a unique point π(x) ∈ ∂B such that
dist(x, ∂B) = |x − π(x)|. The map π : Ω̄ε → ∂B is called the projection onto
∂B. One can show this projection map π is C∞ using the Tubular Neighborhood
Theorem. See chapter 6 in [33], and [27, 34] for more details. Thus the distance
function d : Ω̄ε → R is a smooth function in C∞(Ω̄ε), and

d(x) = dist(x, ∂B) = |x− π(x)|, ∇d(x) = n(π(x)) (47)
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The latter result follows by using appropriate local coordinates: see [29]. p.9.
Finally, we observe that ∂B is naturally Riemannian, with metric induced by
the embedding in Euclidean space.

We need to consider also additional manifolds associated with B. The first is
the space-time manifold (∂B)T := ∂B × (0, T ) with the product differentiable
structure, so that ∂(∂B)T = ∅. Since (∂B)T is a closed smooth hypersurface
in R3 × R, it is orientable and Riemannian. We consider also the associated
tangent bundle T (∂B)T ( [15], 16.15.4; [46], section 15.6; [33], Proposition 3.18).
As (∂B)T is an embedded submanifold of R3×R, T (∂B)T ⊂ (R3×R)×(R3×R)
We can describe the tangent space T(x,t)(∂B)T ∼= Tx∂B × Tt(0, T ) embedded in

R3 × R. We use ιT to denote the natural inclusion map of the tangent bundle
into its ambient Euclidean space:

ιT : T (∂B)T → (R3 × R)× (R3 × R). (48)

Finally, we need the normal bundle N (∂B)T ( [46], section 15.6; [33], Proposition
13.21), and we can take the normal space N(x,t)(∂B)T ∼= Nx∂B×{0} embedded

in R3×R. We use ιN to denote the natural inclusion map of the normal bundle
into its ambient Euclidean space:

ιN : N (∂B)T → (R3 × R)× (R3 × R). (49)

Because (∂B)T is orientable, the normal bundle N (∂B)T is trivial ( [33],Exercise
15.8) and every smooth section σ : (∂B)T → N (∂B)T can be identified with the
map (x, t) 7→ (x, t, σ(x, t)n(x), 0) for a smooth function σ : (∂B)T → R.

2.2. Distributions on Manifolds. The results on distributions that we require
in this paper follow as a special case of general theory for a C∞ manifold X
of dimension n, and a rank k vector bundle (E,Π,X) of X. Let ∪i∈I(Vi, Φi),
Vi ⊂ X, Φi : Π−1(Vi)→ Rn × Rk be a smooth structure of E, and ∪i∈I(Vi, φi),
φi : Vi → Rn be a corresponding smooth structure on X with Π1Φi = φiΠ. Here
Π1 projects onto the first factor of Rn × Rk and Π2 onto the second. We shall
denote by D(X,E) the space of smooth sections with compact support, which
is a Fréchet space with the seminorms defined by

ps,m,i(ψ) :=

k∑
j=1

p̃s,m,i((Π2Φi)
j ◦ ψ|Vi ◦ φ−1

i ) (50)

where ψ ∈ D(X,E) and the p̃s,m,i’s are a countable and separating basis of
seminorms on C∞(φi(Vi)) defined by

p̃s,m,i(f) = sup
x∈K(i)

m ,|α|≤s
|Dαf(x)| (51)

for f ∈ C∞(φi(Vi)). Here, m is the index of a fundamental increasing sequence

(K
(i)
m ) of compact subsets of φi(Vi). For further details, see [15], Chapter XVII.

Then, one can define the space of distributional sections by

D′(X,E) := D(X,E∗ ⊗ Λ̂n(X))′ (52)
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Here, E∗ is the dual bundle of E and Λ̂n(X) denotes the bundle of densities on
X. For these standard notions, see e.g. [28, 47]. One can embed D(X,E) into
D′(X,E) by

D(X,E) ↪→ D′(X,E) : ψ 7→ Tψ, 〈Tψ, f〉 :=

∫
X

trace(ψ ⊗ f) (53)

where trace(ψ ⊗ f) ∈ L1
loc(X, Λ̂n(X)) defines an integrable Radon measure on

X, for any ψ ∈ D(X,E) and f ∈ D(X,E∗ ⊗ Λ̂n(X)). We now specialize these
results for general vector bundles to the cases of interest.

Let D((∂B)T ; T ∗(∂B)T ) denote the space of smooth sections with compact
support of the cotangent bundle T ∗(∂B)T . Note that the tangent spaces are
finite-dimensional at each (x, t) ∈ (∂B)T and thus T ∗(∂B)T ' T (∂B)T as a
bundle isomorphism. For ψ ∈ D((∂B)T ; T ∗(∂B)T ) and (x, t) ∈ Vi ⊂ (∂B)T

ιT (ψ(x, t)) = (x, t,u, v), with u ∈ T ∗x ∂B ⊂ R3, v ∈ Tt(0, T ) = R (54)

By Prop.16.36 in [33], Λ̂3((∂B)T ) is a smooth line bundle of (∂B)T and as a
consequence of 15.29 in [33], this density bundle is trivialized by the Riemannian
volume form. Thus, we may identify

D((∂B)T ; T ∗(∂B)T )←→ D((∂B)T , T ∗(∂B)T ⊗ Λ̂3((∂B)T )) (55)

χ←→ χdS dt (56)

where dS is the volume form of ∂B (surface area). In that case, by the general
definition (52) applied to the tangent bundle

D′((∂B)T , T (∂B)T ) = D((∂B)T , T ∗(∂B)T )′, (57)

and we may embed

D((∂B)T ; T (∂B)T ) ↪→ D′((∂B)T , T (∂B)T ) (58)

χ 7→ Tχ, 〈Tχ, ψ〉 =

∫
(∂B)T

〈ψ, χ〉 dS dt (59)

for all ψ ∈ D((∂B)T ; T ∗(∂B)T ) and χ ∈ D((∂B)T ; T (∂B)T ).
Likewise, D((∂B)T ;N ∗(∂B)T ) denotes the space of smooth sections with

compact support of the conormal bundle N ∗(∂B)T ' N (∂B)T , so that for
ψ ∈ D((∂B)T ;N ∗(∂B)T ) and (x, t) ∈ Vi ⊂ (∂B)T ,

ιN (ψ(x, t)) = (x, t,u, 0), with u ∈ N ∗x∂B = {n(x)R}. (60)

Similarly as before, we may identify

D((∂B)T ;N ∗(∂B)T )←→ D((∂B)T ,N ∗(∂B)T ⊗ Λ̂3((∂B)T )) (61)

χ←→ χ dS dt (62)

In that case, by the general definition (52) applied to the normal bundle

D′((∂B)T ,N (∂B)T ) = D((∂B)T ,N ∗(∂B)T )′, (63)

and we may embed

D((∂B)T ;N (∂B)T ) ↪→ D′((∂B)T ,N (∂B)T ) (64)

χ 7→ Tχ, 〈Tχ,ψ〉 =

∫
(∂B)T

〈ψ,χ〉 dS dt (65)

for all ψ ∈ D((∂B)T ;N ∗(∂B)T ) and χ ∈ D((∂B)T ;N (∂B)T ).
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2.3. Extensions. The notion of an extension operator allows us to identify func-
tions in the interior domain Ω × (0, T ) with sectional distributions of T (∂B)T
and of N (∂B)T . Beginning with the tangent bundle, we define ET as the set of
all linear operators

Ext : ψ ∈ D((∂B)T , T ∗(∂B)T ) 7→ ϕ ∈ D̄(Ω̄ × (0, T ),R3 × R) (66)

satisfying pointwise equality (16) and continuous in the sense that for all multi-
indices α = (α1, α2, α3, α4) with |α| ≤ N , ∀(x, t) ∈ Ω̄ × (0, T ) and ∀m > 0

|Dαϕ(x, t)| = |DαExt(ψ)(x, t)| . sup
i∈I

pN,m,i(ψ) (67)

where, . denotes inequality with constant prefactor depending on the domain
(∂B)T and the extension operator Ext. Note that for (x, t) ∈ ∂Ω × (0, T ),
the derivatives Dα with non-vanishing spatial indices αi, i = 1, 2, 3 are one-
sided derivatives, which according to definition (4) may be calculated as Dαϕ =
Dαφ|Ω̄×(0,T ) for φ ∈ C∞c (R3 × (0, T ),R3), independent of the choice of φ. Fur-

thermore, if ψ ∈ D((∂B)T , T ∗(∂B)T ) is a space-like section of T ∗(∂B)T , so that

ιT (ψ(x, t)) = (x, t,u, 0), with u ∈ T ∗x ∂B ⊂ R3 (68)

for all (x, t) ∈ (∂B)T , then we may require that

Ext : ψ ∈ D((∂B)T , T ∗(∂B)T ) 7→ ϕ ∈ D̄(Ω̄ × (0, T ),R3 × {0}) (69)

We show that the set ET is non-empty, by constructing such an extension
operator explicitly. We define Ext0

T ∈ ET as a map

Ext0
T : ψ ∈ D((∂B)T , T ∗(∂B)T ) 7→ ϕ ∈ D̄(Ω̄ × (0, T ),R3 × R) (70)

by the explicit formula

ϕ(x, t) =

{
exp

(
− d(x)
ε−d(x)

)
(Projst ◦ ιT ◦ψ)(π(x), t), d(x) < ε

0 d(x) ≥ ε
(71)

for any ε < η(Ω). Then Ext0
T is clearly linear by the linearity of ιT and satisfies

ϕ|∂B = (Projst ◦ ιT )(ψ). ϕ is smooth by the smoothness of distance function
d and projection π in Ω̄ε. One can easily obtain the bound (67) for Ext0

T by
product rule and chain rule in calculus. Thus, Ext0

T is continuous. In particular,
for a space-like section ψ ∈ D((∂B)T , T ∗(∂B)T ), the condition (69) holds, so
that we may take ϕ ∈ D̄(Ω̄ × (0, T ),R3) with

ϕ|∂B = (Projs ◦ ιT )(ψ), ϕ(x, t) ⊥ n(π(x)) in Ωη(Ω). (72)

As a consequence of the second property, Ext0
T satisfies also the natural condi-

tion (27) and Ext0
T ∈ ẼT 6= ∅.

Similarly, we can define a set EN , consisting of maps

Ext : ψ ∈ D((∂B)T ,N ∗(∂B)T ) 7→ ϕ ∈ D̄(Ω̄ × (0, T ),R3), (73)

which are linear, continuous and satisfy

ϕ|∂B = (Projs ◦ ιN )(ψ). (74)
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The set EN is non-empty, because Ext0
N , defined for ε < η(Ω) by

ϕ(x, t) =

{
exp

(
− d(x)
ε−d(x)

)
(Projs ◦ ιN ◦ψ)(π(x), t), d(x) < ε

0 d(x) ≥ ε
(75)

for any ψ ∈ D((∂B)T ,N ∗(∂B)T ), provides an explicit example which satisfies
also the condition

ϕ(x, t) ‖ n(π(x)) in Ωη(Ω). (76)

One can use extension operators to identify F ∈ D′((0, T ), C∞(Ω̄,R3)) with
sectional distributions of the tangent and normal bundles. For example, for some
Ext ∈ ET we define

Ext∗ : D′((0, T ), C∞(Ω̄,R3))→ D′((∂B)T , T (∂B)T )

F 7→ Ext∗(F)
(77)

as follows:

〈Ext∗(F),ψ〉 := 〈F,Ext(ψ)〉 (78)

for all ψ ∈ D((∂B)T , T ∗(∂B)T ). Linearity and continuity properties of Ext∗(F)
follow from those of Ext ∈ ET ∗ , so that Ext∗(F) ∈ D′((∂B)T , T (∂B)T ). Note
that this identification depends on the choice of the extension operator Ext.
Likewise, we can define

Ext∗ : D′((0, T ), C∞(Ω̄,R3))→ D′((∂B)T ,N (∂B)T ) (79)

for each Ext ∈ EN , in exactly the same manner.

3. Proof of Theorem 1

The proof will proceed in steps. First, note that τ νw = νων |(∂B)T × n can be
embedded into D((∂B)T , T (∂B)T ) by

τ νw 7→
(
(x, t) 7→ (x, t, τ νw(x, t), 0)

)
(80)

which can be further embedded into D′((∂B)T , T (∂B)T ) by (58). For the rest of
this article, we abuse the notation τ νw to mean both vector fields on (∂B)T and
smooth sections (80) in D((∂B)T , T (∂B)T ), according to the context. We then
show that 〈τ νw,ψ〉 for any ψ ∈ D((∂B)T , T ∗(∂B)T ) converges to a quantity
denoted 〈τw,ψ〉. Finally, we prove that τw is a continuous linear functional
on D((∂B)T , T ∗(∂B)T ), thus obtaining the convergence (12) in the sense of
distributional sections of the tangent bundle.

Similarly, wall pressure stress pνwn is embedded into D((∂B)T ,N (∂B)T ) by

pνwn 7→
(
(x, t) 7→ (x, t, pνw(x, t)n(x), 0)

)
(81)

which can be further embedded into D′((∂B)T ,N (∂B)T ) by (65). An analogous
argument shows that 〈pνwn,ψ〉 → 〈pwn,ψ〉 for all ψ ∈ D((∂B)T ,N ∗(∂B)T ),
with a suitable element pwn ∈ D′((∂B)T ,N (∂B)T ).
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3.1. Convergence of skin friction τ νw to τw. Consider an arbitrary extension
operator Ext ∈ ET , and a smooth section ψ ∈ D((∂B)T , T ∗(∂B)T ). Let ϕ =
Ext(ψ) so that ϕ ∈ D̄(Ω̄ × (0, T ),R3) and ϕ · n = 0 on (∂B)T . Integrating the
Navier-Stokes equations (1) against ϕ yields

−
∫ T

0

∫
Ω

∂tϕ · uν +∇ϕ : [uν ⊗ uν + pνI] dV dt

−
∫ T

0

∫
Ω

ν4ϕ · uν dV dt = −
∫ T

0

∫
∂Ω

ν
∂uν

∂n
·ϕ|∂Ω dS dt.

(82)

As a useful shorthand, we write this as

−〈〈uν , ∂tϕ〉〉 − 〈〈uν ⊗ uν :∇ϕ〉〉 − 〈〈pν ,∇ ·ϕ〉〉 − 〈〈νuν ,4ϕ〉〉 = −〈τ νw,ψ〉 (83)

where 〈〈, 〉〉 denotes the integration over space-time domain Ω × (0, T ) and

〈τ νw,ψ〉 =

∫ T

0

∫
∂Ω

〈ψ, τ νw〉 dS dt =

∫ T

0

∫
∂Ω

ν
∂u

∂n
·ϕ|∂Ω dS dt. (84)

By Cauchy-Schwartz,

|〈〈νuν ,4ϕ〉〉| ≤ ν

√∫ T

0

∫
Ω

|4ϕ|2 dV dt

√∫ T

0

∫
supp(ϕ)

|uν |2 dV dt (85)

→ 0, as ν → 0, (86)

as a consequence of the assumptions (8),(10) on velocity uν .
The convergence of the rest of the lefthand side of (83) as ν → 0 follows from

the following elementary lemma:

Lemma 1. If fν converges weakly to f in Lp((0, T ), Lploc(Ω)), 1 ≤ p < ∞, and
if fν is uniformly bounded in Lp((0, T ), Lp(Ωε)) for sufficiently small ε > 0, then
f ∈ Lp((0, T ), Lp(Ωε)), and for ϕ ∈ D̄(Ω̄ × (0, T )), we have the following limit

lim
ν→0

∫ T

0

∫
Ω

ϕfν dV dt =

∫ T

0

∫
Ω

ϕf dV dt (87)

Proof. Let Mε = supν>0 ‖fν‖Lp((0,T ),Lp(Ωε))
<∞. Then let εn = 2−nε for n ≥ 0

and Γn = Ωεn\Ωεn+1
. Then Ωε = ∪∞n=0Γn and the union is a disjoint union.

With weak lower-semicontinuity of the Lp-norm and Fatou’s lemma, we have∫
(0,T )×Ωε

|f |p dV dt =

∞∑
n=0

∫
(0,T )×Γn

|f |p dV dt ≤
∞∑
n=0

lim inf
ν→0

∫
(0,T )×Γn

|fν |p dV dt

(88)

≤ lim inf
ν→0

∞∑
n=0

∫
(0,T )×Γn

|fν |p dV dt = lim inf
ν→0

∫
(0,T )×Ωε

|fν |p dV dt ≤Mp
ε <∞

(89)

Thus, we obtain that f ∈ Lp((0, T ), Lp(Ωε)).
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Furthermore, for any 0 < δ < ε we obtain by Hölder inequality and the
uniform Lp bound on fν that for 1

p + 1
p′ = 1

sup
ν>0

∣∣∣∣∣
∫

(0,T )×Ωδ
ϕfνdV dt

∣∣∣∣∣ ≤ ‖ϕ‖Lp′ ((0,T )×Ωδ)M
p
ε (90)

with an identical bound for the limit function f. As a consequence∣∣∣∣∣
∫

(0,T )×Ω
ϕfνdV dt−

∫
(0,T )×Ω

ϕfdV dt

∣∣∣∣∣ ≤ 2 ‖ϕ‖Lp′ ((0,T )×Ωδ)M
p
ε

+

∣∣∣∣∣
∫

(0,T )×Ωδ
ϕfνdV dt−

∫
(0,T )×Ωδ

ϕfdV dt

∣∣∣∣∣ (91)

where Ωδ := Ω\Ωδ. Using convergence of fν to f weakly in Lp((0, T ), Lploc(Ω))
and limδ→0 ‖ϕ‖Lp′ ((0,T )×Ωδ) = 0, we conclude. ut

Conditions (8),(14) imply that, at least along a subsequence, uν , uν ⊗ uν , pν

have local weak convergence to u, u⊗ u, p respectively. Then by Lemma 1,

u ∈ L2((0, T ), L2(Ωε)), p ∈ L1((0, T ), L1(Ωε)) (92)

and as ν → 0, the left hand side of (83) converges to

−〈〈u, ∂tϕ〉〉 − 〈〈u⊗ u :∇ϕ〉〉 − 〈〈p,∇ ·ϕ〉〉 := 〈τw,ψ〉. (93)

As ψ was arbitrary, , we conclude that

lim
ν→0
〈τ νw,ψ〉 = 〈τw,ψ〉, ∀ψ ∈ D((∂B)T , T ∗(∂B)T ) (94)

3.2. τw is a distributional section. Linearity of τw follows easily from the lin-
earity of Ext and the definition (93). Then, it suffices to prove the continuity
of τw. Let K be a compact subset of (∂B)T . Then there exists a finite set J
such that K ⊂ ∪i∈JVi, where ∪(Vi, φi) is a smooth structure of (∂B)T . Further-

more, there exists some m0 > 0 such that for each i ∈ J, φi(K ∩ Vi) ⊂ K
(i)
m0

for a compact set K
(i)
m0 in the fundamental sequence of φi(Vi). Therefore, for all

ψ ∈ D((∂B)T , T ∗(∂B)T ) supported on K and for all m ≥ m0

〈〈u, ∂tϕ〉〉 . ‖u‖L2(supp(ϕ)) sup
i∈I

p1,m,i(ψ) (95)

〈〈u⊗ u :∇ϕ〉〉 . ‖u‖2L2(supp(ϕ)) sup
i∈I

p1,m,i(ψ) (96)

where ϕ = Ext(ψ), so that supp(ϕ) is a compact subset of Ω̄ × (0, T ) by
definition (4). Here, . denotes inequality up to a constant prefactor, depending
on K, Ext. Note that u is bounded in L2(supp(ϕ)), as a result of interior
boundedness (8) and near-boundary boundedness (92) in L2. Similarly, for all
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ψ ∈ D((∂B)T , T ∗(∂B)T ) supported on K and for all m ≥ m0, p is bounded in
L1(supp(ϕ)) and

〈〈p,∇ ·ϕ〉〉 . ‖p‖L1(supp(ϕ)) sup
i∈I

p1,m,i(ψ). (97)

In conclusion, τw is continuous and τw is thus a well defined distribution in
D′((∂B)T ), T (∂B)T ) for each Ext ∈ ET .

Note that τw is independent of Ext ∈ ET . Indeed, by combining the result in
this section with that in 3.1, we see for each Ext ∈ ET that limν→0 τ

ν
w = τw in

the standard topology of D′((∂B)T ), T (∂B)T ). Since such limits are unique, τw
is independent of the choice of extension operator and depends only upon the
subsequence νk → 0 chosen to obtain the limiting weak Euler solution (u, p).

3.3. Pressure stress pwn. Consider now instead an arbitrary extension operator
Ext ∈ EN and a smooth section ψ ∈ D((∂B)T ,N ∗(∂B)T ). Let ϕ = Ext(ψ) so
that ϕ ∈ D̄(Ω̄ × (0, T ),R3) and ϕ ‖ n on (∂B)T . Integrating the Navier-Stokes
equations (1) against ϕ yields

−
∫ T

0

∫
Ω

[ ∂tϕ · uν +∇ϕ : (uν ⊗ uν + pνI) ] dV dt

+ ν

∫ T

0

∫
Ω

(4ϕ) · uν dV dt =

∫ T

0

∫
∂Ω

pν |(∂B)Tn ·ϕ|(∂B)T dS dt

(98)

On the other hand,

〈pνwn,ψ〉 =

∫ T

0

∫
∂B

〈ψ, pνwn〉 dS dt =

∫ T

0

∫
∂B

pν |(∂B)Tn ·ϕ|(∂B)T dS dt. (99)

In shorthand,

−〈〈uν , ∂tϕ〉〉 − 〈〈uν ⊗ uν :∇ϕ〉〉 − 〈〈pν ,∇ ·ϕ〉〉+ 〈〈νuν ,4ϕ〉〉 = 〈pνwn,ψ〉 (100)

By an analogous argument as that used to prove convergence of τ νw to τw, it
follows that (100) in the limit ν → 0 yields for all ψ ∈ D((∂B)T ,N ∗(∂B)T )

〈pνwn,ψ〉
ν→0−−−→ 〈pwn,ψ〉 := −〈〈u, ∂tϕ〉〉 − 〈〈u⊗ u :∇ϕ〉〉 − 〈〈p,∇ ·ϕ〉〉 (101)

and pwn ∈ D′((∂B)T ),N (∂B)T ), independent of the extension Ext ∈ EN .

4. Proof of Theorem 2

We give here a detailed proof only of the result (25) on the convergence in
the space of distributional sections of the tangent bundle. The statement (26)
on convergence in the space of distributional sections of the normal bundle is
proved by a very similar argument, which is left to the reader.
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4.1. Proof of a lemma. We first prove:

Lemma 2. Let K be a compact subset of Ω̄. Then for any f ∈ Lp((0, T ), Lploc(Ω))
∩Lp((0, T ), Lp(Ωε)), with 1 ≤ p <∞ and ε > 0, we have for 0 < ` < h,

ηh,`f̄`
h,`→0−−−−−−−−−−−→

Lp((0,T ),Lp(K))
f (102)

Proof. Let δ > 0 be a sufficiently small number with ` < h < δ < ε
2 . It is well-

known for f ∈ Lploc(Ω) that f̄` → f in Lploc(Ω) (e.g. see Appendix C.5 of [21]).
In particular, for a.e. t ∈ (0, T ),

lim
h,`→0

∥∥ηh,`f̄` − f∥∥Lp(Ωδ∩K)
= 0 (103)

and ∥∥ηh,`f̄` − f∥∥Lp(Ωδ∩K)
≤ 2 ‖f‖Lp(Kε∩Ω) (104)

for Kε = {x ∈ R3 : ∃y ∈ K, |x− y| < ε}. On the other hand, for a.e. t ∈ (0, T ),∥∥ηh,`f̄` − f∥∥Lp(Ωδ∩K)
≤
∥∥ηh,`f̄` − f∥∥Lp(Ωδ)

(105)

=
∥∥ηh,`f̄` − f∥∥Lp(Ωδ\Ωh)

+ ‖f‖Lp(Ωh) (106)

≤ 2 ‖f‖Lp(Ω2δ)
+ ‖f‖Lp(Ωh) (107)

≤ 3 ‖f‖Lp(Ω2δ)
≤ 3 ‖f‖Lp(Ωε)

(108)

Then by combining (103),(108)

lim sup
h,`→0

∥∥ηh,`f̄` − f∥∥Lp(K)
≤ 3 ‖f‖Lp(Ω2δ)

δ→0−−−→ 0 (109)

where the latter follows by dominated convergence theorem. Since (109) is true
for a.e. t ∈ (0, T ), one obtains (102), or convergence in Lp((0, T ), Lp(K)). ut

4.2. Proof of Theorem 2. Take any extension operator Ext ∈ ET and smooth
section ψ ∈ D((∂B)T , T ∗(∂B)T ). Let ϕ = Ext(ψ) so that ϕ ∈ D̄(Ω̄×(0, T ),R3)
and ϕ · n = 0 on (∂B)T . Integrating the coarse-grained Euler equations (23)
against ϕ yields∫ T

0

∫
Ω

∂tϕ · (ηh,`ū`) dV dt+

∫ T

0

∫
Ω

∇ϕ : ηh,`(T̄` + p̄`I) dV dt (110)

= −
∫ T

0

∫
Ω

ϕ · (∇ηh,` · T̄` + p̄`∇ηh,`) dV dt (111)

As ϕ ∈ D̄(Ω̄ × (0, T ),R3), there exists a compact set K ⊂ Ω̄ such that

supp(ϕ) ⊂ K × (0, T ) ⊂ Ω̄ × (0, T ) (112)
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By Lemma 2, as h, `→ 0,

ηh,`ū` → u in L2((0, T ), L2(K)) (113)

ηh,`T̄` → T in L1((0, T ), L1(K)) (114)

ηh,`p̄` → p in L1((0, T ), L1(K)) (115)

Then, as h, `→ 0, (110) converges to∫ T

0

∫
Ω

∂tϕ · u dV dt+

∫ T

0

∫
Ω

∇ϕ : [T + pI] dV dt (116)

Thus we obtain from (110)-(111) that

− lim
h,`→0

∫ T

0

∫
Ω

ϕ · (∇ηh,` · T̄` + p̄`∇ηh,`) dV dt (117)

=

∫ T

0

∫
Ω

∂tϕ · u dV dt+

∫ T

0

∫
Ω

∇ϕ : [T + pI] dV dt (118)

Then by comparison with 〈τw,ψ〉 defined by (93), we obtain that

− lim
h,`→0

∫ T

0

∫
Ω

ϕ · (∇ηh,` · T̄` + p̄`∇ηh,`) dV dt = 〈τw,ψ〉 (119)

In other words, for any Ext ∈ ET
− lim
h,`→0

Ext∗(∇ηh,` · T̄` + p̄`∇ηh,`) = τw in D′((∂B)T , T (∂B)T ) (120)

4.3. Proof of Corollary 1. For any Ext ∈ ẼT as in (27), ∀ψ ∈ D((∂B)T , T ∗(∂B)T ),
ϕ = Ext(ψ)

〈Ext∗(p̄`∇ηh,`),ψ〉 =

∫ T

0

∫
Ω

ϕ · (p̄`∇ηh,`) dV dt (121)

=

∫ T

0

∫
Ωh+`\Ωh

θ′h,`(d(x))p̄`(x, t)ϕ(x, t) · n(π(x)) dV dt

(122)

|〈Ext∗(p̄`∇ηh,`),ψ〉| ≤
∥∥θ′h,`ϕ · n∥∥L∞((Ωh+`\Ωh)×(0,T ))

(∫ T

0

∫
Ωh+`\Ωh

|p̄`| dV dt

)
(123)

≤ C

`
‖ϕ · n‖L∞((Ωh+`\Ωh)×(0,T )) ‖p‖L1((Ωh+2`\Ωh−`)×(0,T ))

(124)

≤ C ′ ‖p‖L1((Ω3h)×(0,T ))

h,`→0−−−−→ 0 (125)

by (27) and dominated convergence. By comparison with (25) we obtain that

− lim
h,`→0

Ext∗(∇ηh,` · T̄`) = τw in D′((∂B)T , T (∂B)T ) (126)
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5. Proof of Theorem 3

Theorem 3 follows from Proposition 2, in conjunction with Theorem 1 & 2 and
Corollary 1. We thus prove Proposition 2 in this section. We follow the idea
in [17] by bounding the following term directly

∇ηh,` · T̄`(x, t) = θ′h,`(d(x))n(π(x)) · u⊗ u`(x, t) (127)

which is supported in Ωh+`\Ωh ⊂ Ω3h ⊂ Ωε. We write, ∀x ∈ Ωh+`\Ωh, a.e.
t ∈ (0, T ),

n(π(x)) · u⊗ u`(x, t) =

∫
R3

G`(r)[n(π(x))− n(π(x + r))] · u⊗ u(x + r, t)V (dr)

+

∫
R3

G`(r)n(π(x + r)) · u⊗ u(x + r, t)V (dr) (128)

Since n ◦ π is smooth in Ωε, ∀δ > 0, ∃ρ = ρ(δ) > 0 s.t.

|n(π(x))− n(π(x + r))| ≤ δ (129)

for all x ∈ Ωh+`\Ωh and |r| < ` < ρ. Then it follows that

|n(π(x)) · u⊗ u`(x, t)| ≤
(
δ ‖u(t)‖L∞(Ωε)

+ ‖n · u(t)‖L∞(Ωε)

)
‖u(t)‖L∞(Ωε)

(130)

Using these bounds above, together with the fact that
∥∥∥θ′h,`(d(x))

∥∥∥
L∞
≤ C

` and

|Ωh+`\Ωh| ≤ C ′`, we obtain that for ψ ∈ D((∂B)T , T ∗(∂B)T ), Ext ∈ ET

〈Ext∗(∇ηh,` · T̄`),ψ〉 =

∫ T

0

∫
Ω

ϕ · (∇ηh,` · T̄`) dV dt (131)

∣∣〈Ext∗(∇ηh,`) · T̄`,ψ〉
∣∣ ≤ ‖ϕ‖L∞((0,T )×Ω)

∫ T

0

∫
Ωh+`\Ωh

|∇ηh,` · T̄`| dV dt

(132)

. sup
i∈I

pN,m,i(ψ)×
[
δ ‖u‖2L2((0,T ),L∞(Ωε))

(133)

+ ‖n · u‖L2((0,T ),L∞(Ωε))
‖u‖L2((0,T ),L∞(Ωε))

]
(134)

where ϕ = Ext(ψ). Thus, by the assumptions on the near wall uniform bound-
edness of u (29) and the continuity of wall normal velocity (30), the first result
(31) in Proposition 1 follows:

lim
h,`→0

Ext∗(∇ηh,` · T̄`) = 0 in D′((∂B)T , T (∂B)T ) (135)

It is easy to see that the argument above applies also for all Ext ∈ EN and
ψ ∈ D((∂B)T ,N ∗(∂B)T ). Thus, the result (32) in Proposition 1 also follows:

lim
h,`→0

Ext∗(∇ηh,` · T̄`) = 0 in D′((∂B)T ,N (∂B)T ) (136)
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