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Large-eddy simulations (LES) are widely used for computing high Reynolds number
turbulent flows. Spatial filtering theory for LES is not without its shortcomings, including
how to define filtering for wall-bounded flows, commutation errors for non-uniform filters
and extensibility to flows with additional complexity, such as multiphase flows. In this
paper, the theory for LES is reimagined using a coarsening procedure that imitates
nature. This physics-inspired coarsening approach is equivalent to Gaussian filtering for
single-phase wall-free flows but opens up new insights for both physical understanding and
modelling even in that simple case. For example, an alternative to the Germano identity
is introduced and used to define a dynamic procedure without the need for a test filter.
Non-uniform resolution can be represented in this framework without commutation errors,
and the divergence-free condition is retained for incompressible flows. Potential extensions
of the theory to more complex physics such as multiphase flows are briefly discussed.

Key words: turbulence modelling, turbulence simulation

1. Introduction

Because of the inherently multiscale nature of turbulence, the fine grids and small time
steps required for direct numerical simulation (DNS) of turbulent flows are prohibitively
expensive for many higher Reynolds number flow applications. Large-eddy simulation
(LES) has become a popular technique for computing and predicting turbulent flows. In
LES, the computational grid may be significantly coarser than the requirements of DNS,
directly resolving only the large-scale features of the flow. Sub-grid models are introduced
to approximate the net effect of unresolved fluctuations on the large-scale dynamics.

The theory for LES is based on reducing the number of computational degrees of
freedom (DoFs) necessary for a digital representation of a turbulent flow, i.e. increasing
the required grid spacing, typically using a low-pass spatial filter (Leonard 1975; Germano
1992; Sagaut 2006; Moser, Haering & Yalla 2021). The practical significance of spatial
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filtering theory for LES is not necessarily obvious, because most approaches assume
an implicit filter. That is, an explicit calculation of a spatial filter is not necessary or
even commonly employed in LES practice. What the theory of spatial filtering does
provide is a definition of what the simulation aims to reproduce, and more importantly,
a partial differential equation for the evolution of the resolved flow features, including a
mathematical expression for the unclosed term(s) that need to be modelled. The definitions
provided by spatial filtering enable the direct calculation of unclosed terms from DNS
data, allowing for the a priori testing of candidate models (Borue & Orszag 1998) as well
as the theoretical derivation or justification of many proposed models (Clark, Ferziger
& Reynolds 1979; Bardina, Ferziger & Reynolds 1980; Verstappen 2011; Rozema et al.
2015). Perhaps the most notable fruit of spatial filtering theory for LES practice is the
widely used dynamic procedure for determining model coefficients on the fly using an
explicit test filter (Germano et al. 1991; Moin et al. 1991; Lilly 1992; Vreman, Geurts &
Kuerten 1994; Meneveau, Lund & Cabot 1996; Bou-Zeid, Meneveau & Parlange 2005).
Dynamic models are based on the Germano identity, which relates fields filtered at two
different filter widths (Germano 1992).

However, spatial filtering LES theory is not without drawbacks, which have motivated
some proposed modifications and alternative formulations. The optimal LES approach
introduced by Langford & Moser (1999) addresses the inherent loss of information
by invoking conditional averages and seeking a formulation for predicting single-time,
multi-point statistics while minimizing short-time errors in general. Ultimately, it still
relies on spatial filtering and assumes that no history information may be used for
modelling, e.g. by Lagrangian averaging (Meneveau et al. 1996; Bou-Zeid et al. 2005)
or evolving a sub-grid kinetic energy equation (Kim & Menon 1996).

The self-conditioned fields approach introduced by Fox (2003) and Pope (2010)
redefines the objective of LES as the (unfiltered) velocity conditioned on the filtered
velocity field (or another lower-dimensional representation). This conception of LES
has many positive characteristics but makes direct (a priori) testing of models
practically impossible. Self-conditioned fields LES also introduces additional closure
terms pertaining to gradients with respect to conditioning variables (for which no models
are proposed beyond ignoring the terms for expediency), and it largely does not provide
much insight into how to construct models, mostly serving to justify existing models.

One significant difficulty with spatial filtering theory for LES is that non-uniform spatial
filters do not commute with spatial differentiation, leading to commutation errors and
loss of divergence-free velocity fields in the case of incompressible flows (Ghosal &
Moin 1995; Langford & Moser 2001; Yalla et al. 2021). In practice, commutation errors
are typically neglected and a divergence-free condition is imposed without justification.
Another difficulty with spatial filtering arises close to a boundary, where the filter operator
requires flow information from outside the fluid domain (Drivas & Nguyen 2018; Kumar,
Quan & Eyink 2021), unless a non-uniform filter size is used (Bose & Moin 2014) leading
to the commutation errors described above. The filtered field may also be conceived of as
the solution to an elliptic partial differential equation (Germano 1986a,b; Bull & Jameson
2016), in which case the choice of boundary conditions may alleviate this particular
difficulty (Bae & Lozano-Duran 2017). However, common LES treatments near the wall
simply revert to techniques based on Reynolds averaged Navier–Stokes (RANS) without
full justification in terms of spatial filtering. This is true for hybrid RANS–LES models
(Piomelli & Balaras 2002; Frohlich & von Terzi 2008; Spalart 2009; Mockett, Fuchs &
Thiele 2012) as well as wall-modelled LES (Larsson et al. 2016; Bose & Park 2018). The
self-conditioned fields approach does manage to circumvent commutator errors altogether
and to provide a well-defined near-wall behaviour matching the no-slip boundary condition
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(Pope 2010), although these positive characteristics are counter-balanced by the challenges
noted in the previous paragraph.

With interest growing in performing LES-like calculations with increasing physical
complexity, spatial filtering theory is encountering more challenges. In multiphase flows,
for instance, direct application of spatial filtering blurs the interface (Labourasse et al.
2007), unnecessarily losing its distinctiveness even though sharp interface methods exist
for careful, robust treatment such discontinuities. It is desirable to have an LES theory that
allows for retaining sharp interfaces while removing features such as small-scale ripples
that cannot be resolved on a coarse grid (Tryggvason & Lu 2020). One alternative is the
dual-scale approach of Herrmann (2013), but this requires DNS-like resolution for the
phase indicator field (or volume fraction field) and a super-resolution enrichment for the
velocity (Herrmann, Kedelty & Ziegenhein 2018).

In the simulation of turbulent flows laden with small particles, including unresolved
droplets or bubbles in multiphase flows, it is common to avoid the need to resolve the flow
around a particle (i.e. computationally resolve the proper boundary or interface conditions
at the particle surface) using a Lagrangian tracking approach. A closure such as a drag
law must be introduced. When the particle is much smaller than the Kolmogorov scale,
the Reynolds number based on its relative velocity is small, and the particle is not near
a flow boundary, the Lagrangian tracking approach can be quite precise (Maxey & Riley
1983; Balachandar & Eaton 2010). In other more complex scenarios, Lagrangian tracking
represents an approximate treatment motivated by computational tractability not unlike
spatial filtering for LES. In fact, if the goal of reducing computational DoF is indeed
central to LES, then the mathematical theory of LES should be fundamentally compatible
with an Eulerian–Lagrangian approach to particle-laden flows in a way that spatial filtering
is not. This includes potential hybrid approaches to multiphase flows that combine the
direct resolution of large-scale interface features with a Lagrangian tracking approach for
small-scale features (Kim & Moin 2020).

While LES may be practiced in isolation from specific concerns of a consistent
framework, a specific definition of that which an LES aspires to accurately reproduce
is required for advanced techniques such as data-driven closure (Sarghini, de Felice &
Santini 2003; Moreau, Teytaud & Bertoglio 2006; Gamahara & Hattori 2017; Vollant,
Balarac & Corre 2017; Wang et al. 2018; Beck, Flad & Munz 2019; Cheng et al. 2019; Yang
et al. 2019; Zhou et al. 2019; Sirignano, MacArt & Freund 2020; Xie, Wang & Weinan
2020a; Xie, Yuan & Wang 2020b; Yuan, Xie & Wang 2020; Bode et al. 2021; Duraisamy
2021; Freund & Ferrante 2021; Park & Choi 2021; Portwood et al. 2021; Prakash, Jansen
& Evans 2021; Stoffer et al. 2021; Wang et al. 2021) and super-resolution enrichment
(Domaradzki & Loh 1999; Scotti & Meneveau 1999; Stolz & Adams 1999; Milano &
Koumoutsakos 2002; Leonard 2016; Ghate & Lele 2017; Maulik & San 2017; Bassenne
et al. 2019; Wang, Zhao & Ihme 2019; Ghate & Lele 2020; Liu et al. 2020; Kim et al.
2021). For example, without a clear definition of what an LES solution should represent,
one cannot train a neural network to serve as a sub-grid closure in a robust way. In this
sense, the particular relationship between an LES solution and the fully resolved flow
must be afforded more direct attention in the age of data. This is especially true for more
complex scenarios with solid boundaries, interfaces and multiphysics; where pure spatial
filtering is not likely the optimal approach.

The scope of this paper is as follows. This paper introduces the concept of
physics-inspired coarsening (PIC) as a proposed alternative to spatial filtering as a basis
for LES. In addition to laying the groundwork of PIC theory, results for the simplest of
turbulent flows are demonstrated with a priori and a posteriori testing of representative
PIC-based models. Beyond that, the paper explores the extensibility of PIC theory for
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Figure 1. PIC for LES defines a generalized velocity field as a function of physical time (t) and pseudo-time
(t̂ ∼ grid-size2). The generalized Navier–Stokes equation for the LES velocity in physical time requires a
closure model.

complex flows to motivate future work in various directions. The basic theory of PIC is
established in § 2. Following that, § 3 explores in detail single-phase unbounded flows
with uniform resolution, for which PIC is equivalent to Gaussian filtering. Even with this
equivalence, PIC theory provides new insights into energy cascade physics and model
development. Preliminary models based on these insights are demonstrated with a priori
and a posteriori testing. In § 4, PIC theory is expanded to include a number of more
complex effects such as anisotropic and non-uniform resolution, heat and mass transfer
and flows with solid boundaries and multiphase interfaces. Conclusions are drawn in § 5.

2. Physics-inspired coarsening

The underlying philosophy of PIC is to view the removal of DoFs from a flow more as an
imitation of nature than as an image processing trick. As a primary example, the viscosity,
μ, provides a natural mechanism that prevents the creation of motions smaller than the
Kolmogorov microscale, η = ν3/4ε−1/4, where ν = μ/ρ is the kinematic viscosity, ρ is
the fluid mass density and ε is the turbulent dissipation rate. This natural mechanism may
be imitated for LES theory by conjuring an artificial viscous process to further smooth a
frozen snapshot of turbulence, removing small motions below a cutoff length scale, � > η.
The artificial physics-inspired process evolves in a pseudo-time that is independent of
physical time. The overall idea of PIC is illustrated in figure 1 and described in detail in
the remainder of this section. The final subsection then reviews the spatial filtering theory
of LES for comparison and contrast.

2.1. Navier–Stokes equation
For the present purposes, an incompressible flow of a Newtonian fluid is considered. A
velocity vector field, u = u(x, t), evolves as a function of space, x, and time, t, according
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to the Navier–Stokes equation

∂ui

∂t
+ ∂

∂xj

[
uiuj + pδij − ν

(
∂ui

∂xj
+ ∂uj

∂xi

)]
= 0,

∂uj

∂xj
= 0. (2.1)

The pressure (divided by density), p(x, t), enforces the divergence-free condition. A
Poisson equation for the pressure follows from the divergence of the Navier–Stokes
equation

∇2p = −∂ui

∂xj

∂uj

∂xi
. (2.2)

Thus, a fully resolved simulation (DNS) evolves (2.1) together with (2.2) in physical time
with pseudo-time fixed at zero, t̂ = 0, indicated by the green arrow in figure 1.

2.2. Auxiliary Stokes equation
For the physics-inspired approach, a generalized velocity field, w = w(x, t; t̂), is defined
as a function of both time, t, and a pseudo-time, t̂. The generalized velocity field at t̂ = 0
corresponds to the physical velocity field

w(x, t; 0) = u(x, t). (2.3)

As t̂ increases, small-scale motions are removed from the generalized velocity field. Thus,
the pseudo-time is an indicator of the resolution length scale of the generalized velocity. To
accomplish this, an auxiliary Stokes equation may be introduced to govern the pseudo-time
evolution

∂wi

∂ t̂
+ ∂

∂xj

[
p̂δij − ν̂

(
∂wi

∂xj
+ ∂wj

∂xi

)]
= 0,

∂wj

∂xj
= 0. (2.4)

The nonlinear term of the Navier–Stokes equation (uiuj) is removed for (2.4), so there
is no energy cascade in pseudo-time and hence no resupply of energy to small scales
dissipated by pseudo-viscosity, ν̂(x). The length scale at which the flow is smoothed may
be heuristically estimated as � ∼

√
ν̂ t̂. A pseudo-pressure, p̂(x, t; t̂), is also introduced to

enforce a divergence-free condition for the generalized velocity at all pseudo-times. The
divergence of the auxiliary Stokes equation is a Poisson equation for the pseudo-pressure

∇2p̂ = ∂2

∂xi∂xj

[
ν̂

(
∂wi

∂xj
+ ∂wj

∂xi

)]
. (2.5)

Thus, a DNS may be artificially coarsened by, instead of applying a spatial filter,
advancing (2.4) in pseudo-time together with (2.5) having initial conditions set by (2.3).
This is represented in figure 1 by the orange arrows. In the case of a moving reference
frame, the coordinate system only advances in physical time. It is frozen in pseudo-time by
definition, so that Galilean invariance is satisfied. Note that the pseudo-viscosity is distinct
from the idea of an eddy viscosity (or turbulent viscosity) often used to model turbulent
flows. The pseudo-viscosity acts only in pseudo-time and simply enables the coarsening
procedure that is an alternative to spatial filtering. An eddy viscosity acts in physical time
and attempts to approximate the evolution of a coarsened velocity field in physical time,
which is considered next.
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2.3. Generalized Navier–Stokes equation
Explicit filtering is not typically used in practice for LES. Similarly, it is not envisioned
at present that PIC-based LES practice will (necessarily) include the numerical solution
of an auxiliary Stokes equation. The significance of (2.4), rather, is its implication for
the evolution of the generalized velocity in physical time, keeping t̂ ∼ �2 fixed based on
the grid resolution. This is illustrated by the purple arrow in figure 1 and corresponds
to establishing the effective equations for solving a coarsened representation of the flow,
which may in practice be done on a coarser grid.

The outcome of the auxiliary Stokes equation ensures that the Navier–Stokes equation
must be altered to accurately describe the evolution of the coarsened flow field in physical
time. Thus, an effective evolution equation for LES may be derived by finding the
appropriate residual force, F , such that

∂wi

∂t
+ ∂

∂xj

[
wiwj + φδij − ν

(
∂wi

∂xj
+ ∂wj

∂xi

)]
= Fi,

∂wj

∂xj
= 0. (2.6)

When t̂ = 0, the generalized velocity does satisfy (2.1) because of the initial condition,
(2.3). This means that, F (x, t; 0) = 0.

Because the auxiliary Stokes equation globally conserves momentum in the absence of
fluxes through domain boundaries, the residual force must likewise conserve momentum,
and it may be written as the divergence of a residual stress tensor

Fi = ∂σij

∂xj
. (2.7)

Thus, the evolution of the generalized velocity in physical time is given by the generalized
Navier–Stokes equation

∂wi

∂t
+ ∂

∂xj

[
wiwj + σij + φδij − ν

(
∂wi

∂xj
+ ∂wj

∂xi

)]
= 0,

∂wj

∂xj
= 0. (2.8)

Note that the divergence-free constraint on the auxiliary Stokes equation implies a
divergence-free condition for the physical time evolution as well. This is enforced by a
generalized pressure, φ(x, t; t̂), that is distinct from the pseudo-pressure, p̂, which acts
only during pseudo-time evolution. The generalized pressure may be found by solution of
the following Poisson equation:

∇2φ = −∂wi

∂xj

∂wj

∂xi
− ∂2σij

∂xi∂xj
. (2.9)

Equation (2.8), together with (2.9) is unclosed in general. The residual stress tensor
field must be approximated in terms of the generalized velocity field in order to solve
for its evolution. More specifically, only the deviatoric component of σ is material to the
closure problem, because any isotropic component may be lumped in with the generalized
pressure and found via (2.9). For consistency, it is required that the generalized velocity, w,
evolves according to the Navier–Stokes equation for t̂ = 0. That is, (2.8) must be identical
to (2.1) when t̂ = 0. Thus

φ(x, t; 0) = p(x, t), σij(x, t; 0) = 0. (2.10a,b)
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2.4. Residual stress tensor equation
The significance of the above theory is its implications for the mathematical definition
of the residual stress tensor, which is found by requiring consistency between the
pseudo-time and physical time evolution of the generalized velocity field sketched in
figure 1. Specifically, σ may be defined by asserting that advancing the generalized
velocity field from (t0, t̂0) to (tf , t̂f ) must be independent of the path in t–t̂ space. Breaking
the evolution in t–t̂ space into infinitesimal increments, this requirement may be written as

∂

∂ t̂

(
∂wi

∂t

)
= ∂

∂t

(
∂wi

∂ t̂

)
, (2.11)

which is simply the symmetry of mixed partial derivatives. More detailed treatment of the
implications of this constraint for the form of the residual stress tensor will be given later.

2.5. Kinetic energy equations
The scale-wise dynamics of kinetic energy is crucial to the representation of turbulent
flows. The generalized kinetic energy (per unit mass) in PIC is given by 1

2 wiwi. First,
consider how kinetic energy evolves in pseudo-time. Multiplying the auxiliary Stokes
equation, (2.4), by wi and using a product rule on the viscous term

∂(1
2 wiwi)

∂ t̂
+ ∂

∂xj
[p̂wj − 2ν̂wiSij] = −2ν̂SijSij, (2.12)

where Sij = 1
2(∂wi/∂xj + ∂wj/∂xi) is the generalized strain-rate tensor. As pseudo-time

increases, kinetic energy is removed by the pseudo-viscosity at a rate 2ν̂SijSij ≥ 0.
The dynamics of generalized kinetic energy in physical time (at fixed, finite

pseudo-time) can be written by multiplying the generalized Navier–Stokes equation, (2.8)
by wi

∂(1
2 wiwi)

∂t
+ ∂

∂xj

[
1
2

wiwiwj + wiσij + φwj − 2νwiSij

]
= σijSij − 2νSijSij. (2.13)

In addition to direct viscous dissipation, 2νSijSij ≥ 0, the generalized kinetic energy is
removed at a rate Π = −σijSij. Note that Π may be positive or negative in general, but
that the expectation for turbulence dynamics is a preference toward Π > 0 representing the
kinetic energy cascade. That is, Π represents the rate at which kinetic energy associated
with motions larger than � ∼

√
ν̂ t̂ is passed to motions smaller than �. Thus, an important

consideration for any closure model for σij is its ability to remove energy at the proper rate
to mimic the energy cascade.

2.6. Juxtaposition with spatial filtering
The traditional approach to LES theory is based on developing equations for the filtered
velocity field (Leonard 1975; Germano 1992)

ū�
i (x, t) =

∫∫∫
G�(r)ui(x + r, t) dr, F{ū�

i } = (2π)3F{G�}F{ui}. (2.14a,b)

The relative width of the filter is �, with larger values of � resulting in coarser fields. The
notation F is used for a Fourier transform in three dimensions. The definition used here
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for an arbitrary field a is

F{a}(k) = 1
(2π)3

∫∫∫
a(x) exp(−ik · x) dx. (2.15)

The three-dimensional inverse Fourier transform for an arbitrary function b is therefore

F−1{b}(x) =
∫∫∫

b(k) exp(ik · x) dk. (2.16)

This Fourier transform definition is commonly used for turbulence theory, e.g. (Tennekes
& Lumley 1972; Monin & Yaglom 1975; Pope 2000).

LES practitioners rarely rely on a specific filter kernel shape. Common filter shapes used
for theoretical appraisals include top-hat, spectral cutoff and Gaussian kernels (Borue &
Orszag 1998). For example, the Gaussian filter kernel is given by

G�(r) = 1
(2π�)3/2 exp

(
−|r|2

2�2

)
, (2π)3F{G�}(k) = exp

(
−1

2
|k|2�2

)
. (2.17a,b)

The Gaussian filter provides a balanced trade-off between localization in physical space
and wavenumber space, with exponential-of-square dropoff in both.

For a more general class of filter shapes, the Navier–Stokes equation, (2.1), may be
filtered to yield an equation for the filtered velocity field

∂ ū�
i

∂t
+ ∂

∂xj

[
ū�

i ū�
j + τ �

ij + p̄�δij − ν

(
∂ ū�

i
∂xj

+
∂ ū�

j

∂xi

)]
= Ci,

∂ ū�
j

∂xj
= D. (2.18a,b)

Here, the subfilter stress tensor, τ �
ij = uiuj

� − ū�
i ū�

j , plays a role analogous to that of the
residual stress tensor in PIC, σij, although their mathematical definitions may differ. Also,
the filtered pressure, p̄�, is analogous to the generalized pressure in PIC, φ.

The vector C and scalar D in (2.18a,b) represent commutator terms that are zero if the
filtering operation is spatially uniform, i.e. � /= �(x). In the case of spatially varying filter
width, these commutator errors arise and (theoretically) require additional treatment for
LES modelling (Ghosal & Moin 1995; Langford & Moser 2001; Moser et al. 2021; Yalla
et al. 2021).

The kinetic energy of the filtered velocity field evolves as

∂(1
2 ū�

i ū�
i )

∂t
+ ∂

∂xj

[
1
2

ū�
i ū�

i ū�
j + ūiτ

�
ij + p̄�ū�

j − 2νū�
i s̄�

ij

]
= τ �

ij s̄
�
ij − 2ν s̄�

ijs̄
�
ij. (2.19)

The strain-rate tensor is sij = 1
2 (∂ui/∂xj + ∂uj/∂xi) and the filtered strain-rate tensor is

s̄�
ij = 1

2 (∂ ū�
i /∂xj + ∂ ū�

j /∂xi). The two sinks of the filtered kinetic energy are analogous to
those of the generalized kinetic energy in (2.13).

The above derivation presumed an unbounded domain in the filter definition. Section 3
explores the similarity between PIC and filtering in the context of unbounded flows with
uniform resolution. Even in this case, PIC provides useful insight. Then, § 4 shows how
PIC may be extended to more complex flows, including those which represent a challenge
to the spatial filtering approach to LES theory.
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3. Unbounded flows with uniform resolution

3.1. Equivalence of PIC with Gaussian filtering
For unbounded flows with uniform resolution (uniform ν̂), the pseudo-pressure satisfies
a Laplace equation in free space, so p̂ = 0. That is, the pseudo-pressure is not needed to
enforce the divergence-free condition on the generalized velocity. In this case, the auxiliary
Stokes equation simplifies to

∂wi

∂ t̂
= ν̂∇2wi, wi(x, t; 0) = ui(x, t). (3.1a,b)

The formal solution to (3.1a,b) in an unbounded domain is readily obtained

wi(x, t; t̂) =
∫∫∫

1
(4πν̂ t̂)3/2 exp

(
−|r|2

4ν̂ t̂

)
ui(x + r, t) dr ≡ ū�

i (x, t), (3.2)

which is precisely a Gaussian filter with width � =
√

2ν̂ t̂. Therefore, the PIC approach is
precisely equivalent to spatial filtering with a Gaussian kernel for unbounded flows with
uniform resolution. All the strengths and theoretical insights of spatial filtering naturally
carry over, but a new perspective on the residual stress tensor also emerges.

3.2. PIC expression for the residual stress tensor
With the equivalence to Gaussian filtering established for PIC of unbounded flows
with uniform resolution, the mathematical definition of the residual stress tensor could
be straightforwardly written as σij = τij ≡ uiuj

� − ū�
i ū�

j . However, insights beyond those
arrived at via spatial filtering may be obtained by following the PIC logic further in the
form of (2.11).

In the following, flow subjected to an arbitrary (divergence-free) forcing function,
f (x, t) is considered, so (2.1) becomes

∂ui

∂t
+ ∂

∂xj

[
uiuj + pδij − ν

(
∂ui

∂xj
+ ∂uj

∂xi

)]
= fi,

∂uj

∂xj
= 0. (3.3)

The generalized Navier–Stokes equations are likewise supplemented with a generalized
force, g(x, t), that represents the impact of the physical forcing on the coarsened flow
representation

∂wi

∂t
+ ∂

∂xj

[
wiwj + σij + φδij − ν

(
∂wi

∂xj
+ ∂wj

∂xi

)]
= gi,

∂wj

∂xj
= 0. (3.4)

Substituting equations (3.1a) and (3.4) into (2.11)

∂

∂ t̂

(
ν∇2wi − ∂φ

∂xi
− ∂wiwj

∂xj
− ∂σij

∂xj
+ gi

)
− ∂

∂t
(ν̂∇2wi) = 0, (3.5)

and rearranging in terms of time and pseudo-time derivatives,

ν∇2
(

∂wi

∂ t̂

)
− ∂

∂xi

(
∂φ

∂ t̂

)
− ∂

∂xj

(
wi

∂wj

∂ t̂
+ wj

∂wi

∂ t̂

)
− ∂

∂xj

(
∂σij

∂ t̂

)
+ ∂gi

∂ t̂
= ν̂∇2

(
∂wi

∂t

)
,

(3.6)
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and further substitution of (3.1a) and (3.4)

ν∇2(ν̂∇2wi) − ∂

∂xi

(
∂φ

∂ t̂

)
− ∂

∂xj
(ν̂wi∇2wj + ν̂wj∇2wi) − ∂

∂xj

(
∂σij

∂ t̂

)
+ ∂gi

∂ t̂

= ν̂∇2
(

ν∇2wi − ∂φ

∂xi
− ∂wiwj

∂xj
− ∂σij

∂xj
+ gi

)
. (3.7)

Now, further simplification leads to

− ∂

∂xj

(
∂σij

∂ t̂
− ν̂∇2σij − 2ν̂

∂wi

∂xk

∂wj

∂xk
+ ∂φ

∂ t̂
δij − ν̂∇2φδij

)
= ∂gi

∂ t̂
− ν̂∇2gi. (3.8)

Equation (3.8) simply expresses the condition necessary for (3.4) to correctly describe the
large-scale dynamics embodied in the generalized velocity at finite pseudo-time. Because
the residual stress should be disentangled from the (arbitrary) forcing function, both sides
for (3.8) should be set to zero. Setting the right-hand side to zero, the generalized forcing
function may be recognized as the Gaussian-filtered force, cf. (3.1a,b)

∂gi

∂ t̂
= ν̂∇2gi, gi(x, t; 0) = fi(x, t). (3.9a,b)

The left-hand side of (3.8), once set to zero, may be simplified. Namely, the terms involving
the generalized pressure, φ, may be removed on either of two considerations. First, the
generalized pressure may be identified with the Gaussian-filtered pressure

∂φ

∂ t̂
= ν̂∇2φ, φ(x, t; 0) = p(x, t). (3.10a,b)

Alternatively, and more generally, the dynamics of the generalized velocity depends only
on the deviatoric part of the residual stress tensor, so any isotropic contribution can be
safely ignored.

A sufficient condition for satisfying (3.8) and thus (2.11) is

∂σij

∂ t̂
= ν̂∇2σij + 2ν̂

∂wi

∂xk

∂wj

∂xk
. (3.11)

This is a forced diffusion equation in pseudo-time for σ , and its formal solution in
unbounded space is also readily obtained

σij(x, t; t̂) =
∫ t̂

0

[∫∫∫
1

(4πν̂(t̂ − t′))3/2 exp
(

− |r|2
4ν̂(t̂ − t′)

)
∂wi

∂xk

∂wj

∂xk
(x + r, t; t′) dr

]
dt′.

(3.12)

The residual stress at pseudo-time t̂ may thus be interpreted as an integral over all
earlier pseudo-times, 0 ≤ t′ ≤ t̂, of the velocity gradient product at t′ smoothed by a
pseudo-viscosity from its earlier pseudo-time up until the pseudo-time at which the
residual stress is evaluated, i.e. over the pseudo-time range t̂ − t′.

3.3. Insights into the energy cascade
The equivalence of PIC with Gaussian spatial filtering may be invoked, in the case of
unbounded flows with uniform resolution, to rephrase the subfilter stress tensor of filtering
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theory in terms of multiscale velocity gradients. Dividing equation (3.11) by 2ν̂, with the
established relation �2 = 2ν̂ t̂

∂τij

∂(�2)
= 1

2
∇2τij + ∂ ū�

i
∂xk

∂ ū�
j

∂xk
, (3.13)

therefore has a formal solution, (3.12), that can itself be written in terms of an integral of
Gaussian-filtered velocity gradients at all scales 0 ≤ √

α ≤ �

τij =
∫ �2

0

∂ ū
√

α

i
∂xk

∂ ū
√

α

j

∂xk

β

dα, (3.14)

where β = √
�2 − α is the width of the complementary filter which smooths from scale√

α to scale �.
Invoking the definition of the generalized second moment from Germano (1992)

τ �(a, b) = ab
� − ā�b̄�, (3.15)

of which the subfilter stress tensor is one special case τij = τ(ui, uj), the PIC-based
phrasing of the Gaussian filter’s stress tensor can be split into resolved-scale and
subfilter-scale contributions

τij = �2 ∂ ū�
i

∂xk

∂ ū�
j

∂xk
+
∫ �2

0
τβ

⎛
⎝∂ ū

√
α

i
∂xk

,
∂ ū

√
α

j

∂xk

⎞
⎠ dα. (3.16)

The first of the two terms on the right-hand side is the nonlinear gradient model, which
by itself performs well in a priori testing compared with eddy viscosity models (Clark
et al. 1979; Borue & Orszag 1998). The second term shows how such a model leaves out
smaller-scale (unresolved) content. Further decomposing the filtered velocity gradients in
(3.16) into strain rate and vorticity, and forming the product Π� = −τ �

ij s̄
�
ij, the local energy

cascade rate may be written in terms of vorticity stretching and strain self-amplification

Π� = Π�
s1 + Π�

ω1 + Π�
s2 + Π�

ω2 + Π�
c , (3.17)

where

Π�
s1 = −�2s̄�

ijs̄
�
jks̄�

ki = strain-rate self-amplification at scale �, (3.18)

Π�
ω1 = 1

4
�2s̄�

ijω̄
�
i ω̄

�
j = vorticity stretching at scale �, (3.19)

Π�
s2 = −s̄�

ij

∫ �2

0
τβ(s̄

√
α

jk , s̄
√

α

ki ) dα = multiscale strain amplification by strain at �, (3.20)

Π�
ω2 = s̄�

ij

∫ �2

0
τβ(ω̄

√
α

i , ω̄
√

α

j ) dα = multiscale vorticity stretching by strain at �, (3.21)

Π�
c = 2s̄�

ij

∫ �2

0
τβ(s̄

√
α

jk , Ω̄
√

α

ki ) dα = multiscale vortex thinning by strain at �. (3.22)

In this way, the rephrasing of spatial filtering in terms of PIC for unbounded flows with
uniform resolution leads to a unique theoretical insight: the exact relation of commonly
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invoked mechanisms to the energy cascade. For more details, the reader is referred to
Johnson (2020, 2021a). A treatment of the topic for a broader audience is given in Johnson
(2021b).

DNS of homogeneous isotropic turbulence demonstrates that the multiscale gradient
terms in τ align closely with the filtered strain-rate tensor (Johnson 2021a). The eddy
viscosity model is thus a good approximation for the second term on the right-hand side
of (3.16). Overall, this suggests the applicability of a mixed model, with σ = τ being the
sum of nonlinear gradient and eddy viscosity terms (Vreman et al. 1994).

3.4. An alternative to the Germano identity
The dynamic procedure (Germano et al. 1991) based on the Germano identity (Germano
1992) is one of the most common direct uses of spatial filtering theory in LES practice.
The basic idea is that coefficients for a given model may be estimated from the resolved
scales using a test filter larger than the grid size. A similar procedure may be developed
with PIC via the dependence of σ on the cutoff scale (i.e. pseudo-time).

This may be briefly demonstrated for a generic eddy viscosity model

σ
(d)
ij ≈ −2νTSij. (3.23)

First, (3.23) is substituted into (3.11) and the spatial variability of νT is neglected (for
convenience, as commonly done for the Smagorinsky coefficient)

− 2Sij
∂νT

∂ t̂
= 2ν̂

(
∂wi

∂xk

∂wj

∂xk
− 1

3
∂wm

∂xn

∂wm

∂xn
δij

)
. (3.24)

The above expression may be modified to the Smagorinsky form and the spatial variability
of the filtered strain rate may also be factored in, if desired.

Second, Kolmogorov (1941) scaling is assumed, νT ∼ �4/3 ∼ t̂2/3, so that the variation
of the eddy viscosity in pseudo-time may be evaluated, ∂νT/∂ t̂ = 2

3 (νT/t̂). Then (3.26)
becomes

− 4
3

SijνT = �2
(

∂wi

∂xk

∂wj

∂xk
− 1

3
∂wm

∂xn

∂wm

∂xn
δij

)
, (3.25)

where �2 = 2ν̂ t̂. This equation is over-determined because, in general, a scalar νT will not
be found that can satisfy the full tensor equation. Therefore, as is typical for dynamic
procedures, a least-squares procedure is employed (Lilly 1992). This step leads to a
projection on Sij that carries the physical meaning of matching the energy cascade rate.
The resulting expression for the eddy viscosity is

νT = 3�2

4
AikAjkAij

SmnSmn
= 3�2

4

1
4 WiSijWj − SijSjkSki

SmnSmn
, (3.26)

where Aij = ∂wi/∂xj is the generalized velocity gradient tensor, Sij = 1
2(Aij + Aji) is

the generalized strain-rate tensor and Wi = εijkAkj is the generalized vorticity. The
denominator of this relation is positive–definite. The numerator represents the sum of
vortex stretching and strain-rate self-amplification, which is positive on average for
turbulent flows. Local negative values of the numerator may necessitate averaging or
clipping strategies as done in the Germano-based dynamic procedure.
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A physics-inspired alternative to spatial filtering for LES

Johnson (2021a) demonstrated that the eddy viscosity approximation is more physically
accurate for the only part of the residual stress tensor

eij = σij − 2ν̂ t̂
∂wi

∂xk

∂wj

∂xk
, (3.27)

which represents multiscale vortex stretching and strain-rate amplification in (3.16). It may
be shown from (3.1a,b) and (3.11) that

∂eij

∂ t̂
= ν̂∇2eij + 4ν̂2 t̂

∂2wi

∂xm∂xn

∂2wj

∂xm∂xn
. (3.28)

Substituting the eddy viscosity approximation, (3.23), for e(d)
ij rather than the full residual

stress tensor, σ
(d)
ij , and again assuming νT ∼ t̂2/3 with a least-squares approach leads to a

‘dynamic’ mixed model

σ
(d)
ij = �2(AikAjk)

(d) − 2νTSij, νT = −3�4

4
BiklSijBjkl

SmnSmn
, (3.29a,b)

where Bijk = ∂2wi/∂xj∂xk and �2 = 2ν̂ t̂. The appearance of the second derivative of the
generalized velocity field in the mixed model is less practical when numerical errors are
inherent in assessing spatial derivatives. Nonetheless, (3.29a,b) provides a useful initial
test for assessing the relative strengths of PIC theory.

3.5. A priori testing
DNS of homogeneous isotropic turbulence is used for a priori tests reported in
this subsection. The incompressible Navier–Stokes equation, (2.1), is solved using a
pseudo-spectral method with 1024 collocation points in each direction. The fully resolved
velocity field, u, is advanced in time with a second-order Adams–Bashforth scheme,
and the pressure p simply enforces the divergence-free condition. The 2

√
2/3 rule for

wavenumber truncation is used with phase-shift dealiasing (Patterson & Orszag 1971).
The forcing, f , is specifically designed to maintain constant kinetic energy in the first two
wavenumber shells.

The simulation was initialized using a Gaussian random velocity field satisfying a model
turbulent energy spectrum (Pope 2000). The simulation was first run through a startup
period to reach statistical stationarity. Then, statistics are computed over six large-eddy
turnover times. The Taylor-scale Reynolds number is approximately Reλ = 400 with grid
resolution kmaxη = 1.4. The integral length scale is approximately 20 % of the periodic box
size of 2π and L/η = 460. The skewness of the longitudinal velocity gradient is −0.58,
and the flatness of the longitudinal and transverse velocity gradients are 8.0 and 12.4,
respectively, in reasonable agreement with previous simulations (Ishihara et al. 2007). The
a priori assessment is carried out for the ‘dynamic’ viscosity model, (3.26), and ‘dynamic’
mixed model, (3.29a,b), along with existing popular models including the standard
dynamic Smagorinsky model (Germano et al. 1991; Lilly 1992) and nonlinear gradient
model (Clark et al. 1979; Borue & Orszag 1998). For all three dynamic models, spatial
averaging is used for the numerator and denominator of the Smagorinsky coefficient or
eddy viscosity. The results are shown in figure 2. For this case, PIC and Gaussian filtering
are equivalent so the language of each approach is used interchangeably.

Perhaps the most important practical consideration for LES models is providing the
proper rate of energy removal to unresolved scales. Figure 2(a) shows the average cascade
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Figure 2. A priori comparison of new dynamic eddy viscosity (‘dyn visc’) and dynamic mixed (‘dyn mixed’)
models with DNS results and existing models: dynamic Smagorinsky (‘dyn Smag’) and nonlinear gradient
model (‘nonlin grad’): (a) mean cascade rate, (b) probability density function of energy cascade rate at � = 46η,
(c,d) correlation coefficient and R2 coefficient (also known as the coefficient of determination) for the energy
cascade rate, respectively, (e, f ) correlation coefficient and R2 coefficient for the full residual stress tensor,
respectively. Two vertical dashed grey lines indicate rough bounds for the approximate inertial subrange of
scales in the DNS, 25 ≤ �/η ≤ 75.

rate, Π , as a function of filter width, � =
√

2ν̂ t̂, normalized by the average dissipation rate
in the unfiltered DNS. The blue curve with star symbols shows that the cascade rate is
nearly equal to the dissipation rate for 25 � �/η � 75, an approximate inertial range for
the simulation. The cascade rate decays to zero as � decreases because viscous dissipation
becomes significant near the Kolmogorov scale. The other four curves indicate the extent
to which the four models reproduce the correct cascade rate when applied directly to
coarsened DNS data. As is well known, the nonlinear gradient model is under-dissipative,
especially in the inertial range, and the dynamic Smagorinsky model provides a better
approximation of the energy removal rate. The PIC-based dynamic eddy viscosity model
performs very similarly to the filter-based dynamic Smagorinsky model. The PIC-based
dynamic mixed model is confirmed to remove energy at a higher rate in the inertial range
than the nonlinear gradient or eddy viscosity models on their own.
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A physics-inspired alternative to spatial filtering for LES

The probability density function (PDF) of the energy cascade rate, Π , for each model
at � = 46η is shown in figure 2(b) along with the coarsened DNS result. The DNS data
indicate the existence of some backscatter, but the distribution is strongly skewed toward
positive cascade rates. The two eddy viscosity models do not allow any backscatter by
construction due to the spatial averaging used as part of the dynamic procedure. The
nonlinear gradient and PIC-based dynamic mixed model provide relatively appropriate
probabilities of backscatter, with the mixed model having the best overall agreement with
DNS.

Figures 2(c) and 2(d) show the correlation coefficient and R-squared value based on
each model’s point-by-point prediction of the cascade rate, Π . An R-squared value of one
indicates a perfect model. All four models are highly correlated with DNS in the inertial
range, but the absolute error measured by the R-squared value shows more variation in
the models performances. Both metrics show that the PIC-based dynamic mixed model
is in closest agreement with DNS. Figures 2(e) and 2( f ) show the correlation coefficients
and R-squared values based on the full residual (subfilter) stress tensor. The stress tensor
is known to align poorly with the strain-rate tensor, so the eddy viscosity models perform
poorly for both metrics. The nonlinear gradient model performs quite well and the dynamic
mixed model shows only slight improvement. The major benefit of the mixed model over
the nonlinear gradient model has already been demonstrated in figure 2(a).

3.6. A posteriori testing
LESs were performed using three stress models: Smagorinsky, PIC-based dynamic eddy
viscosity (3.26), and PIC-based dynamic mixed (3.29a,b). The same pseudo-spectral code
from the DNS is used. The Smagorinsky coefficient is not determined dynamically for the
LES, but was manually chosen to produce accurate results. For the two PIC-based dynamic
models, spatial averaging is used for the numerator and denominator of the eddy viscosity,
so that the eddy viscosity does not vary in space for either. As such, the simulation with
the PIC-based dynamic eddy viscosity model is essentially a DNS at a lower Reynolds
number, with the PIC-based theory setting the viscosity so as to match Gaussian-filtered
DNS (fDNS) with a given filter width.

The filter width (pseudo-time) is chosen to be �/η = 24, which is at the small-scale
end of the inertial range identified in the a priori tests. The following grid resolutions
were tested: 643, 1283 and 2563. These correspond to kmax� = 1.5, 3.0 and 6.0. The
DNS results are filtered with a Gaussian kernel (equivalent to PIC) for direct comparison
with the LES results from each model. Figure 3(a) shows the energy spectra from LES
simulations at each of the three resolutions with the PIC-based dynamic eddy viscosity
model. The spectra from each resolution overlap until wavenumbers close to kmax, where
a slight pileup occurs. The results from 1283 and 2563 are very similar, indicating grid
convergence, but 643 is not grid converged. The spectra from the three models are
compared at 1283 resolution in figure 3(b). The Smagorinsky model is known to produce a
spectrum close to that of a Gaussian filter (Pope 2000), as affirmed by the results here. The
PIC-based dynamic mixed model produces a spectrum almost indistinguishable from the
Gaussian-filtered DNS for the simulation shown here. All three models produce spectra
in reasonable agreement. The PIC-based dynamic procedure for determining the eddy
viscosity is thus shown to work well for both the pure eddy viscosity and mixed models.

In addition to testing the energy spectra produced by various LES models, it is
also useful to compare local flow topology statistics. Given the importance of strain
self-amplification and vorticity stretching to turbulence dynamics, the LES models are
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Figure 3. Energy spectra for a posteriori testing: (a) using PIC-based dynamic eddy viscosity model with
�/η = 24 at three different resolutions, and (b) using three different models with kmax� = 3. A Kolmogorov
spectrum, E(k) = 1.6ε2/3k−5/3 is shown for reference in both panels.

compared with filtered DNS in terms of the following two quantities:

s∗ = −√
6SijSjkSki

(SmnSmn)3/2 ω∗ =
√

6WiSijWj

2WkWk(SmnSmn)1/2 . (3.30a,b)

The first, s∗, was introduced by Lund & Rogers (1994) and quantifies the efficiency of the
strain self-amplification contribution to the energy cascade, −1 ≤ s∗ = Πs1/Πs1,max ≤ 1.
The second term likewise indicates the efficiency of the vorticity stretching contribution
to the cascade, −1 ≤ ω∗ = Πω1/Πω1,max ≤ 1. The concept of cascade efficiency was
introduced by Ballouz & Ouellette (2018) and extended to include the above definitions
in Johnson (2021a). These two quantities describe flow topology in a way most relevant to
turbulent cascade physics.

Figure 4 compares the PDFs of s∗ and ω∗ from LES models and filtered DNS.
Results from unfiltered DNS are also shown to highlight the similarity of the eddy
viscosity models, particularly the PIC-based dynamic viscosity model, with (unfiltered)
DNS. The reason for this is that the eddy viscosity models behave like DNS at lower
Reynolds numbers, and thus produce topology statistics similar to the Kolmogorov scales
in DNS. However, the results in figure 4 demonstrate that the PIC-based mixed model
captures subtle physical differences between viscous-scale and inertial range flow topology
statistics.

Many other metrics can be used to judge the a posteriori accuracy of LES models. It is
not the goal at present to thoroughly explore all possibilities. However, a number of highly
relevant statistics are summarized in table 1. It may be noted that the PIC-based dynamic
mixed model slightly over-predicts the magnitude of velocity gradients, which may also be
noticed in the spectra shown in figure 3(b), where a slight over-prediction is noticeable for
a range of wavenumbers slightly smaller than the inverse of the filter scale. There appears
to be a slight (unphysical) build up of energy not entirely unlike the bottleneck effect
commonly observed in DNS and experimental data near the Kolmogorov scale (Falkovich
1994; Donzis & Sreenivasan 2010).

All three models over-predict the fraction of the cascade rate due to single-scale strain
self-amplification and vorticity stretching. For the mixed model, this shows that too much
energy removal is done through the nonlinear gradient term, and not enough through the
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Figure 4. PDFs of s∗ and ω∗, (3.30a,b), for LES with three different models compared with DNS and filtered
DNS.

Model 〈SijSij〉τ 2
η 〈Πs1〉/〈Π〉 〈Πω1〉/〈Π〉 〈A3

11〉/〈A2
11〉3/2 〈A4

11〉/〈A2
11〉2 〈A4

12〉/〈A2
12〉2

fDNS 1.7e − 2 0.37 0.12 −0.41 3.9 4.6
Smag. 1.8e − 2 0.42 0.14 −0.42 3.6 4.9
Dyn. visc. 1.9e − 2 0.50 0.17 −0.47 4.7 6.7
Dyn. mixed 1.9e − 2 0.45 0.15 −0.41 4.0 4.9

Table 1. Statistical results from LES and filtered DNS at �/η = 24 with 1283 resolution (kmax� = 3). These
values were converged when compared with 2563 resolution.

eddy viscosity. The longitudinal and transverse velocity gradient skewness and flatness
values from the mixed model LES are in fairly good agreement with the filtered DNS.
Notice that the dynamic eddy viscosity model leads to too much intermittency (higher
skewness and flatness), because it has a spatially uniform eddy viscosity, whereas the
local adjustments due to Smagorinsky’s eddy viscosity bring intermittency metrics more
in line with filtered DNS.

Overall, all three models perform reasonably well in a posteriori tests. Furthermore,
the relative advantages of the mixed model are clear, and the success of the PIC-based
dynamic scheme is demonstrated. It should be appreciated that PIC theory for LES can
facilitate model development well beyond the specific models tested here. The success of
these models, however, does motivate future work to develop refined PIC-based models.

4. Toward PIC for more complex flows

In § 3, it was shown that PIC is mathematically equivalent to spatial filtering with a
Gaussian kernel for unbounded flows with uniform, isotropic resolution. Even so, the
PIC-based approach to LES provided theoretical and modelling insights, including a
PIC-based alternative to the Germano-based dynamic procedure that does not require test
filtering. Preliminary models showed promising a priori and a posteriori results, but there
is more room for future work developing and testing models even for that simple case.

In this section, the extension of PIC to a number of more complex flow scenarios
is outlined. The focus is on how the basic theory of PIC provides the flexibility and

934 A30-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
50

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1150


P.L. Johnson

0 π

0 π

Figure 5. A coarsened velocity field using anisotropic pseudo-viscosity on DNS data of homogeneous
isotropic turbulence. The resolution length scale (

√
2ν̂ t̂) in the x direction (purple/magenta lines) is one-fourth

of that in the y direction (black/grey lines).

systematic approach to incorporate features needed for practical application of LES to
complex flows.

4.1. Anisotropic resolution
The first step toward LES of more complex flows is a consistent treatment of grid
anisotropy. Anisotropic grid resolutions are often unavoidable in simulations with complex
geometries. Various treatments of grid anisotropy exist for spatial filtering theory (Bardina
et al. 1980; Scotti, Meneveau & Lilly 1993; Vreman 2004; Rozema et al. 2015; Haering,
Lee & Moser 2019). In practice, simple treatments of grid anisotropy are common, such as
using a scalar measure for effective resolution based on a suitable average of resolution
in three different directions on an orthogonal grid: Δ1, Δ2 and Δ3. Deardorff (1970)
suggested the use of Δ = 3

√
Δ1Δ2Δ3 based on the cell volume and Bardina et al. (1980)

used Δ =
√

(Δ2
1 + Δ2

2 + Δ2
3)/3.

For viscosity-based smoothing, anisotropic resolution is easily introduced using a
tensorial pseudo-viscosity aligned with the principal directions of the grid. Thus, (3.1a)
for unbounded flows may be modified to incorporate anisotropic resolution effects

∂wi

∂ t̂
= ν̂jk

∂2wi

∂xj∂xk
,

∂wj

∂xj
= 0. (4.1a,b)

For uniform resolution, the pseudo-pressure will satisfy the Laplace equation and hence
be p̂ = 0 in the absence of flow boundaries. In that case, the result will be anisotropic
Gaussian filtering aligned with the grid

wi(x, t; t̂) =
∫∫∫

1√
(2π)3 det C

exp
(

−1
2

rjC−1
jk rk

)
ui(x + r, t) dr. (4.2)

Here, the covariance tensor, Cij = 2ν̂ijt̂, is equivalent to the moment of inertial tensor
of Bardina et al. (1980). The isotropic form, (3.1a,b), is recovered when ν̂ij = ν̂δij. The
eigenvalues of C , �2

1,2,3 = 2ν̂1,2,3 t̂, represent the (square of the) resolution in three
directions given by their respective eigenvectors (e.g. the local coordinate frame of an
orthogonal grid). The result of anisotropic PIC (i.e. anisotropic Gaussian filtering) is
illustrated in figure 5. In this case, the coarsening procedure generates anisotropy in the
generalized velocity field from an initially isotropic fully resolved velocity field (Haering
et al. 2019).
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Substituting equations (2.8) and (4.1a,b) in (2.11), one obtains

∂σij

∂ t̂
= ν̂mn

∂2σij

∂xm∂xn
+ ν̂mn

(
∂wi

∂xm

∂wj

∂xn
+ ∂wi

∂xn

∂wj

∂xm

)
. (4.3)

The details of the derivation leading to (4.3) follow the same steps as those shown in
§ 3 leading to (3.11). Indeed, it is readily verified that (3.11) is recovered in the isotropic
limit, ν̂ij = ν̂δij. The PIC-based dynamic procedure for anisotropic grids can be based
on (4.3), which could lead to eddy viscosity models that share some similarities with the
anisotropic minimum dissipation model (Rozema et al. 2015) and the M43 model (Haering
et al. 2019), while a PIC-based dynamic mixed model may share similarities with that of
Vreman (2004).

4.2. Non-uniform resolution
Uniform grid resolution is useful for some simple canonical turbulent flows, but it is
not practical for many naturally occurring and engineered flows. As discussed in the
introduction, a non-uniform filter does not commute with spatial differentiation, giving
rise to additional terms in the governing equations for filtered fields (Ghosal & Moin
1995; Yalla et al. 2021). Most notably, the filtered velocity field is no longer divergence
free (Langford & Moser 2001).

In contrast, the PIC approach to the LES equations explicitly enforces a divergence-free
condition on the generalized velocity field, w, using a pseudo-pressure, p̂, in the auxiliary
evolution equation in pseudo-time, t̂. The above theory for uniform resolution was able to
ignore the proposed pseudo-pressure due to the form of its Poisson equation, (2.5), which
may be alternatively written in terms of pseudo-viscosity gradients

∇2p̂ = 2
∂ν̂

∂xi
∇2wi + ∂2ν̂

∂xi∂xj

(
∂wi

∂xj
+ ∂wj

∂xi

)
, (4.4)

which reduces to a Laplace equation for uniform pseudo-viscosity (i.e. uniform
grid resolution). Non-uniform resolution is represented as spatial variation of the
pseudo-viscosity, ν̂ = ν̂(x), which activates a non-zero pseudo-pressure to enforce the
divergence-free condition. Note that, with the non-zero pseudo-pressure, the PIC equations
for pseudo-time evolution are no longer purely parabolic, but include an elliptic nature as
well. However, the square-of-exponential falloff of the spectral content is still roughly
preserved, so that the removal of small scales is still rather efficient compared with other
elliptic partial differential equations (Germano 1986a,b; Bull & Jameson 2016).

Figure 6 demonstrates the outcome of PIC with a spatially varying pseudo-viscosity
for a velocity field snapshot from DNS of homogeneous isotropic turbulence with ν̂( y) =
ν̂max − (ν̂max − ν̂min) cos( y), where 0 ≤ y ≤ 2π is the vertical axis as printed on the page.
The rightmost image is of a divergence-free velocity field with variable resolution. The
effective resolution is isotropic, but varies in space, with high resolution near the top and
bottom (ν̂ ≈ ν̂min) and low resolution near the centre (ν̂ ≈ ν̂max).

The case of non-uniform (isotropic) resolution is useful for reflecting on the PIC
approach in general. The goal of PIC is to create LES equations with well-defined closure
terms that facilitate effective modelling in ways that improve upon spatial filtering. It is
not a central goal of PIC to remain particularly faithful to physical processes during its
pseudo-time evolution. The physical processes inspiring the pseudo-time dynamics are
useful insomuch as they create helpful representations for LES. This allows some freedom
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0 π

0 π

Figure 6. A (divergence-free) coarsened velocity field using sinusoidally varying pseudo-viscosity applied
to DNS data of homogeneous isotropic turbulence. The resolution length scale,

√
2ν̂ t̂ varies by a factor of 4

between y = 0 and y = π.

when designing the details of PIC, for example, one may choose to simplify the auxiliary
Stokes equation, (2.4), to

∂wi

∂ t̂
= − ∂ p̂

∂xi
+ ∂

∂xj

[
ν̂
∂wi

∂xj

]
,

∂wj

∂xj
= 0, ∇2p̂ = ∂

∂xj

(
∂ν̂

∂xi

∂wi

∂xj

)
. (4.5a,b)

The difference between (2.4) and (4.5a,b) is only material for non-uniform
pseudo-viscosity. Either may be used for PIC, and it is not immediately evident which
will be most beneficial for LES. More research is needed to elucidate the relative strengths
of either.

Substituting equations (4.5a,b) and (2.8) into (2.11) and performing simplifications like
those in § 3, one may arrive at the auxiliary equation for the residual stress for general
ν̂ = ν̂(x)

∂σij

∂ t̂
= ∂

∂xk

(
ν̂
∂σij

∂xk

)
+ 2ν̂

∂wi

∂xk

∂wj

∂xk

−
(

wi
∂wk

∂xj
+ wj

∂wk

∂xi
+ ∂wiwk

∂xj
+ ∂σik

∂xj
− ∂ p̂

∂xj
δik

)
∂ν̂

∂xk
+ (wiδjk + wjδik)

∂ p̂
∂xk

.

(4.6)

Deviations from (3.11) are proportional to the pseudo-viscosity gradient, as well as the
pseudo-pressure. One way to view the extra terms in (4.6) is to view them as consequences
of the lack a commutativity between multiplication by ν̂ and differentiation. The advantage
of this PIC formulation is that these commutator terms are built into the residual stress, and
so provide a path for extending the use of dynamic procedures and other approaches from
uniform resolution to more general cases. Beyond traditional (theory-based) modelling
approaches, data-driven techniques may stand to benefit even more from PIC and (4.6).
While isotropic non-uniform resolution has been considered here, the same procedure may
be used to combine anisotropic and non-uniform grid effects into a single formulation.

4.3. Heat and mass transfer
In addition to complexities introduced by numerical grid effects, PIC provides a holistic
approach for reducing the computational DoFs needed to represent turbulence in regimes
with additional physical effects beyond unbounded single-phase incompressible flows. The
next few subsections touch briefly on a few examples, the simplest of which is passive
scalar transport.
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For flows with heat or mass transfer described by an advection diffusion equation

∂T
∂t

+ uj
∂T
∂xj

= α∇2T, (4.7)

the relevant scalar field T (e.g. temperature or concentration) may be coarsened in a
physics-inspired manner using an pseudo-conductivity or pseudo-diffusivity, α̂, to form
a generalized temperature/concentration, θ , with pseudo-time evolution given by an
auxiliary heat equation

∂θ

∂ t̂
= α̂∇2θ,

∂θ

∂t
+ wj

∂θ

∂xj
= α∇2θ − ∂qj

∂xj
, (4.8a,b)

so that the physical time evolution of the generalized temperature/concentration must
include a residual heat/mass flux q. The equality of mixed partial derivatives for θ

∂

∂ t̂

(
∂θ

∂t

)
= ∂

∂t

(
∂θ

∂ t̂

)
, (4.9)

may be satisfied by a forced diffusion equation for the residual heat/mass flux

∂qi

∂ t̂
= α̂∇2qi + 2α̂

∂wi

∂xj

∂θ

∂xj
. (4.10)

Here, α̂ = ν̂ is chosen (unity pseudo-Prandtl number) for convenience. Other choices of
pseudo-Prandtl number are possible, but unlikely to be advantageous.

Similar extensions to non-uniform or anisotropic resolution may be found for heat/mass
transfer as shown for the momentum equation above. Equation (4.10) can also provide
insight into the scale-wise scalar fluctuation dynamics. A turbulent cascade of scalar
variance may be linked to the multiscale squeezing of scalar filaments using the formal
solution in wall-free flows following the procedure outline for the kinetic energy cascade
in § 3. Furthermore, (4.10) can serve as the basis for a PIC-based dynamic procedure for
an eddy diffusivity or mixed model for q.

4.4. Wall-bounded turbulent flows
Turbulence near solid boundaries is very common in flows of interest for LES. This is
the source of some inconvenience for spatial filtering theory. A uniform filter integral
will require flow information outside the fluid domain (Drivas & Nguyen 2018; Kumar
et al. 2021). This may be avoided through the use of a filter width which vanishes at the
boundary is approached (Bose & Moin 2014), giving rise to commutation errors discussed
in § 4.2.

In contrast to spatial filtering, the physics-inspired approach naturally extends to
wall-bounded flows. To accomplish this, the auxiliary Stokes equation, (2.4) must be given
boundary conditions for w. For example, the use of user-defined boundary conditions for
coarsening procedures has been preliminarily investigated (Bae & Lozano-Duran 2017,
2018). A number of choices are possible depending on the level of near-wall resolution. If
the wall-normal grid spacing resolves the viscous sublayer, �+

y ∼ 1, then the best choice
of boundary conditions is likely Dirichlet, w|wall = 0. Depending on the wall parallel
resolution, this approach could facilitate wall-resolved LES (�+

x ∼ �+
z ∼ 50) or near-wall

RANS for hybrid RANS–LES (coarser x–z resolution).
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Alternatively, a coarser wall-normal resolution, �y 
 1, would facilitate development of
approximate closures for wall-modelled LES. In this case, Dirichlet boundary conditions
could still be used (Bae & Lozano-Duran 2021), but other choices such as Robin (Bose
& Moin 2014) or Neumann boundary conditions could be used. The choice of boundary
conditions for the pseudo-time dynamics would directly set the boundary conditions to
be used in LES on the generalized velocity field. Furthermore, complementary boundary
conditions on the residual stress tensor, σ , would also need to be specified in such a
way as to preserve the integral of momentum transport across the boundary during the
pseudo-time evolution so as to facilitate accurate calculations of forces in the LES. For
example, in a wall-resolved LES regime, Dirichlet boundary conditions would likely be
the best choice for the residual stress in conjunction with Dirichlet velocity boundary
conditions. Further research is needed to determine the best approach for wall-modelled
LES.

Data-driven techniques may be useful for testing the potential fruitfulness of various
choices for the boundary conditions. For example, the art of constructing data-driven wall
models may benefit substantially from the PIC-based approach to the LES equations.
Sufficiently far from the wall, y 
 �, the PIC naturally recovers Gaussian filtering, but
near the wall, the PIC theory outlined in this paper provides a method for determining
how the choice of boundary conditions influences the residual stress tensor.

4.5. Particle-laden flows
Turbulent flows with small particles also represent a challenge to spatial filtering theory.
Lagrangian particle tracking methods, in combination with an Eulerian representation of
the carrier fluid, are increasingly common to computing particle-laden flows. In the PIC
approach, the flow disturbance in the vicinity of the particle would be smoothed out, while
boundary conditions may be freely chosen on the surface of the particle, as in the case of
wall-bounded flows above. For example, choosing Neumann boundary conditions would,
for particles smaller than the resolution length scale, � ∼

√
2ν̂ t̂, cause the carrier flow

velocity on the surface of the particle to relax to that of the far-field coarsened velocity.
This would be similar to the idea of recovering the ‘undisturbed’ fluid velocity upon
which drag law formulations are based (Horwitz & Mani 2016, 2018; Balachandar, Liu
& Lakhote 2019) generalized to the case in which the Kolmogorov scale is not captured
by the grid. The considerations for particle-resolved calculations would be the same as for
wall-bounded turbulence the previous subsection.

4.6. Multiphase flows with resolved interfaces
Multiphase turbulent flows include the additional complexity of moving discontinuities
at phase interfaces with the accompanying surface tension force. Indeed, the interface is
‘a critical feature of such flows and it is likely that coarsening of the flow must retain
the interface, although probably with a simplified structure’ (Tryggvason & Lu 2020).
Difficulties arise in spatial filtering across discontinuities (Sagaut & Germano 2005;
Toutant et al. 2009), and spatially filtering across fluid–fluid interfaces is not consistent
with the typical (and desirable) sharp treatment of solid boundaries (walls) in LES. Indeed,
spatial filtering across interfaces unnecessarily blurs essential physics at the interface,
given the sophisticated numerical tools that have developed for treating sharp interfaces.

Various alternatives to spatial filtering for LES of multiphase flows have been proposed
(see Lakehal (2018) and Chen, Lu & Tryggvason (2021) for a more thorough, up-to-date
reviews). Herrmann (2013) proposed a dual-scale resolution procedure that requires
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Pseudo-time

Figure 7. Sketch of how a pseudo-surface tension could create low DoF representations of a complex
two-phase interface.

fine resolution of the interface embedded within coarser flow resolution. McCaslin &
Desjardins (2014) suggested, but did not pursue, the idea of a surface filtering operation.
Most recently, Chen et al. (2021) has advocated for a procedure very similar to the
physics-inspired approach outlined here. Indeed, their approach, which specifically targets
the use of data-driven modelling, could be thought of as one possibility within the PIC
framework.

One possibility suggested by the physics-inspired philosophy is the use of an artificial
surface tension along with the auxiliary Stokes equation to remove small-scale features.
Physically speaking, surface tension limits the impact of turbulent motions on multiphase
features (drops, bubbles, etc) smaller than the Hinze scale (Hinze 1955). Thus, just as
the pseudo-viscosity artificially enhances the Kolmogorov scale, a pseudo surface tension
acting during the pseudo-time evolution would likewise smooth small-scale interface
curvature while transforming more abrupt small-scale features into spherical particles for
Lagrangian particle tracking, see figure 7. Note that this PIC process would maintain a
sharp interface treatment for features that can be captured on the coarse LES grid while
creating low DoF representations for unresolved features. Such an approach provides a
general framework to justify other existing heuristic approaches, e.g. for physics-based
conversion of subgrid ligaments to point-particle representations (Kim & Moin 2020).
The use of an artificial diffusion equation for Gaussian filtering has some precedence
for simulating particle-laden flows (Capecelatro & Desjardins 2013). An artificial surface
tension may also be a useful approach for treating multiscale (partially resolved) wall
roughness.

5. Conclusions

In turbulence, viscosity provides a natural mechanism preventing motions smaller than
the Kolmogorov scale. In this paper, it is proposed to view an LES velocity field
as the result of (artificial) viscous smoothing rather than a spatial filtering operating.
This approach is called PIC. In PIC, a pseudo-viscosity (and pseudo-pressure) acts in
pseudo-time on an initially fully resolved snapshot of turbulence according to an auxiliary
Stokes equation. The generalized velocity field is a function of both physical time and
pseudo-time. The effective equations for the generalized velocity field in physical time
(at a fixed pseudo-time corresponding to numerical resolution � ∼

√
2ν̂ t̂) provide the

governing equations for LES. The equality of mixed partial derivatives in physical time
and pseudo-time provides a consistency condition that defines the residual stress tensor
based on the chosen pseudo-time evolution equation.

In the simple case of unbounded flow with uniform numerical resolution, PIC is shown
to be equivalent to Gaussian filtering. Thus, the advantages of spatial filtering are retained
while providing a basis for defining a more generally applicable coarsening procedure
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for complex flows. Even in the simple case of unbounded flows with uniform resolution,
the PIC approach yields fresh insight. First, PIC leads to a previously hidden exact
representation of the energy cascade in terms of multiscale velocity gradient interactions.
This provides a more precise framework for representing residual stresses based on
vortex stretching and other similar processes. Furthermore, the resulting parabolic PDE
in pseudo-time may be used to construct a Germano-like dynamic procedure that does
not require a test filter. This is demonstrated in the creation of a dynamic eddy viscosity
and dynamic mixed model based on PIC equations. The performance of both models in a
priori and a posteriori testing is demonstrated in homogeneous isotropic turbulence. The
dynamic eddy viscosity model performs similarly to the commonly used Smagorinsky
model and the relative advantages of the dynamic mixed model are illustrated.

For realistic flows where non-uniform grid resolution is desirable, the PIC framework
for LES provides a nature-inspired mechanism for maintaining a divergence-free condition
for incompressible flows while avoiding commutation errors (extra terms in the LES
equations). In the case of wall-bounded flows, boundary conditions may be chosen, PIC
provides a convenient definition of what it means to coarsen a flow in the vicinity of a
domain boundary, and can theoretically facilitate various modes of near-wall resolution
or modelling treatment. PIC theory is also easily extended for a consistent treatment of
resolution anisotropy by using an anisotropic pseudo-viscosity.

Finally, it is suggested that the physics-inspired framework provides a promising
direction for addressing with more complex physics. A simple example of such an
extension is heat/mass transfer, for which the PIC approach to momentum can be
straightforwardly copied. More significant extensions are also possible with PIC, such
as particle-laden or (interface-resolved) multiphase flows. These possible extensions, for
which the preliminary theory is discussed briefly here, require further research for detailed
modelling and testing. While PIC provides theoretical developments that can aid model
development for complex LES, it also provides an important foundation for enabling robust
data-driven modelling approaches. Indeed, data-driven closure techniques may benefit
significantly from the advantages of the PIC approach to LES theory, for example, the
recovery of divergence-free coarsened velocity field for incompressible flows.
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