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Vorticity, although not the primary variable of fluid dynamics, is an important 
derived variable playing both mathematical and physical roles in the solution and 
understanding of problems. The following treatment discusses the generation of 
vorticity at rigid boundaries and its subsequent decay. It is intended to provide a 
consistent and very broadly applicable framework within which a wide range of 
questions can be answered explicitly. The rate of generation of vorticity is shown to 
be the relative tangential acceleration of fluid and boundary without taking viscosity 
into account and the generating mechanism therefore involves the tangential pressure 
gradient within the fluid and the external acceleration of the boundary only. The 
mechanism is inviscid in nature and independent of the no-slip condition at the 
boundary, although viscous diffusion acts immediately after generation to spread 
vorticity outward from boundaries. Vorticity diffuses neither out of boundaries nor 
into them, and the only means of decay is by cross-diffusive annihilation within the 
fluid. 

1. INTRODUCTION 

The Helmholtz vorticity equation for an incompressible 
homogeneous fluid, 

aop t  +(v - V ) o  = (w - V)v + vv20, 

?On leave from the Department of Mathematics, Monash University, Clayton, 

$The National Center for Atmospheric Research is sponsored by the National 
Victoria 3168, Australia. 

Science Foundation. 

277 



D
ow

nl
oa

de
d 

B
y:

 [E
yi

nk
, G

re
go

ry
 L

.] 
A

t: 
04

:1
4 

15
 N

ov
em

be
r 2

00
7 

278 B. R. MORTON 

includes the processing term (0. V)v which describes the effects of 
local amplification (or concentration) of vorticity by vortex filament 
stretching and local turning of filaments, and the term v V 2 0  
representing the spread of vorticity due to viscosity, where 
o = (t, q, (') is the vorticity. It contains no true generation term that 
would correspond with the creation of fresh vorticity where none 
existed before, and it has long been recognized that all sources of 
vorticity in homogeneous fluids must lie at the boundaries of fluid 
regions. Vorticity may be generated at interior points of 
inhomogeneous fluids, but is also generated at their boundaries, 
presumably by the same mechanism as operates in homogeneous 
fluids. We may therefore restrict the following discussion of the 
generation of vorticity at boundaries to the case of homogeneous 
fluids, although we shall later show that the same generation 
mechanism operates universally. 

The complete determination of a vorticity field requires boundary 
conditions as well as a differential equation: for example, the 
Helmholtz equation for the Rayleigh problem (Section 4.1) of a semi- 
infinite region of fluid bounded by a plane boundary set impulsively 
in motion with steady velocity in its own plane is represented by the 
reduced equation 

and to obtain a unique solution we require a condition on the 
creation of vorticity at the boundary. We find a curious situation 
here, for although most of the many texts on fluid mechanics at least 
introduce the Helmholtz vorticity equation, very few so much as 
mention boundary conditions. One of the very few exceptions is 
Batchelor (1967, p. 280) who notes that the boundary condition on 
vorticity is provided in effect by the no-slip condition, though this 
seems scarcely a satisfactory condition on vorticity which is a 
physically distinct quantity with different dimensions from velocity. 
Moreover, boundaries in homogeneous fluids are the source of all 
vorticity, and we shall clearly need to consider what are the 
appropriate boundary conditions. 

Some authors have suggested that the generation of vorticity in a 
region of homogeneous fluid is related to its diffusion out of solid 
boundaries, and its decay to diffusion into other boundaries. If, 
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GENERATION AND DECAY OF VORTICITY 279 

however, vorticity is a physical entity relating to fluid rotation, we 
may reasonably ask what is the physical effect on a boundary 
suffering continuous loss of vorticity, and what on a boundary 
steadily gaining vorticity? Plane Poiseuille flow has been interpreted 
as a steady motion resulting from the generation of vorticity at one 
boundary and its equal loss at the other; and as vorticity provides a 
measure of rotation in a fluid we might look for an effect of torque 
on an experimental channel, although none has been reported! 
Moreover, a mere reversal of the coordinate frame would 
interchange the boundary of generation and that of loss of vorticity. 
There can be no doubt that vorticity is a genuine physical entity, 
corresponding with the particular constituent of fluid motion in the 
neighborhood of a point associated instantaneously with rotation 
about an axis through that point. We shall, therefore, need to 
consider more critically the notion that vorticity may diffuse out of 
or into boundaries. One certain physical effect at boundaries is the 
wall stress exerted by moving fluid and the equal and opposite 
tangential stress exerted by the wall on nearby moving particles of 
fluid. In rigid body dynamics tangential forces exert torques which 
generate angular acceleration, and we must determine whether wall 
stress generates vorticity and indeed what roles are played by torque 
and angular momentum in fluid dynamics. 

We recall that fluid dynamics is a branch of mechanics and that 
fluid motion is fully represented by the Navier-Stokes equation (a 
form of Newton’s equation of motion), together with a continuity 
equation to keep track of mass and an energy equation if heat is 
important in addition to mechanical energy. All flow problems can, 
in principle if seldom in practice, be solved from these equations 
without introducing vorticity; but although we do not need vorticity 
for the description of fluid motions it satisfies approximately a 
number of simple and far-reaching conservation relationships and 
provides a powerful alternative physical basis for the discussion of 
complex three-dimensional flows. One further advantage of the use 
of vorticity which is often emphasized is the absence of pressure 
from the Helmholtz equation, a fact that has led many to assert that 
pressure plays no role in vorticity dynamics, an assertion that we 
shall question. 

We may reasonably argue that vorticity is a well-defined variable 
having a clear relationship with the physical concept of rotation in 
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fluid motion, satisfying a known differential equation and of widely 
accepted value in the description of fluid flows. It is therefore quite 
unsatisfactory that so many who work with fluids remain uneasy 
over its use, and in particular that there should persist such 
widespread uncertainty as to the behavior of vorticity near 
boundaries, exemplified by responses to the following questions: 

i) what are the boundary conditions on vorticity and why are they 
so generally overlooked; 

ii) does pressure play any role in vorticity dynamics; 
iii) is vorticity generated by wall stress; 
iv) what, if any, is the role of torque in fluid dynamics; 
v) what is the physical mechanism or mechanisms for the 

generation of vorticity at boundaries; and 
vi) what are the mechanisms for loss of vorticity, and in particular 

can vorticity be lost by diffusion to boundaries? 

2. PREVIOUS TREATMENTS OF THE GENERATION 
AND DECAY OF VORTlClTY 

Few authors have seriously discussed either the generation of 
vorticity at boundaries or its subsequent decay, with two notable 
exceptions: Lighthill and Batchelor, who have resolved parts of the 
problem, without resolving it as a whole. 

Lighthill (1963), in an elegant and wide-ranging introduction to 
boundary layer theory, espoused the use of vorticity as an effective 
means of solution for aerodynamic problems. He noted that at 
almost all points of the boundary there is a non-zero gradient of 
vorticity along the normal, with flux density of “total. vorticity” 
having x-component - v(ag/az), = “out of the solid surface”, where z 
is normal distance from the boundary, assumed locally plane. By 
applying the Navier-Stokes equation at a stationary plane boundary 
z=o, 

which he took as the local strength of a distribution of vorticity 
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sources spread over the solid boundary. It follows that tangential 
vorticity must be created at the boundary in the direction of the 
surface isobars at a rate proportional to the tangential pressure 
gradient. What does not immediately follow is why this should be so. 

Although Lighthill described the boundary as a distributed source 
of vorticity, similar to a distributed source of heat, it is clear from 
his wider discussion of flow development that he envisaged the 
generation process as taking place at the boundary surface. In 
discussing two-dimensional boundary layers he then invoked 
vorticity sources in a region of falling pressure along the boundary 
and vorticity sinks (at which vorticity is abstracted at the surface) in 
a following region of rising pressure. At this stage the situation does 
not appear to be fully resolved; in the absence of a physical 
mechanism for the generation of vorticity, the relation between 
vorticity flux density and tangential pressure gradient does not 
distinguish between the outward diffusion of positive vorticity and 
the inward diffusion of negative vorticity. Nor is it clear whether 
vorticity can be lost by diffusion to boundaries. We cannot, 
therefore, say whether vorticity of a particular sense is being first 
generated at and subsequently lost to the boundary as the pressure 
falls and rises again, or whether there is continuous generation of 
vorticity first of one sense and then of the other as fluid moves along 
the boundary. Indeed, it is not clear whether there is any meaningful 
distinction between these two. 

The difficulty with the vorticity flux density relationship as a 
boundary condition for the Helmholtz equation in calculating flow 
fields past aerofoils is that it involves the pressure field. Lighthill 
sidestepped this implicitly by considering an adjustment process in 
which an initial inviscid flow field is used to determine the free-slip 
velocity at the boundary and the production of vorticity is inferred 
from changes in slip velocity; from this point our interests diverge. 

Lighthill made two cautionary statements to which we shall need 
to return. That although vorticity relates instantaneously and locally 
to the angular momentum of infinitesimal spherical fluid particles, 
the flow of vorticity cannot be viewed as diffusion of angular 
momentum as it is continuously transported to fresh fluid elements 
which suffer rearrangement in the flow. Hence there is no continuing 
axis about which it is meaningful to calculate vorticity related 
angular momenta, and it is angular velocity and not angular 
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momentum to which vorticity should be related. Secondly, the 
diffusion of vorticity relates to the diffusion of (linear) momentum, to 
which we choose the interpretation that vorticity diffuses in effect 
because linear momentum diffuses. 

Batchelor gives a careful discussion of vorticity in his Introduction 
to Fluid Dynamics (1967), but although he devotes a substantial 
section (Section 5.4) to the source of vorticity in motions generated 
from rest, his conclusions remain general and do not result in an 
expression for generation rates. Again he identifies the free-slip 
velocity in the inviscid solution for flow past a body set in motion as 
the effective source of vorticity in real flows, and hence solid 
boundaries as vorticity sources. He takes the further step, however, 
of explicitly identifying the no-slip condition at the boundary in real 
fluids as a mechanism for the production of vorticity, though he uses 
this only in a broadly descriptive manner. He argues also (Section 
5.2) that vorticity cannot be destroyed in the interior of a 
homogeneous fluid and this appears to lead to the concept of loss of 
vorticity by diffusion to boundaries. It is perhaps unfortunate that 
the expressions “diffusion of vorticity out of”, “from”, “to” and 
“across” solid boundaries have become established in the literature 
without any very clear differentiation. There is little doubt that the 
generation process takes place at the boundary and neither within 
the wall nor within the fluid, but it is less clear what is intended 
when vorticity is regarded as lost by diffusion to a wall, as for 
instance when Batchelor describes steady motion as due to the 
steady flux of vorticity out of one solid boundary being balanced by 
an equal steady flux into another boundary (1967, p. 281). These are 
matters that will be discussed more precisely below. 

In these two treatments Lighthill has concentrated on the role of 
pressure gradients over stationary surfaces and Batchelor on surfaces 
accelerated or set impulsively in motion. Many relevant matters have 
been raised but they do not seem to have come into focus sufficiently 
for us to answer the questions posed in the foregoing section. The 
following analysis is intended to clarify these aspects of the behavior 
of vorticity; much of it is interpretive, but the questions are so 
fundamental to our effective use of the concept of vorticity and the 
confusion they engender is so widespread among those using the 
methods of fluid dynamics that no further excuse seems to be 
needed. 
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GENERATION AND DECAY OF VORTICITY 283 

3. VORTICITY AT AND NEAR BOUNDARIES 

For motion near a plane boundary take origin 0 in the boundary 
with Oz normal and n the unit normal vector (Figure 1). The 
following discussion may be restricted to two-dimensional flow in 
(x,z) planes without loss of generality. Our state of understanding 
makes it difficult to specify boundary conditions on the vorticity w 
directly, but these can be derived from the condition on velocity, 

v=(u, w) = O  on z=O, for all x and t. 

FIGURE 1 The coordinate system for the neighborhood of a boundary. 

It follows that on z=O, 

a(u, w)/ax = 0, a2(U, w)/ax2 = 0, for all X, t;  

and from the continuity equation for an incompressible fluid 

au/ax + aw/az = 0, 

aw/& = 0 on z = 0, for all X, t .  

The remaining component of av/az relates to the tangential 
boundary stress z = (zx, 0) through the relation 

and is non-zero except at a separation point. Hence, 
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takes the value on z = 0, 

so that w,-z,=O. Thus vortex filaments are tangential to a 
stationary boundary and inclined at angle +n/2 to the wall stress or 
skin friction z, a result which holds also in three dimensions. This 
boundary condition on w appears again to be of limited value 
because z is unknown at this stage. It is, however, a result of some 
importance, and the first indication that wall stress cannot generate 
vorticity; indeed, wall stress and vorticity are closely related velocity 
gradients. 

3.1 The flux density of vorticity at a stationary plane 
boundary 

At the boundary z=O the Navier-Stokes equation reduces to 

0 = - p - '(Vp), + V(V2V),,  

and hence on z = 0, 

Y a  ax'az a )  
a 2  

-(u, w )  =- - - 
az2 

p. 

Thus, 

={o,p-l ap/ax,0},=pL1n x (vp),, 

with a corresponding result for ao/8x on z=O. 
We recall that Lighthill (1963) has already identified -v(aw/az), 

as the diffusive flux density (or flow per unit area per unit time) of 
(positive) vorticity outwards from the wall and interpreted 

-v(aw/az),= -p-l(n x v)p 

as a local boundary source of vorticity. This is obviously an 
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GENERATION AND DECAY OF VORTICITY 285 
important result, but in the absence of any physical mechanism we 
are unable to determine the balance of positive and negative 
vorticity generated at the wall, lost by diffusion from or gained by 
diffusion to the wall, or indeed whether the vorticity field might be 
produced entirely by a pattern of generation and diffusive loss of a 
single sense of vorticity to the boundaries. 

3.2 Conditions at  a wall moving in its own plane 

We have seen already from Batchelor (1967) that boundary motion 
must be included in our discussion, and we shall therefore generalize 
the foregoing results to the case of a rigid boundary z = 0 moving in 
its own plane with velocity V = { U(t) ,  O}. We consider tangential 
motion only here, but will return to the differences between 
tangential and normal motion of boundaries. 

At the boundary z = 0, 

v = ( U ,  0), for all x, t, 

and as there is no spatial variation of boundary motion, 

[(d/dx, d2 /dX2) (U ,  w) ]o  =o. 

Continuity in an incompressible fluid involves only spatial variation 
of velocity, and as before 

( d w / d ~ ) ~ = O ,  and o o = { O ,  p"-'z,,O). 

Substitution in the Navier-Stokes equation at the boundary yields 

[a'(% w)/dz210 = { p  - '(dp/ax) + v - '(dU/dt), p - dp/dz), ,  

and 

= -p-'[(n x V)p],-n x (dV/dt) .  

We note that in two-dimensional motion the flux of vorticity from 
and to boundaries depends on tangential pressure gradients and 
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boundary acceleration; and particularly the symmetry involved in 
the acceleration of fluid by the tangential pressure gradient and the 
tangential acceleration of the boundary. 

3.3 The relationship of vortex lines and streamlines at 

We can expand the velocity in a Taylor series for the neighborhood 
of the origin 0 on the boundary, 

the boundary 

v(x, z )  =vo  + x (;)o + z (;)o +fXZ ($)o +zx (5) azax 

where the SUKX 0 refers to conditions at the origin and r2=xZ+z2. 
Using the results from the previous sections, 

This may be expressed wholly in terms of z=(z,, 0) using 

or in terms of vorticity o =(O, q, 0) using n x r = ,urno. 
The streamlines are given by 

and for small values of z 

dxlz, x dzlO; 

thus in the limit z+O the limiting streamlines touch the boundary 
and are in the direction of the wall stress, and hence orthogonal to 
the limiting vortex lines which also touch the boundary. 

A stream function is available for two-dimensional flows, and has 
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expansion valid in a neighborhood of the boundary origin 0, 

4. CASE STUDIES OF EXACT SOLUTIONS 

Further insight can be gained into the significance of these results by 
reinterpretation of the small number of exact solutions of the 
Navier-Stokes or Helmholtz equations. These solutions are simple in 
form and so familiar that we take them for granted, but like all exact 
solutions they provide a source of relevant information whether or 
not we appreciate it. We shall be concerned especially with the 
behavior of vorticity at and near boundaries and we seek a 
consistent approach to matters concerning its generation and decay. 

4.1 A plate started impulsively into motion in its own 
plane 

Motion in the semi-infinite region of fluid z>O initiated from rest 
when the plane boundary z=O is set impulsively into tangential 
motion with speed u=UH( t )  at time t=O is represented by the 
equation 

1- * * I 

,//,It,// *////tj;,,/ I t  

I 

0 ’  X ____)c 
UH (t) 

FIGURE 2 The integration circuit ‘8 for the impulsively started plate. 
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for which there is the similarity solution 

where s = z/(2vt)li2 is the similarity variable and the initial and 
boundary conditions are: 

t < O ,  u=o o g z ;  

t 2 0 ,  u = U  on z=O, u+O as z-03. 

The corresponding vorticity is 

and has maximum magnitude U/(2nvt)”’ at the plate for all t 2 0 .  
The wall stress at the boundary, 

2={p(au/az)o,o,o} = {  -pu(2nVt)-1’2,0,0}, 

is unbounded at the initial instant and thereafter decreases in 
proportion to t -112;  and the circulation around circuit %‘ of unit x- 
width and unbounded z-height (Figure 2), 

f v .  dr= -U,  
y: 

increases impulsively from zero to -U at t=O and is thereafter 
constant. 

In this case all the vorticity is generated at the initial instant as 
the plate is impulsively accelerated, and it is generated entirely at the 
boundary surface s (or z) = 0. Thereafter vorticity diffuses away from 
the boundary but its gross amount, which is the circulation in the 
contour %‘ per unit width, remains constant, and in particular it is 
neither lost to nor gained from the boundary despite the continuing 
wall stress and the fact that the boundary remains the point of 
greatest vorticity concentration. Note that, 

flux density of y = - v dq/az = - Uz(2nv) ~ ‘I2t - ji2 e - z2 /2u t ,  
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and that the flux density at the boundary (z=O) is zero except at 
t = 0; and that at s = 0, t = 0 it is infinite. 

4.2 A plate accelerated uniformly into motion in its o w n  

If the boundary is accelerated from rest at t = O  with uniform 
acceleration (A ,  0,O) there is again a similarity solution with velocity 

plane 

and vorticity 

The vorticity at the boundary, y(0, t)= - 2 A ( t / n ~ ) ' / ~ ,  is always of 
largest magnitude, and vorticity (uniformly of negative sign in this 
frame) diffuses progressively outwards. Circulation in the contour %? 
of unit width is 

m 
k(t )=$~-dr=(2vt) ' /~  1 yds=  - A t ,  

4 0 

and the rate of increase in circulation is equal to the rate at which 
vorticity diffuses out from the boundary, 

dkjdt = -A= -v(aV/az),, 

Here the boundary is continuously accelerated, vorticity is generated 
at uniform rate - A  per unit area of boundary, and this vorticity 
diffuses out at precisely its rate of generation. It is again consistent 
that there is no loss of vorticity by diffusion to the boundary; the 
total circulation per unit width increases at the uniform rate of 
generation and, once generated, vorticity is never lost. Note that the 
rate of generation is associated with tangential acceleration, - A ,  of 
the boundary and not the wall stress 2, = pqO = -2pA(~ t /n ) "~ .  
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4.3 A plate oscillating in its own plane 

When the boundary is oscillated with velocity (U cos wt, 0,O) the 
solution is 

u(z, t )  = U e - k z  cos (wt - kz)  

~ ( z ,  t)= -2112kUe-kz  cos(wt-kz+$n), 

where k = (w/2v) ' I 2  

't 
// / / / /  

u cos w t  
FIGURE 3 The oscillating plate. 

In this case 

-dU/d t  =wUsinwt= -v(aV/az),, 

and the rate of generation of vorticity at the plate is equal to its rate 
of diffusion outwards. Circulation (and hence gross vorticity) in the 
contour of unit width is - Ucos cot. Thus the vorticity generated 
by acceleration of the boundary is alternatively positive and negative 
in each half cycle; it diffuses out, but is rapidly annihilated by cross- 
diffusion, so that the mean amplitude of vorticity decreases 
exponentially with distance and the mean circulation of the field is 
zero. 

4.4 Plane Couette flow 

When a plane boundary z = h  is moved in its own plane with 
uniform velocity (U,O,O) over a stationary boundary z=O the 
intervening layer of fluid at uniform pressure has velocity u = Uz/h 
and vorticity q= Ulh. The steady wall stresses on the upper and 
lower plates are t(h) = -pU/h and t (O)=pU/h,  and the gross 
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4.5 Plane Poiseuille flow 

Steady flow between fixed parallel planes, z =  f h ,  under a uniform 
pressure gradient dp/dx = - y has velocity u = (yh2/2p)( 1 - z2 /hZ)  and 
vorticity q = - y z / p  Vorticity is generated continuously by the 
tangential pressure gradient at the lower boundary at rate + y/p, and 
at the upper boundary at rate -y /p  (sense of normal reversed), and 
each diffuses towards the centre plane where the positive and 
negative fluxes suffer annihilation. The circulation per unit length of 
channel is zero. 

FIGURE 5 Plane Poiseuille flow: (i) profiles for developed flow; (ii) profiles for 
entry length. 
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We may ask whether Poiseuille flow could be represented equally 
well by the generation of vorticity of a single sense, say at the rate 
y/p at the lower boundary, diffusion across the layer with flux 
density - v a q p z  = y/p, and absorption at the upper boundary. 
Although this appears to be a viable alternative in the region of 
developed flow, it cannot explain the entry length with upper/lower 
boundary layers wholly of negative/positive vorticity, generated 
along the boundaries and diffusing out to fill a progressively larger 
proportion of the channel until the two boundary layers meet at the 
midplane and the upward/downward fluxes of positive/negative 
vorticity are mutually annihilated by cross diffusion. We note that 
there is nothing special about the positiveness or negativeness of 
vorticity as such, because the sign depends on our choice of axes; 
however, it is essential that there exist vorticity of opposite senses or 
sign. 

4.6 Blasius boundary layer 
For two-dimensional flow over a semi-infinite flat plate in the 
absence of pressure gradients, we introduce a stream function with 
v = {a$/az, 0, - a*/ax} and find the solution 

* =(2vUx)”Zf(s) 

q = U ~ / ~ ( ~ V X ) -  1/2{f” - (2Re) -‘(f - sf’ - s’f”)}, 

where s = ( U / h ~ ) ’ / ~ z  is a similarity variable, f ( s )  is a universal 
profile function and Re=xU/v is a local Reynolds number. The 
circulation around the contour V of unit width is U ,  and is 
independent of distance along the plane. Thus all vorticity is 
generated at the leading edge, and is thereafter merely advected 

U 

FIGURE 6 Blasius boundary layer 
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GENERATION AND DECAY OF VORTICITY 293 

downstream and diffuses into a thickening boundary layer. None is 
lost by diffusion to the boundary. 

In this formulation the leading edge, 0, is a singular point, but in 
reality there must be a leading edge of finite radius of curvature 
around which a pressure gradient will exist and vorticity will be 
generated and advected away downstream at the rate +U2.  

4.7 Summary of case studies 

We may divide the foregoing cases into two groups: 

i) fast generation, including the impulsively started plate, Couette 
flow and the Blasius boundary layer; and 

ii) slow generation, including the accelerated plate, the oscillating 
plate and Poiseuille flow. 

In the former group the generation of vorticity occurs (or has 
occurred) instantaneously and we are concerned with the developing 
(or developed) distribution of a fixed amount of vorticity by diffusion 
or a mixture of diffusion and advection. These cases, and notably 
that of the impulsively started plate, are specially important because 
the generation process is separated momentarily from the subsequent 
viscous redistribution. The latter group comprises cases in which 
there is continuing generation of vorticity, so that generation and 
viscous redistribution are inextricably associated. 

We can also identify a number of properties that must be taken 
into account in developing any comprehensive treatment of the 
generation and decay of vorticity: 

i) 

ii) 
iii) 

iv) 

4 

that generation results from tangential acceleration of a 
boundary, from tangential initiation of boundary motion and 
from tangential pressure gradients acting along a boundary; 
that generation is instantaneous; 
that vorticity once generated cannot subsequently be lost by 
diffusion to boundaries; 
that reversal of the sense of acceleration or of the sense of 
pressure gradient results in reversal of the sense of vorticity 
generated; 
that wall stress relates to the presence of vorticity but is not a 
cause of its generation; 
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vi) that the generation process is independent of the prior presence 
of vorticity; 

vii) that both senses of vorticity are needed to explain 
observations; 

viii) that walls play no direct role in the decay or loss of vorticity; 
ix) that vorticity decay results from cross-diffusion of two fluxes of 

opposite sense and takes place in the fluid interior. 

5. THE GENERATION OF VORTlClTY AT BOUNDARIES 

The foregoing case studies have drawn attention to rapid, and hence 
probably inertial, consequences of changing transverse motion, and 
because of the physical interpretation of vorticity we anticipate that 
rotation will play a role. We shall first consider the effect of an 
instantaneous impulse on a rigid body, partly because our grasp of 
rigid body dynamics is more complete than that of fluid dynamics, 
and partly to contrast the two. 

FIGURE 7 The effect of an off-centre impulse on a rigid body. 

Suppose that a sphere of radius R, mass M and moment of inertia 
I about horizontal axes through its centre of mass C ,  rests on a 
smooth horizontal ice sheet (to avoid bother with a reactionary 
static friction impulse). If an instantaneous horizontal impulse J is 
now applied to the highest point, the sphere acquires at that instant: 

i) linear momentum J, translational velocity v = J/M, and kinetic 
energy of translation J2/2M; and 

ii) angular momentum R x J, angular velocity Q = R  x JIZ, and 
kinetic energy of rotation (R x J)’/21. 
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The impulse has done total work J2/2M+(R x J)2/21 in the instant 
of its application and the sphere has acquired both translational and 
rotational motion. Every part of the sphere partakes of this response 
because force is transmitted at infinite (wave) speed in a rigid body. 
Thus at the initial instant each particle of the sphere acquires a 
velocity but no particle has yet moved; and we have chosen to 
consider an instantaneous impulse because in doing so we separate 
inertial and frictional effects. 

M 
J - 

FIGURE 8 The effect of an impulse on a fluid boundary. 

To find the effect of an instantaneous tangential impulse J applied 
to the free surface of a large volume of fluid we provide a rigid lid of 
mass M which will distribute the impulse uniformly over the surface. 
The impulse will set the plate instantaneously into tangential motion 
with initial speed U ,  say, and at this instant we have the Rayleigh 
problem of stationary fluid lying over a plate started impulsively into 
uniform motion in its own plane, considered in Section 4.1 and 
identified as specially important in Section 4.7; the solution has 
initial behaviour for small time t, 

vorticity 

velocity u - u  

linear momentum 

moment of momentum relative to z = 0 - pvtU per unit volume, 

q N (vt) - 1’2u 

-p(vt)l’’U per unit volume 

and is restricted to a fluid layer of thickness c3-(vt)1’2. Thus at the 
initial instant there is no communication of momentum to the fluid, 
the impulse goes wholly into generating lid momentum, and 

U=J/M 
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In the initial instant the instantaneous impulse does work J2/2M on 
the lid but no work whatsoever on the fluid. Neither linear 
momentum nor moment of momentum are communicated to the 
fluid at the instant of impulse, but an exceedingly thin layer 
(6 - v 1 W 2 )  of exceedingly strong vorticity (y N - V - ’ ~ ~ ~ C ~ ’ ~ U )  is 
generated at the common surface of fluid and lid. It is only after the 
lid has started to move that fluid is drawn into motion with it by the 
tangential stress exerted by the moving lid. 

There are two ways in which a moving boundary generates 
motion in fluid: 

i) normal motion of the boundary generates normal stress or 
pressure which is communicated at sound speed to all parts of 
the fluid; 

ii) tangential motion of the boundary generates shearing stress 
which is communicated through the fluid only by the diffusion 
of momentum, relatively a very slow process except at very small 
time when the gradients are very large. 

Thus, when we accelerate a plate, vorticity is generated 
instantaneously, but the fluid is drawn into motion only by the 
continuing wall stress as motion of the plate is maintained by a 
continuing force which does work on the fluid. We must now return 
to the lid which we set into transverse motion impulsively. It will 
continue to move at uniform speed U only under the action of a 
maintained tangential force 

and in the absence of this force it will suffer progressive deceleration 
with corresponding generation of positive vorticity. 

5.1 The generation mechanism 

The vorticity distribution above a plate started impulsively into 
motion at time t = O  with speed ( U ,  0) in its plane is (Section 4.1) 

All the vorticity ( - U  per unit x-width) is generated at the instant 
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t = O  of the impulse, and at that instant the vorticity is infinite at the 
boundary but zero everywhere within the fluid; and its gradient is 
infinite at the boundary and zero elsewhere. At any later time, no 
matter how soon after the impulsive start, the vorticity is finite and its 
gradient zero at the wall z=O. Thus diffusion of vorticity does not 
begin until after its generation, but the effect of diffusion is then 
exceedingly rapid very close to the wall; at later times near the wall 
and at all times in the body of the fluid viscous diffusion acts slowly 
as we have come to expect. When vorticity is generated 
continuously, diffusion has taken control of all except the 
elementary addition 6q in the last element of time 6t in the limit 
&+0. In such cases (cf. Section 4.2) the vorticity is always bounded 
at the wall and the effects of generation and diffusion appear to be 
interrelated. In these cases and where vorticity is generated by the 
action of pressure gradients we may need to separate the generation 
and diffusion processes artifically in order to understand what is 
taking place. 

The generation of vorticity is generally instantaneous, and the 
vorticity generated is instantaneously unbounded in magnitude but 
in an infinitely thin sheet at the boundary. It is, therefore, more 
appropriate to work in terms of the circulation in a small circuit % 
with two arms of length 6x parallel to the boundary and just in fluid 
or solid, respectively, and two short closing arms 6z  normal to the 
boundary. The circulation is then 

6k = $ v dr % ( u  - U)6x 
%? 

+--+ 
6 x  

FIGURE 9 The circulation circuit V for generation at a boundary. 

since the contribution from the closing arms normal to the boundary 
is ~ [ ( S Z ) ~ ]  from Section 3.3; and in the limit for small 6x the 
circulation per unit length of boundary in a contour % normal to Oy 
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It follows that the rate of generation of y-vorticity is 

ap d u + v v 2 u ,  dk du dU du du dU 'I- + u  
dt dt dt -ax ax dt p a x  dt 

where we have substituted from the Navier-Stokes equation for x- 
component motion within the fluid. If we restrict attention for the 
moment to the case of the impulsively started plate, the pressure 
gradient term should be retained because of the possibility of large 
impulsive pressures, but the viscous term vV2u can have no effect in 
the initial instant of the impulse and may be neglected for that 
instant (although it will become very large immediately after). Hence, 

dk,/dt = - p -  dplax - dU/d t ,  

and for an impulsive change 

This component generation rate corresponds precisely with the flux 
density obtained in Section 3.2. 

The gross vorticity per unit length of a thin layer is the difference 
in tangential velocity across the layer, and the rate of generation of 
vorticity in the layer is the relative tangential acceleration across the 
layer. In the absence of viscosity, only pressure gradients can 
produce acceleration within the fluid and in a homogeneous fluid 
they produce homogeneous acceleration. Thus all relative tangential 
acceleration produced by the pressure field in a homogeneous fluid 
must be at boundary surfaces; relative tangential acceleration due to 
motion of the boundaries can only be at boundary surfaces. 
Viscosity plays no role in the generation of vorticity precisely 
because the generation is an instantaneous response of fluid and 
boundaries to inertial forces, and it follows that the generation of 
vorticity at the boundaries of a homogeneous fluid is an inviscid 
process, as it must surely be since Lighthill and Batchelor were able 
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to use the free-slip layer of potential theory solutions to infer the 
rates of generation of vorticity. The no-slip boundary condition can 
in no way provide a mechanism for the generation of vorticity, and 
indeed plays no role in its generation. 

Viscosity does, however, play a major role in the redistribution of 
vorticity, and begins to do so immediately after generation. It follows 
that in the latter group of flows considered above we shall have 
artificially to separate the generation and viscous redistribution 
processes to incorporate the individual cases into our scheme of 
vorticity generation. The six cases are summarized below. 

1) The impusively started plate is a case of “fast generation” in 
which the rate of generation is infinite and the gross impulsive 
generation per unit area is [ u - U ] =  -U .  Viscous 
redistribution begins immediately after generation. 

2) The uniformly accelerated plate is a case of “slow generation” 
in which viscous redistribution co-exists with generation, and 
to identify the rate of generation of vorticity we must isolate it 
by taking v = 0. The relative acceleration a - A = - A  then gives 
the rate of vorticity generation.? 

3) The oscillating plate is another case of “slow generation” and 
we obtain the rate of generation of vorticity as 

a - A =  - A =  -dUldt=wUsinwt. 

by neglecting viscous redistribution. 
4) Couette flow is in vortical terms a steady state in which 

vorticity generated previously when the upper plate was set 
moving has been viscously redistributed uniformly between the 
plates. 

5) Poiseuille flow is a case of “slow generation” in which the 
generation rate at the upper and lower boundaries can be 
found by taking v = 0 as A -a = - duldt = p -  dpldx = - y/p at 
the upper boundary and a-A=du/dt=ylp at the lower 
boundary. 

tThis is analogous to the conduction of heat in a semi-infinite solid bounded by a 
plane face which receives radiation at uniform rate, another case in which the supply 
and diffusion of, in this case, heat are governed by independent physical processes. 
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6) The Blasius boundary layer is a case of “fast generation” at the 
leading edge followed by advection along the boundary 
together with viscous redistribution outwards from it. 

The six case studies have now been incorporated into our scheme 
for the generation of vorticity at boundaries, and the way is clear for 
further applications. For example, in mixed Couette-Poiseuille flow 
along a parallel channel with upper plate speed U and pressure 
gradient p - ’  d p / d x =  - y/p, if the lower plate is oscillated in its own 
plane with velocity V cos ot the instantaneous rate of generation per 
unit area of lower plate is y/p + o V sin ot, and negative vorticity will 
be generated during part of the cycle if poV/y > 1. 

The same mechanism for vorticity generation acts in the interior 
of inhomogeneous fluids where relative tangential acceleration is 
produced whenever there is a component of Vp normal to Vp, 
leading to the customary generation rate -V(p-’) x Vp per unit 
volume. 

5.2 Vorticity and rate-of-strain 

Limiting streamlines must always touch the boundary and those 
nearby are approximately parallel to it except near points and lines 
of separation, but in general both exhibit curved patterns in surfaces 
(approximately) parallel to the boundary. These streamline patterns 
simplify considerably in two-dimensional flows, since each streamline 
must then lie in one of a family of parallel planes normal to the 
boundary. We may use these two-dimensional flows to gain further 
insight into the nature of vorticity generation at plane boundaries. 

We can identify three limiting types of flow which exhibit specially 
simple structure: 

i) pure rotation, consisting of “rigid body rotation” of fluid with 
curved streamlines and uniform vorticity but without rate-of- 
strain; 

ii) pure rate-of-strain, comprising all potential flows and in 
particular two-dimensional potential flows where the vorticity is 
necessarily zero and the curvature of streamlines results from 
rate-of-strain; 

iii) simple shear, consisting of flow with parallel streamlines but 
different velocity on different streamlines, where there must be a 
specific relationship between vorticity and rate-of-strain. 
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Sufficiently close to the boundary in two-dimensional (x, z )  flow we 
have from Section 3.3 for a neighborhood of an origin 0 on a 
plane boundary, 

and 

Thus the vorticity is approximately uniform in small neighborhoods 
of the boundary, which are therefore regions of approximately 
uniform shear where the streamlines, z %constant, are approximately 
straight lines parallel to the boundary. 

Motion generated near a plane boundary has, inevitably, to be 
parallel to the boundary, and it follows that boundaries can seldom 
act as pure sources of vorticity. In general they serve as joint sources 
of vorticity and rate-of-strain, and in the case of two-dimensional 
flows over a plane boundary z = 0 the vorticity v] = &/dz - dw/& and 
the related component of rate-of-strain E = au/az + aw/ax are equal at 
the boundary, 

and are generated with equal boundary flux densities. All but one 
of the cases considered in Section 4 consist of parallel flow with 
E = v]  = au/az throughout. In these cases the rate-of-strain is generated 
with vorticity at a boundary, is spread through the layer by the 
diffusion of momentum, and is then permanent (and in particular 
cannot be lost by diffusion to boundaries). Naturally, as in the case 
of Poiseuille flow, opposing rates of strain will cancel, in this case at 
the mid-level. 

We have considered cases with either uniform pressure or very 
simple pressure fields. In more complicated two-dimensional flows, 
especially those with inertial pressure gradients, the vorticity 
equation reduces to 

Dv/Dt = vV2v]; 
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and the rate-of-strain E satisfies the differential equation 

and there is generation of rate-of-strain in the interior of the flow. In 
the cases considered previously d2p /az  ax = 0 and rate-of-strain is 
generated only at boundaries, but in flow towards a step or towards 
a cylinder there is interior generation of rate-of-strain corresponding 
with the deflection of streamlines past the body. 

5.3 The decay of vorticity 

We have seen from our case studies that vorticity is not lost by 
diffusion to boundaries other than in circumstances in which 
vorticity of counter sign is being generated and suffering immediate 
cross-diffusive annihilation with pre-existing vorticity. On the other 
hand, vorticity of alternating sense generated at an oscillating plate 
diffuses outwards, the positive and negative bands interdiffusing and 
suffering cross-diffusive annihilation so that mean amplitudes 
decrease exponentially with increasing distance from the wall. Again, 
in two-dimensional Poiseuille flow vorticity is generated at equal and 
opposite rates at the two boundaries producing equal and opposite 
flux densities diffusing towards mid-channel where they annihilate by 
cross diffusion. 

It has sometimes been implied that because vorticity is solenoidal 
V . o = O ,  it cannot be lost in the interior of a fluid and must 
therefore be permanent or lost only at boundaries. However, if we 
integrate over an arbitrary volume V with closed surface S, 

implying that each vortex line or vortex tube must cut the surface S 
an even number of times, usually twice (entry and exit). 

In Figure 10 sketches (i) and (ii) both satisfy this requirement, but 
will be affected quite differently by diffusion: (i) can suffer cross- 
diffusion with annihilation of the vorticity in its interior and 
reconnection near the poles, as in (iii); whereas (ii) can suffer little 
immediate change by diffusion except to lose or gain some part of a 
tube across its surface. The diffusive process (i) +(iii) corresponds 
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(i) (ii) (iii) 
FIGURE 10 The effects of diffusion on vortex filaments passing through a volume 
V enclosed by a surface S .  

with cross-diffusive annihilation of vorticity in the fluid interior and 
is the sole cause of the decay of vorticity fields. 

The importance of cross-diffusion as a mechanism for decay of 
vorticity fields is emphasized by the global conditions on circulation. 
In simply connected regions of fluid the circulation in an enveloping 
contour which lies everywhere on the boundary of the region is a 
measure of the gross vorticity in the region. The gross circulation in 
an enveloping contour of a bounded region with outer boundary at 
rest must always be zero. Thus, no matter how we stir a cup of tea, 
the circulation in a path around the inner surface of the cup remains 
zero, and at any instant there must be equal strength of upwardly 
oriented as of downwardly oriented vortex tubes. Diffusion will, 
therefore, always lead in time to the total annihilation of all 
vorticity, and simultaneously of all motion, in the cup. It is not, of 
course, the diffusion of vorticity which brings the tea to rest, but the 
diffusion of momentum and the corresponding wall stress of cup on 
fluid. 

Gross circulation in enveloping contours of infinite fluid regions 
containing bounded interior subregions of disturbance is again zero; 
and, unless we rotate boundaries or consider regions bounded partly 
by moving surfaces, all vorticity-producing disturbances in the 
interior of a fluid region must produce equal amounts of vorticity of 
opposite sense. Stirring our cup of tea with a circular motion may 
produce clockwise rotation with an inner core of negative vorticity 
surrounded by an annulus of positive vorticity (for an appropriate 
frame); but the gross circulation is zero and the vorticity will decay 
totally by cross-diffusion. A two-dimensional jet issues from a slit 
source from which equal amounts of vorticity of opposite sense are 
discharged from the two sides of the orifice. There is zero gross 
circulation around the jet as a whole, and in time the jet vorticity 
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will decay everywhere to zero by cross diffusion. If, perchance, you 
cool your tea by blowing over its surface, you will direct your 
mouth-jet tangentially over the liquid surface, bringing against the 
surface tangential vorticity of sense appropriate to that side of the 
jet. Does this vorticity diffuse across the surface into the tea? In case 
of doubt, always return to the fundamental flow variables, in this 
case stress and momentum. The jet will produce surface stress on the 
tea and surface layers of tea will gain momentum, thereby creating a 
normal velocity gradient below the surface and hence vorticity in the 
tea. In effect, vorticity has diffused across the surface, but the 
circulation in an appropriate circuit (now following the inner cup 
wall from the right-hand rim to bottom and up to left-hand rim, and 
then continuing up and over the top of the jet to close at the right- 
hand rim) is and remains zero as long as the circuit embraces the 
whole jet cross-section. We are normally concerned with flows in 
which gross circulation is zero, and in these flows cross-diffusion will 
ultimately annihilate all vorticity. 

5.4 The diffusion of vorticity 

We have maintained a certain ambiguity on the diffusion of 
vorticity, but we now return to Lighthill's statement that this relates 
to the diffusion of momentum. One possible view is to note that the 
Helmholtz equation contains the term vVzw, analogous to the term 
vV2v representing diffusion of momentum in the Navier-Stokes 
equation, and therefore vorticity, like momentum, suffers viscous 
diffusion. 

The further case study of steady two-dimensional Couette flow in 
a channel of depth 2h occupied to depth h from the bottom with 

z=2h 

z = h  

FIGURE I1 Couette flow in a two-layer fluid. 



D
ow

nl
oa

de
d 

B
y:

 [E
yi

nk
, G

re
go

ry
 L

.] 
A

t: 
04

:1
4 

15
 N

ov
em

be
r 2

00
7 

GENERATION AND DECAY OF VORTICITY 305 

fluid of density p l ,  and coefficient of viscosity pl, and from h to 2h 
with a fluid p2, p 2 ,  and with pz < p l  and pz <plr provides additional 
insight. The solution is 

or in terms of vorticity 

where suffix 1 relates to the lower layer and 2 to the upper. Thus 
there is a discontinuity in gradient of the velocity at the interface, 
and an absolute discontinuity in vorticity. The solution therefore, 
predicts an infinite vorticity gradient at the interface, although it 
should be noted that the shear stress, 

is continuous through the interface and, indeed, uniform across the 
entire double layer; note also that the flux of vorticity is zero 
throughout the layer in this steady flow. We cannot accommodate a 
singular level within the flow region, but it is reasonable to note that 
the viscosity changes discontinuously at z = h and therefore we 
should exclude this level from the solution, solve separately in the 
upper and lower layers and match the solutions across the mid-level, 
as of course we have done above. The boundary conditions for the 
Navier-Stokes equation are: 

and the rate of generation of vorticity at the interface is 

(au,/at),+ -(au,/at),- = 0. 

There is no real dilemma in this result, although we may too easily 
have accepted that diffusion of momentum provides an acceptable 
model for diffusion of vorticity. 
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The case of heat conduction through a two-layer parallel slab with 
different thermal conductivities in the two layers and outer faces 
maintained at different temperatures is in some ways analogous. 
There is again a discontinuity of gradient at the interface, in this 
case of temperature, but no discontinuity in heat flux, which is 
uniform throughout the slab. The discontinuity in temperature 
gradient is perhaps of less concern, as we are aware that it is heat 
that is conducted down the temperature gradient, although in 
material of uniform density and thermal conductivity the equation 
can be written as well in terms of temperature as heat, and usually is 

Returning to vorticity, the primary mechanical variables are force 
and momentum. We may draw on the kinetic theory of gases to 
illustrate our argument. Gradient diffusion is the result of transport 
involving molecular collisions, and in each collision there is an 
exchange of properties. Two molecules in collision interact solely 
through a joint impulse which changes the linear momentum of each 
and does work on each. This work goes partly into the kinetic 
energy of mean motion and partly into random motion including 
translation, rotation, and vibration. The former relates to the 
macroscopic motion of the gas, the latter to its random microscopic 
motion and therefore to its heat content. Thus in collisions there is 
interchange of linear momentum and thermal energy, and it is linear 
momentum and heat that are directly diffused in a gas. Vorticity is 
not related to molecular spin but to mean velocity gradients 
averaged over a number of mean free paths; it is therefore a genuine 
continuum variable, and is transported not by direct molecule- 
molecule interactions but as a consequence of the diffusion of linear 
momentum which follows from the existence of velocity gradients 
and in turn modifies them and extends them through the fluid. It is 
only in special -circumstances, however, that we may have to be 
circumspect, and we can usually treat vorticity as a diffusing 
quantity with coefficient of diffusivity v. 

so. 

6. SUMMARY 

The motion of a rigid body is determined by its linear momentum 
and its angular momentum, the former generated by force and the 
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latter by torque or the turning effect of a force. A force with line of 
action passing through the centre of mass of a body generates linear 
momentum only, in every part of the body. A force that does not act 
through the centre of mass generates both linear momentum and 
angular momentum simultaneously throughout the body. Angular 
momentum is important in the response of rigid bodies to forces 
because every part of the body moves in concert. 

There is no limit to the degree to which a fluid may be deformed, 
but the only available forces that can produce this deformation are 
pressure gradients acting throughout the body of the fluid and 
normal and tangential stresses applied across the boundaries. In a 
homogeneous fluid vorticity is generated only at boundaries and its 
generation is instantaneous and the result of inertial forces; rate of 
strain is generated both internally and at boundaries. Effects of 
tangential forces are transmitted only by diffusion, and there is no 
turning effect of force-at-a-distance in fluids. It follows that torque 
and angular momentum have only the most restricted significance in 
fluid dynamics, relating to regions of rotating fluid in which the 
residence time of fluid elements is long relative to the motion of the 
whole, as in tropical cyclones. 

Vorticity is generated at boundaries by the relative acceleration of 
fluid and wall produced instantaneously: 

i) from the fluid side by tangential pressure gradients, although the 
generation is masked by viscous redistribution of the vorticity 
immediately upon generation; 

ii) from the wall side by acceleration of the boundary, where 
generation is again partially masked by viscous diffusion when 
there is continuing generation. 

Wall stress is a force and produces changes in fluid momentum; it 
does not produce relative acceleration of fluid and wall in the 
instantaneous and inviscid sense required for the generation of 
vorticity, and indeed tangential stress acts throughout all fluid 
regions where there is vorticity (or transverse velocity gradient). Wall 
stress does not produce vorticity. 

Momentum can and does diffuse to boundaries producing wall 
stress, but there is no mechanism by which relative tangential 
velocity can diffuse to and be lost at a boundary. Relative 
acceleration of the opposite sign can, however, be produced at 
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boundaries, and as the corresponding momentum diffuses out the 
two vorticity distributions of opposite sign will in time cancel. The 
only means of decay or loss of vorticity is by cross-diffusion and 
annihilation of vorticity of opposite signs. 
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