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The dissipation of energy in the flow of an ideal incompressible fluid is described by a the-
orem whose derivation relies upon the exact three-dimensional Magnus formula discussed in
the previous paper. The theorem, which explicitly demonstrates the role of vortex motion
in the process of energy dissipation, can be used to calculate the trajectories of vortices.
Also derived is a detailed Josephson equation — an extension of Anderson’s “new corollary
in classical hydrodynamics’ — which provides an exact non~-time-average relation between
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chemical potentials and vortex motion.

In this paper, we study the dissipation of energy
in the flow of an ideal incompressible fluid (e.g.,
superfluid helium). The fluid velocity field V is
uniquely separated into a potential flow and a vor-
tex velocity field. With a convenient choice of
boundary conditions, we eliminate the energy of
interaction between these fields and obtain an en-
ergy dissipation theorem and a detailed Josephson
equation for ideal classical fluids.

The energy dissipation theorem provides a de-
tailed analysis of energy transfer, via vortex mo-
tion, between the potential flow and the vortex
system. The theorem can also be used to cal-
culate the trajectories of vortex lines in the flow
channel; an example is provided to illustrate such
calculations.

The detailed Josephson equation, which is a
generalization of both the “pressure equation” in
hydrodynamics® and Anderson’s “new corollary to
classical hydrodynamics,”? provides a detailed re-
lation between chemical potentials and vortex mo-
tion. The relation can be applied to both static and
accelerated flows without relying upon time av-
erages or assumptions about “quasisteady” flows.

Throughout this paper we will consider the flow
of an ideal incompressible fluid through an orifice
or channel connecting two long cylindrical reser-
voirs, as shown in Fig. 1(a). We will explicitly
assume that the fluid velocity ¥ is uniform for a
finite depth at the open ends of each reservoir,
having values V, and V, at fixed horizontal surfaces
S; and S,, which lie just below the free surfaces.
(In practice, it should be possible to add sufficient-
ly long tubes to an experiment so that there will be
no vorticity and ¥ will be uniform near the ends of
the reservoirs.) In our discussion, V will be the
volume bounded by the fixed surface S consisting
of S, and S,, and the fixed channel walls which we
will call S;,,. It is assumed that V is a singly con-

1

nected region.

In the absence of any vorticity in V, there will
be pure potential flow with ¥=V4= V¢, where V¢ is
completely determined by the values of V,, ¥,, and
the geometry of the flow channel. Because of our
assumption that ¥ is uniform at the ends of the flow
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FIG. 1. (a) Flow channel between cylindrical reser-
voirs; (b) Core of a vortex in the flow channel.
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channel, the shape of the streamlines of V4, within
V (below S, and S,) will not change as the free sur-
faces move. When vorticity 1s present, we can
defme a vortex velocity field ¥, by the relation

=V-v,, so_ that we have in effect separated the
ve1001ty ield ¥ into a potential and a vortex veloc-
ity field glven by

- . 1
V= v¢+vv (1)
1

V¥ =0, VXV =g, v-n|81=v1, V.

e -> 0 %x-— 0 - - - -> -

° = = n = n
V=0 Ve =0 Vyedlfg =Yy, T,

Mathematically, Eqs. (2a)-(2c) uniquely specify
Vv, V4, and V,; we then prove that these vectors
are related by Eq. (1), by noting that the two vectors
Vv and (V4 +7,) have the same curl and divergence
in V and the same normal components at S, and

thus must be the same uniquely determined vectors.

Having separated the velocity field into a poten-
tial and vortex part by Egs. (1) and (2), we can
now separate the energy E of the fluid into a
stream energy Ey and a vortex energy E,. To do
this, we use Eq. (1) to write

E= fvépvzd7=fvépv¢2d'r+fV%pvvsz

+fvpv¢ -Vvdr=E¢+Ev +E . (3)

Because of the conditions V - V,=0and v, -1|g=0,
we get

Eint= prV¢> . vvd'r= fVV . (p(z)vv)d-r
=fsp¢vv . n|SdS=0.
Thus, there is no interaction energy, and we have

E=E¢+Ev. (4)

To obtain the rate of change of E and E,,, we
will assume that we have an ideal incompressible
fluid where () all vorticity & is confined to small
but finite fluid cores of vortices; (ii) there can be
external forces 'ée (per unit mass) which act only
on the fluid in or near the vortex cores3 (the
localized region where either @ or Ze is nonzero
will be called the “core region”); and (iii) that all
other forces acting on the fluid are conservative
body forces EQ =— 39, derivable from the poten-
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To prove that this separation is unique, we use
the theorem that a vector field is uniquely de-
termined in a singly connected region by specifying
the field’s curl and divergence in the region and
its normal components at the boundary. For a
given vorticity w= VXV in the flow channel, e
chose as conditions upon the three vectors ¥, v¢,
and v

o F-ﬁlsw = 0; (2a)
=¥y v¢en|Sw—0; (2b)
(2c)

tial Q. The equation of motion for the fluid is
V== Vp+Txw+E,, (5)

where ¥ =0v/8¢; ;E$X$; and the “chemical po-
tential” u is defined as

L=8Q+p/p+30?. (6)

An equation for v, is obtained by remembering
that the shape of the streamlines of V4 does not

change. Thus, V, (¢+6¢) must be proportional to
§7¢(t) and one gets
v¢=a(t)6¢=‘v’<a¢) . (M

The spatially constant a(#) can be evaluated at S,,
giving a/(t)=a,/v,, where a, is the downward ac-
celeration of the free surface above S,. «ft)is a
measure of over-all accelerations, such as one
has in the case of U-tube oscillations; when the
total current is constant, a is zero.

The equation for \71) is obtained from Eqgs. (5) and
(7) with the result

¥ =v-V =—$(u+a¢>)+VX;+§e. (8)

v ¢

We will now use Egs. (5), (7), and (8) to cal-
culate

. OF )
E=% Ey =57
Equation (5) gives
E=fvpv vdT

=—prv.VudT+prv-(vxw+ge)dT. (9)
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The first integral on the right-hand side of Eq. (9)
becomes (since V - v =0)

PRV - D)dS=J (i, ~ 1),

- fVV < (puv)dr=- 5.,
where J = —fs PV -1dS = IS pV-1dS is the total
mass current in the channel Noting that V- (¥ xw @)
=0, Eq. (9) can now be written in the form

E=J(u ~py)+ [,pV-E dT. (10)
The interpretation of the following results will re-
quire that the two terms on the right-hand side of
Eq. (10) be formally distinct. One can show that
the term involving g ¢ cannot be written as part of
J(i, - ) if there exists some path C(1,2) in the
fluid connecting Sy and Sy, such that di ge .dz
=0. This condition on g, can be con51dered)
minimum formal condition for what we have been
calling a “localized” force.

Using Eq. (7) and the fact that v. v¢ =0, we get
for E o8

E¢=fvpv¢-v¢d1' prv¢-V(a¢)d1

= Slszpa¢v¢ +nds,

E¢—aJ(¢2—¢1) , (11)
where our boundary condition V4 - h=V .1 at S, and
S, allows us to equate the total current J and the
total potential current,

The rate of change E; of the energy of the vortex
system is calculated using Eq. (8):

g > .F = v .-V
E prvU VvdT prvv (u+ag)dr

+prvv-(v><w +ge)d‘r . (12)

The first integral on the r1ght—hand s1de of Eq
(12) is zero because v . nl = O Since v (vxw)
-—v¢ (vxw) because Ve (xe)= 0, and since
VyeBe=V 8o — v¢ Ze, Eq. (12) can now be written

hd —_ - . x - - . ->
E prv¢ t7 w+ge)d7+ prv g, dr. (13)
Before we summarize and interpret our results,
it is necessary to interpret the term

X=— -(VXJ+§e)d7', (14)

pfcore regionv¢>

which appears in Eq. (13).* We will first derive
an approximate but convenient form for x, a form
that leads not only to a simple interpretation of
the energy equations, but also allows us to use
these equations to predict the motion of vortex
lines. At the end of the paper we will evaluate

[ =

x exactly.

In Eq (14), we have already used the fact that
® and g, are zero outside the region of the vortex
cores to reduce the integration volume from V to
the core region. For our approximate evaluation
of x, we will assume that V. is sufficiently uni-
form over the volume occupied by a reasonable
length of vortex-line core that v, can be taken
outside the integral in Eq. (14). Consider a short
length of line as shown in Fig. 2, assume Vv, is
uniform over this length, choose the y axis to be
in the direction of V4, and slice the vortex by a
series of xy planes a distance Az; apart. Then
the contribution to x¥ from this section of vortex
line can be written in the form

X==2;p820 s fSOi(vxw +g,),ds,  (15)

where vg(y) is V¢, assumed to be in the y direc-
tion, and Sg; is the surface area, in the ith xy
plane, across the core region.

From a study of the exact three-dimensional
Magnus formula,® it was found that the x component
of the velocity of the c. m. of the vortex line (the
coordinate X of the c. m. of the line being defined
by KX:fSOwa dS) is given by

AX

KV, _-f (vxw+g) aS=k — (16)
Using Eq. (16) in Eq. (15) gives
AZzAXi
= Az, = LA
X= 2P0 () AZ Y ey = 2 P ) 7
X AREA_SWEPT OUT
BY VORT
- *3 AZ; AX
AZjle-

/4
L
[

V

FIG. 2. Area swept out by a vortex line crossing the
potential current J¢.



From Fig. 2 we can see that }; Az;AX; is the
area, in the xz plane, crossed by the vortex in a
time Af{. To be more explicit, it is the area
crossed by the “center-of-mass line,” a line con-
structed by connecting the points of the c. m. of
vorticity in each of the xy planes. Since V ¢ 18

normal to the xz plane, we have

AJd) crossed Epv(l)(y)z;i AZiAXi 1

representing the potential current crossed in a
time A¢, and Eq. (16) can be written

/A =kd . (18)

x=r(aJ ¢ crossed

¢ crossed

Thus, x is k times the rate at which the potential
current is being crossed by vortex lines. A check
of numerical signs will show that j¢ crossed 18
positive when the vortex is moving in the direction
of VX% (i.e., Vo - [¥g x%] is positive), and nega-
tive otherwise.

In the special case where we have distinct vortex
lines, each of which cross the entire channel (each
line crosses the entire current J), then

J<¢> crossed_.KJV’ (19)

where v is the frequency at which lines cross.
When the situation is more complicated and lines
are crossing only part way, x = kJ is
interpreted as the rate at which potential current
is being crossed by the “center-of-mass line” of
the vortices. In the most general case where v
is not uniform over short sections of vortex core,
we must use the results of our exact calculation,
Eq. (32).

Summarizing our equations for E‘, E , and Ev
[using Egs. (10), (13), and (18)] we get

E=J(p - )+ Jyp¥ g ar,

)=k

2 J(i) crossed’ (20)

E¢=J(u1— p

Ev:KJdJ crossed * prV 8, ar . (21)

In addition, using Eq. (11) for E¢, Eq. (20) be-
comes
J[(ul + a¢1) - (

by + ady)]=k (22)

qu crossed *

Equation (10) is the so-called “energy equation”
for an ideal incompressible fluid.® It tells us that
the fluid gains energy because of the conservative
body and pressure forces doing work at a rate
J(u, - 1y), and because of the localized external
forces doing work at a rate [0V - ge dar.
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Equations (20) and (21), which we will call the
“energy dissipation theorem for ideal fluids, ”
give us a specific model for energy dissipation..
The conservative forces do work only on the po-
tential flow, and the potential flow can dissipate
the energy it gains this way only by having vor-
tices cross the potential current. The energy dis-
sipated by the potential flow goes into the vortex
system (at the rate Kkd crossed and the vortex
system can dissipate t%s energy (at a rate
Il va ge dT) only if there are localized noncon-
servative forces acting on the vortex cores.

In addition, Eq. (21) can be used to calculate the
trajectories of vortices in a stream, as illustrated
in Fig. 3. In Fig. 3(a), we have drawn the stream-
lines for potential flow through an orifice, spacing

v¢=l0cm/sec
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FIG. 3. (a) Streamlines for potential flow through an

orifice; (b) Trajectories of vortex rings blown at the
orifice.
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the streamlines so that equal currents AJy flow
between them, and choosing an orifice 8 u in diam
in order to match the experimental conditions in

the ac Josephson experiment of Khorana and
Chandrasekhar.” To plot the trajectories of vor-
tices blown at the orifice, we note that a vortex
which moves from point A to point B crosses a po-
tential current AJ , and thus gains an amount of
energy KAJ é- Using the relation

E(r+Av)=E(r) +kAJ (23)

(p ’
we can calculate Ay and the point B at which the
next streamline is crossed. Figure 3(b) shows
the vortex-ring trajectories for various average
fluid velocities (J =pV . A) in the orifice. The re-
sults, which assume ée =0, are approximate only
because we have neglected the effects of images
and used the standard formula

E(r)=3pk%[In(8%/a) - 1]

for the energy of the ring.

Equation (22), which we have referred to as the
“detailed Josephson equation for classical fluids, ”
has several interpretations. One is as an exten-
sion of the “pressure equation”! which states that
if there is no vorticity in V, then a “dynamic chem-
ical potential”

W=p+d=Qsp/p+ifiad

must be constant throughout V. According to Eq.
(22), even if there is vorticity present but there
is no net motion of vortex lines across the poten-
tial current, then

y+ady=p,+ad, # =0), (24)

¢ crossed

e., the reservoirs must be at equal dynamic chem-
ical potentials p’.

Another interpretation of Eq. (22) has applica-
tions particularly in the study of superfluid helium
where k is quantized in units of 2/m. Assume
that vortex lines cross, the entire stream at a fre-
quency v, so that x=kJ¢ crossed—kJv [Eq. (19)],
then Eq. (22) can be written

:(u1+a¢1); (By+ad,) :M'; #z'zAK_“' . (25)

which is the rate at which vortex lines must cross
the channel when there is a difference Ap’=pu!— p)
in the dynamic chemical potentials of the reser-

voirs. In the special case of a “quasiequilibrium
flow,” where J is constant, ¢ =0 and Ap’'=Ap =gy,
we get

= (“1 - uz)/K =gy/k=mgy/h ,

HUGGINS 1

where v; is called the Josephson frequency. >
Equation (22) is a generalization of Anderson’s
“new corollary in classical hydrodynamics” 2 in

that it gives a detailed non-time-average relation

between Au’ and the motion of vortices. Even S0,

it contains the approximation we used in evaluating

¥ [Eq. (14)]; the exact classical equation is

Tug—pg)==p [[F - Gx0+E )dr . (26)

For an exact evaluation of Eq. (26), divide the
volume V into a bundle of infinitesimal tubes
whose walls consist of streamlines of V. Set dT
= AAz dl;, where dl; is an 1nf1n1tes1ma1 vector
along the length of the ith tube, and AAz is the

cross-sectional area of the tube atd 1 Equation
(26) becomes
J(,ul—u2 -27. fl '(v>< w+ge)](AAi'dli)

__ziff(pvd) AA’i)[(vx;@e)-dfi],

27
where we obtained the last expressmn by notlné )
is parallel to Al Now, pV, AA AJ(P
the potential current in the ith tube; smce AJ
is conserved (not a function of f) 1t may be taken
outside the integral giving

’ ry_ _ 2oe >y
J(ul—uz)— ZZ.AJm.fl (V><w+ge) dal.. (28)

Assume that the 7th tube passes through the core
of a vortex in the flow channel, as shown in Fig.
1(b). Because w and § g, are zero outside the core
region, the line integral in Eq. (28) can be taken
around the closed contour C, giving
I(uy-ng)=-2, Ty ¢C3(Vx5+'g’e)-df. (29)

To evaluate Eq. (29),_take the curl of Eq. (5),
which gives ©=VxX®xw+8§e). Integrating this
equation over the surface S; bounded by C, in Fig.
1(b) gives

e = e
fssw ds f83V F w+ge) ds

= gﬁcs(x*zx'a3+'g’e)-df. (30)
Now [, S o ~d§, the rate at which vorticity is in-
creasifig within the fixed curve C,, can be written
as Ak;/At, where Ax; is the amount of vorticity
being carried across the line (1 2) during the time
At. Writing Ak;/At for J'S @ -dS, Eqs. (29) and (30)
give

AJ(biAKi
Ju! - I)=_ —_ 31)
(TR ZZ A7 (31a
AJ‘PZ' Afci ( )
(bp+ad,) - (W +ag,) ==y ———, (31b
2+ a0, 1rad, Zz a7
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which is the exact classical Josephson equation.
Perhaps the most convenient way to interpret
Eqs.(31a) and (31Db) is to write

7 =_7,.AaJ
1

kJ = AKZ'
¢ crossed i—

qut

= rate at which vorticity
is flowing across the
streamlines of ¥ b (32)

We then use our original interpretations, but say
that when ¥, is not uniform over short sections of
vortex core, we must use Eq. (32) for calculating
the rate at which vortex lines (or vorticity) is
crossing the potential current.
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The classical binary-encounter model for the ionization of ions by impact of electrons given
by Thomas and Garcia has been extended to calculate the excitation cross section of ions. The
electron-impact excitation cross sections for the 3s-3p and the 3s-3d transitions in Mg+, the
2s-2p transition in Be®, and the 4s-4p transition in Ca’ have been calculated. The results are
compared with calculations based on the close-coupling and the Coulomb-Born approximations.
Our results agree better with close-coupling calculations than with calculations based on the

Coulomb-Born approximation.

INTRODUCTION

In recent years, considerable effort has been
devoted to the study of the electron-impact exci-
tation of atoms.® Very few attempts, however,
have been made to calculate the excitation cross
section of positive ions because of the difficulty of
including the Coulomb field which acts upon the
incident electronthroughout its trajectory and dis-
torts the linear path. The quantum-mechanical

calculations using the Coulomb-Born and the close-
coupling approximations have been made for a few
ions.?™" The classical binary-encounter model, ®
which provides a simple method of estimating the
ionization and the excitation cross sections of
atoms,®»!° has not yet been used to calculate the
excitation cross section of ions.

Recently, Thomas and Garcia!* have discussed
a model solution of the problem of the ionization
of ions within the framework of the binary-en-



