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Abstract In recent years adaptive stabilized finite element
methods, here referred to as General Galerkin (G2) meth-
ods, have been developed as a general methodology for the
computation of mean value output in turbulent flow. In ear-
lier work, in the setting of bluff body flow, the use of no slip
boundary conditions has been shown to accurately capture
the separation from a laminar boundary layer, in a number of
benchmark problems. In this paper we extend the G2 method
to problems with turbulent boundary layers, by including a
simple wall-model in the form of a friction boundary con-
dition, to account for the skin friction of the unresolved tur-
bulent boundary layer. In particular, we use G2 to simulate
drag crisis for a circular cylinder, by adjusting the friction
parameter to match experimental results. By letting the Rey-
nolds number go to infinity and the skin friction go to zero,
we get a G2 method for the Euler equations with slip bound-
ary conditions, which we here refer to as an EG2 method.
The only parameter in the EG2 method is the discretization
parameter, and we present computational results indicating
that EG2 may be used to model very high Reynolds numbers
flow, such as geophysical flow.

Keywords Navier-Stokes equations · Euler equations ·
Approximate weak solution · Weak uniqueness · General
Galerkin G2 · Skin friction boundary condition · Finite
element method · A posteriori error estimate · Duality

1 Introduction

The Navier–Stokes equations seem to give an accurate
description of a great variety of fluid flows, including both
laminar flow with ordered flow features and turbulent flow
with smaller and larger vortices in a complex interaction.
Even though the Navier–Stokes equations have been known
for almost 200 years, the basic mathematical questions of
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existence and uniqueness stand without answers, and
computational simulation of turbulent flow is to a large extent
still considered an outstanding open problem.

In earlier work [4–7, 9], in the setting of bluff body flow,
we propose a method for the computation of mean value
output in turbulent flow, based on adaptive computation of
approximate weak solutions to the Navier–Stokes equations
using stabilized finite element methods, which we here refer
to as General Galerkin (G2) methods. In [4–7, 9] the no slip
boundary condition is shown to accurately capture the sepa-
ration from laminar boundary layers. In this paper we extend
the G2 method to problems of turbulent boundary layers,
by including a simple wall-model in the form of a friction
boundary condition to account for the skin friction of the
unresolved turbulent boundary layer. In particular, for a cir-
cular cylinder we consider the problem of drag crisis, and the
limit of zero viscosity, corresponding to the Euler equations
with slip boundary conditions.

The incompressible Navier–Stokes (NS) equations for a
unit density Newtonian fluid with constant kinematic viscos-
ity ν > 0 enclosed in a volume � in R

3 (where we assume
that � is a polygonal domain), take the form:

R(û) = 0, in �× I, (1)

for û = (u, p), with u(x, t) the velocity vector and p(x, t)
the pressure at (x, t), I = (0, T ) is a time interval, and
R(û) ≡ R̄(û)− ( f, 0) = (R̄1(û), R̄2(u))− ( f, 0), with

R̄1(û) = u̇ + u · ∇u + ∇ p − ν�u,

R̄2(u) = ∇ · u, (2)

together with initial condition u(x, 0) = u0(x) and appropri-
ate boundary conditions. The quantity ν�u −∇ p represents
the total fluid force (modulo the external force f ), and may
alternatively be expressed as

ν�u − ∇ p = ∇ · σ(û), (3)

where σ(û) = (σi j (û)) is the stress tensor, with compo-
nents σi j (û) = 2νεi j (u) − pδi j , composed of the stress de-
viatoric 2νεi j (u) with zero trace and an isotropic pressure:
here εi j (u) = (ui, j + u j,i )/2 is the strain rate tensor, with
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ui, j = ∂ui/∂x j , and δi j is the usual Kronecker delta, the
indices i and j ranging from 1 to 3.

A given flow may be characterized by the Reynolds num-
ber Re = U L/ν, where U and L are representative velocity
and length scales, respectively, and with U and L normal-
ized to unity we have Re = ν−1. Setting the viscosity ν = 0,
corresponds to the Euler equations with Re = ∞. For Re
sufficiently large we expect to have a partly turbulent flow,
and to resolve all the physical scales in a turbulent flow, one
may estimate the number of mesh points needed to be of the
order Re3 in space-time [3]. In many applications of indus-
trial importance we have Re > 106, and thus a Direct numer-
ical simulation (DNS) of the NS equations is impossible.

The traditional approach to get around the impossibility
of DNS at higher Reynolds numbers is to apply an averaging
operator to the NS equations, to obtain a new set of equations
for the averaged flow variables. This is, for example, the ap-
proach taken in a large eddy simulation (LES), where the
averaging operator typically is a spatial filter, removing the
finest scales of the solution. Filtering of the non linear term
in the NS equations leads to the introduction of so called
Reynolds stresses (or LES stresses), which depend on the
unfiltered velocity field, and thus need to be modelled in
terms of the filtered velocity in a turbulence model (or sub-
grid model), which is referred to as the problem of closure.
Many subgrid models have been proposed, typically having
a dissipative nature, and we refer to [21] for an overview of
LES and subgrid modeling. It seems fair to say that the closure
problem is still unsolved, with existing subgrid models be-
ing problem dependent, and highly sensitive to the numerical
method used in the simulation. Finding boundary conditions,
or wall models, for LES is also a very active field of research,
see [21].

In [8] we propose a framework for the study of existence
and uniqueness of solutions to the NS equations based on
approximate weak solutions, which we refer to as
ε-weak solutions. Existence is given by construction using
a G2 method to compute an approximate weak solution, for
which uniqueness in output (or weak uniqueness) is studied
by computing an approximation of an associated dual prob-
lem linearized at the G2 solution and with data coupling to
the output.

For turbulent flow we sometimes refer to an adaptive G2
method as Adaptive DNS/LES, where adaptively some crit-
ical parts of the flow are resolved in a DNS, whereas other
parts are left underresolved in a LES. Adaptive DNS/LES is
presented in [5, 9] as a general method for the computation of
mean value output in turbulent flow. The adaptive method is
based on a posteriori error estimates, where a linearized dual
problem is solved computationally to determine the sensitiv-
ity of a certain output with respect to discretization errors and
modeling errors from unresolved scales in the turbulent flow.
In [5, 9] it is shown that with G2 it is possible to compute cor-
rect mean value output, such as drag and lift, using a rather
coarse mesh with the number of degrees of freedom being
orders of magnitude less than for standard LES methods in
the literature.

In [5, 9], only the flow past bluff bodies with square
geometries is investigated, a square cylinder and a surface
mounted cube, for which the separation of the flow is given
by the geometry. For rounded geometries this is not the case,
instead the position of the separation points (lines) depend
on the Reynolds number, which is the case in [6, 7], where a
circular cylinder and a sphere are investigated. For any sec-
tion of the cylinder or the midsection of the sphere, we define
an angle θ starting from the upstream stagnation point. From
the upstream stagnation point, where the pressure is very
high, the flow accelerates and the pressure near the bound-
ary is decreasing up to θ ≈ 90◦, where the pressure starts
to increase again, which results in an adverse pressure gra-
dient acting as a negative force in the momentum equation.
If the momentum close to the boundary is too low, the ad-
verse pressure gradient will force the flow to separate. For
Re ∼ 103 −105 separation will occur close to θ = 90◦, lead-
ing to a large turbulent wake and a drag coefficient cD ≈ 1.0
for the cylinder, and cD ≈ 0.40 for the sphere. In [6, 7] these
and other mean quantities are well predicted using G2 and
no slip boundary conditions, again using very few degrees of
freedom.

Increasing the Reynolds number further, the laminar boun-
dary layer will undergo transition to turbulence. A turbulent
boundary layer has a sharp mean velocity profile, with higher
momentum close to the boundary than for a laminar boundary
layer. This increase in momentum near the boundary leads
to a delayed separation of the boundary layer, with a smaller
wake and lower drag as a result, so called drag crisis.

The momentum loss in the boundary layer couples to skin
friction, which is decreasing with higher Reynolds numbers.
For higher Reynolds numbers the momentum near the bound-
ary increases, and the separation is delayed. To resolve the
boundary layer computationally at these high Reynolds num-
bers would be very expensive, and in this paper we propose to
instead use a simple approach where the boundary condition
is directly coupled to skin friction, using a slip with friction
boundary condition, a type of boundary condition considered
already by Navier [19] and Maxwell [16]. This type of bound-
ary condition has earlier been studied e.g. in [10–13], in the
setting of near wall models for LES, where analytical forms
of the friction coefficient are derived for some special flow
cases based on boundary layer theory, and numerical tests are
performed for the low Reynolds number flow around a square
cylinder in 2d and 3d. In this paper we use a slip with friction
boundary condition to model turbulent boundary layers for
very high Reynolds numbers.

In particular, we find that for the case Re → ∞, cor-
responding to an Euler solution with skin friction → 0, the
separation points for the circular cylinder move downstream
to eventually collapse into one single separation point, result-
ing in a solution resembling the potential solution with a very
low drag. Although, this solution is not stable, and the single
separation point (line) generates vorticity and starts to oscil-
late. The generation of vorticity along the separation line
leads to turbulence behind the cylinder, although the sep-
aration is still concentrated in one single separation point
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(in each spanwise section of the cylinder). Also, structures
similar to a regular von Karman vortex shedding appear, with
the difference that for the Euler solution there is only one sep-
aration point, rather than the two separation points appearing
in the low Reynolds number flow, and there is a strong varia-
tion in the position of the separation point along the cylinder.

We refer to such a solution with ν = 0 and slip boundary
conditions as an Euler/G2 (EG2) solution, in which the only
parameter left in the model is the discretization parameter h.
That is, no empirical constants or modeling parameters. We
expect that some mean value output may be independent of
h, in which case EG2 is a truly parameter-free model with
respect to such output.

The question is then if such an EG2 solution is to be
found in Nature? There is no experimental data avaliable
for the cylinder above Re = 107, and increasing the velocity
eventually makes the incompressible flow model invalid. The
other parameter determining the Reynolds number (restrict-
ing ourselves to the viscosity of air or water) is the length
scale, leading us to seek the EG2 solution for flow phenomena
with very large length scales. Indeed, studying geophysical
bluff body problems [18] it seems clear that the separation
is taking place in one point, rather that in two points with a
wake in between as for the low Reynolds number solution.
We expect that in such problems of very large length scales,
the EG2 model may prove to be important.

We note that using G2 with low friction at the boundary is
very cheap computationally, since there is no boundary layer
to resolve.

In this paper we first recall the definition of an ε-weak
solution to the NS equations, weak uniqueness, and a G2
method for the approximation of the drag of a bluff body.
This is important for the presentation to make clear what type
of solution we seek to approximate: using G2 we compute
approximate weak solutions to the NS equations, as opposed
to LES where one seeks to approximate a filtered solution to
the NS equations. We then recall some results for bluff body
flow with laminar separation, which we extend to turbulent
separation using slip with friction boundary conditions, mod-
eling drag crisis with small friction and EG2 solutions with
pure slip conditions.

2 ε-Weak solutions to the Navier–Stokes equations

To study weak uniqueness of the NS equations we introduce
in [8] the concept of an ε-weak solution, which is an approx-
imate weak solution with a residual less than ε in a weak
norm. We define for v̂ = (v, q) ∈ V̂ ,

((R(û), v̂)) ≡ ((u̇, v))+ ((u · ∇u, v))− ((∇ · v, p)) (4)

+((∇ · u, q))+ ((2νε(u), ε(v)))− (( f, v)),

where

V̂ = {v̂ = (v, q) ∈ H1(Q)4 : v ∈ L2(I ; H1
0 (�)

3)},
and ((·, ·)) is the L2(Q)m inner product with m = 1, 3,
or a suitable duality pairing, over the space-time domain

Q = � × I , where H1
0 (�) is the usual Sobolev space of

functions being zero on the boundary 	 and square integra-
ble together with their first derivatives over �, with dual
H−1(�). As usual, L2(I ; X)with X a Hilbert space denotes
the set of functions v : I → X which are square integrable.

We now define û ∈ V̂ to be an ε-weak solution if

|((R(û), v̂))| ≤ ε‖v̂‖V̂ , ∀v̂ ∈ V̂ , (5)

where ‖ · ‖V̂ denotes the H1(Q)4-norm, and we define Ŵε

to be the set of ε-weak solutions for a given ε > 0. Note that
for simplicity we here ask also the solution û to belong to
the test space V̂ , which require more regularity than neces-
sary; for the formulation (5) to make sense, it is sufficient that
R(û) belongs the dual space of V̂ , so that (4) is well defined.
Equivalently, we may say that û ∈ V̂ is an ε-weak solution
if

‖R(û)‖V̂ ′ ≤ ε,

where ‖ · ‖V̂ ′ is the dual norm to the norm of V̂ . This is a
weak norm measuring mean values of R(û) with decreasing
weight as the size of the mean value decreases. Pointvalues
are thus measured very lightly.

3 Output sensitivity and the dual problem

Suppose now the quantity of interest, or output, related to a
given ε-weak solution û is a scalar quantity of the form

M(û) = ((û, ψ̂)), (6)

which represents a mean-value in space-time, where
ψ̂ = (ψ1, ψ2) ∈ L2(�)

3×L2(�) is a given weight function.
In typical applications the output could be a drag or lift coeffi-
cient in a bluff body problem. In this case the weight ψ̂ is a
piecewise constant in space-time. More generally, ψ̂ may be
a piecewise smooth function corresponding to a mean-value
output.

We now seek to estimate the difference in output of two
different ε-weak solutions û = (u, p) and ŵ = (w, r). We
thus seek to estimate a certain form of output sensitivity of the
space Ŵε of ε-weak solutions. To this end, we introduce the
following linearized dual problem of finding ϕ̂ = (ϕ, θ) ∈ V̂ ,
such that

a(û, ŵ; v̂, ϕ̂) = ((v̂, ψ̂)), ∀v̂ ∈ V̂0, (7)

where V̂0 = {v̂ ∈ V̂ : v(·, 0) = 0}, and

a(û, ŵ; v̂, ϕ̂) ≡ ((v̇, ϕ))+ ((u · ∇v, ϕ))+ ((v · ∇w, ϕ))
+((∇ · ϕ, q))− ((∇ · v, θ))
+((2νε(v), ε(ϕ)))

with u and w acting as coefficients, and ψ̂ is given data.
This is a linear convection–diffusion-reaction problem in

variational form, u acting as the convection coefficient and
∇w as the reaction coefficient, and the time variable runs
“backwards” in time with initial value (ϕ(·, T ) = 0) given



General Galerkin: drag crisis and turbulent Euler solutions 393

at final time T imposed by the variational formulation. The
reaction coefficient ∇w may be large and highly fluctuating,
and the convection velocity u may also be fluctuating.

Choosing now v̂ = û − ŵ in (7), we obtain

M(û)− M(ŵ) = a(û, ŵ; û − ŵ, ϕ̂)

= ((R(û), ϕ̂))− ((R(ŵ), ϕ̂)), (8)

and thus we may estimate the difference in output as follows:

|M(û)− M(ŵ)| ≤ 2ε‖ϕ̂‖V̂ . (9)

By defining the stability factor S(û, ŵ; ψ̂) = ‖ϕ̂‖V̂ , we can
write

|M(û)− M(ŵ)| ≤ 2εS(û, ŵ; ψ̂), (10)

and by defining

Sε(ψ̂) = sup
û,ŵ∈Ŵε

S(û, ŵ; ψ̂), (11)

we get

|M(û)− M(ŵ)| ≤ 2εSε(ψ̂), (12)

which expresses output uniqueness of Ŵε . Depending on ψ̂ ,
the stability factor Sε(ψ̂) may be small, medium, or large,
reflecting different levels of output sensitivity, where we ex-
pect Sε(ψ̂) to increase as the mean value becomes more local.
The concept of weak uniqueness is presented in detail in [8].

4 General Galerkin G2

To generate approximate weak solutions we use a stabilized
finite element method of the form: find Û ≡ Ûh ∈ V̂h , where
V̂h ⊂ V̂ is a finite dimensional subspace defined on a com-
putational mesh in space-time of mesh size h, such that

((R(Û ), v̂))+ ((δR(Û ), R̄(v̂))) = 0, ∀v̂ ∈ V̂h, (13)

where δ = δ(h, Û ) is a stabilization parameter, and the resid-
ual is defined by R(Û ) ≡ R̄(Û )− ( f, 0) = (R̄1(Û ), R̄2(U ))
− ( f, 0), such that for ŵ = (w, r),

R̄1(ŵ) = ẇ + U · ∇w + ∇r − ν�w,

R̄2(w) = ∇ · w, (14)

with elementwise definition of second order terms. We here
interpret a convection term ((U · ∇w, v)) as

1

2
((U · ∇w, v))− 1

2
((U · ∇v,w),

which is literally true if ∇ · U = 0. With this interpretation
we will have ((U · ∇U,U )) = 0, even if the divergence of
the finite element velocity U does not vanish exactly. Choos-
ing v̂ = Û in (13), and assuming that f = 0, we obtain the
following energy balance:

1

2
‖U (T )‖2 + ((ν∇U,∇U ))+ ((δR(Û ), R(Û )))

= 1

2
‖u0‖2. (15)

The finite element method (13) is a stabilized Galerkin
method with the term ((R(Û ), v)) corresponding to
Galerkin’s method and the term ((δR(û), R̄(v̂))) correspond-
ing to a weighted residual least squares method with stabiliz-
ing effect expressed in (15). We also refer to this method as
G2 or General Galerkin, and we thus refer to Û as a G2 solu-
tion. In [8] we prove that a G2 solution Û is also an ε-weak
solution with ε = CU ‖h R(Û )‖, with CU a constant, assum-
ing that the maximum of the computed velocity is bounded
(or grows slower than h−1/2).

With ν = 0 we have a G2 method for the Euler equations,
which we refer to as an Euler/G2 solution, or an EG2 solu-
tion. For an EG2 solution the least squares term is the only
stabilizing term in the method, and the only parameter in the
method is the discretization parameter h.

5 Computability and a posteriori error estimation for G2

We now let û be an ε-weak solution of the NS equations with
ε small, and we let Û be a G2 solution, which can be viewed
to be an εG2-weak solution, with εG2 = CU ‖h R(Û )‖ >> ε.
As in (12), we get the following a posteriori error estimate
for a mean value output given by a function ψ̂ :

|M(û)− M(Û )| ≤ (CU ‖h R(Û )‖ + ε)SεG2(ψ̂), (16)

where SεG2(ψ̂) is the corresponding stability factor defined
by (11). Obviously the size of the stability factor SεG2(ψ̂) is
crucial for computability.

We note that for weak uniqueness the residual only needs
to be small in a weak norm, and correspondingly for comput-
ability the G2 residual only needs to be small when weighted
by h. This means that for accurate approximation of a mean
value output, the NS equations do not need to be satisfied
pointwise, corresponding to a pointwise small residual, but
only in an average sense, corresponding to the residual being
small only in a weak norm. In computations we find that in
fact the G2 residual in a turbulent flow typically is large point-
wise, also for solutions corresponding to accurate approxi-
mation of mean value output, such as the drag of a bluff body.

6 The cG(1)cG(1) method

The cG(1)cG(1) method is a variant of G2 using the continu-
ous Galerkin method cG(1) in space and time. With cG(1) in
time the trial functions are continuous piecewise linear and
the test functions piecewise constant. cG(1) in space corre-
sponds to both test functions and trial functions being con-
tinuous piecewise linear. Let 0 = t0 < t1 < ... < tN = T be
a sequence of discrete time steps with associated time inter-
vals In = (tn−1, tn] of length kn = tn − tn−1 and space-time
slabs Sn = �× In , and let W n ⊂ H1(�) be a finite element
space consisting of continuous piecewise linear functions on
a mesh T n = {K } of mesh size hn(x) with W n

w the func-
tions v ∈ W n satisfying the Dirichlet boundary condition
v|∂� = w.
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We now seek functions Û =(U, P), continuous piecewise
linear in space and time, and the cG(1)cG(1) method for the
Navier–Stokes equations (1), with homogeneous Dirichlet
boundary conditions reads: For n = 1, . . . , N , find (U n, Pn)≡
(U (tn), P(tn)) with U n ∈ V n

0 ≡ [W n
0 ]3 and Pn ∈ W n , such

that

((U n − U n−1)k−1
n + Û n · ∇Û n, v)+ (2νε(Û n), ε(v))

−(Pn,∇ · v)+ (∇ · Û n, q)+ SDδ(Û
n, Pn; v, q)

= ( f, v) ∀(v, q) ∈ V n
0 × W n, (17)

where Û n = 1
2 (U

n + U n−1), with the stabilizing term

SDδ(Û
n, Pn; v, q)

≡ (δ1(Û
n · ∇Û n + ∇ Pn − f ), Û n · ∇v + ∇q)

+(δ2∇ · Û n,∇ · v),
with δ1 = 1/2(k−2

n + |U |2h−2
n )−1/2 in the convection-

dominated case ν < Ū nhn and δ1 = κ1h2
n otherwise, δ2 =

κ2hn if ν < Ū nhn and δ2 = κ2h2
n otherwise, with κ1 and

κ2 positive constants of unit size (in this paper we have
κ1 = κ2 = 1), and

(v,w) =
∑

K∈T\

∫

K

v · w dx,

(ε(v), ε(w)) =
3∑

i, j=1

(εi j (v), εi j (w)).

We note that the time step kn is given by the mesh size
hn , with typically kn ∼ hn .

7 Slip with friction boundary conditions

The slip with friction and penetration with resistance bound-
ary condition for a boundary 	sl f r with normal n and two
orthogonal tangential vectors τ1, τ2 takes the form

u · n + α nT σn = 0, (18)

u · τk + β−1nT στk = 0, k = 1, 2, (19)

with the stress tensor σ = σ(û), and where we use matrix
notation with all vectors v being column vectors and the cor-
responding row vector is denoted vT .

Here α is a penetration parameter and β is a friction
parameter, both positive functions defined on the boundary.
In principle, (α, β) → (0,∞) corresponds to a penalty impo-
sition of a no slip boundary condition, and (α, β) → (0, 0)
corresponds to a penalty imposition of a slip boundary condi-
tion. By increasing β we increase the resistance at the bound-
ary, and by increasing α we increase the penetration of the
boundary.

We can implement (18), (19) weakly by decomposing the
test function v into components aligned with the normal and
tangent directions:

v = (v · n)n +
2∑

k=1

(v · τk)τk, (20)

see e.g. [11] for an algorithm for determining two linearly
independent tangent vectors. We then have
∫

	sl f r

(σ · n) · v ds =
∫

	sl f r

nT σn(v · n)

+
2∑

k=1

nT στk(v · τk) ds

= −
∫

	sl f r

α−1(u · n)(v · n)

−
2∑

k=1

β(u · τk)(v · τk) ds. (21)

The derivation of the weak formulation of Eq. (1) underly-
ing the cG(1)cG(1) method Eq. (17) formally involves partial
integration of Eq. (1), resulting in the term

(2νε(U n), ε(v))− (Pn,∇ · v) = (σ (U n, Pn), ε(v)), (22)

in the left hand side of Eq. (17), together with a surface inte-
gral
∫

	sl f r

(σ (U n, Pn) · n) · v ds. (23)

This surface integral is zero in Eq. (17), since the test function
v ∈ V n

0 satisfies a homogeneous Dirichlet condition.
To implement the boundary conditions (18), (19), we seek

a solution (U n, Pn) ∈ [W n]3 × W n for n = 1, ..., N , sat-
isfying Eq. (17) for (v, q) ∈ [W n]3 × W n , with the sur-
face integral (23) subtracted from the left hand side of (17).
Substituting the surface integral by (21) then corresponds to a
weak implementation of the boundary conditions (18), (19).
We here assume that there exists a unique solution to this
problem.

We stress that one has to be careful when implementing
this boundary condition; one needs to use normals and tan-
gent vectors that are defined for each node in the mesh, not
for each face (or edge in 2 dimensions). The reason is that in
the case the boundary 	sl f r is not a flat surface, the degrees
of freedom in certain nodes will be forced to satisfy condi-
tions in too many directions. For example, in the case of a
slip condition with (α, β) = (0, 0), the degrees of freedom
in a node will be forced to satisfy a non penetration condition
in several linearly independent directions, which may result
instead in a no slip boundary condition.

By choosing v̂ = Û in (17), we note that (21) corre-
sponds to penalty terms for the L2-norms of the normal and
tangential components of the velocity at the boundary, with
penalty parameters α−1 and β, and that the energy balance
(15) is modified by adding the time integrals of the terms

‖α−1/2u · n‖	sl f r +
2∑

k=1

‖β1/2u · τk‖	sl f r (24)

to the left hand side of Eq. (15).
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8 Adaptive algorithm

A mean value in time of the force on a body, over a time
interval I , may be expressed as [5]:

N (σ (û)) = 1

|I |
∫

I

(u̇ + u · ∇u − f,�)− (p,∇ ·�)

+(2νε(u), ε(�))+ (∇ · u,�) dt, (25)

where û is an ε-weak solution to the NS equations, and �
is a function defined in the fluid volume � being equal to a
unit vector in the direction of the force we want to compute
on 	0, the surface of the body in contact with the fluid, and
zero on the remaining part of the boundary 	1 = ∂� \ 	0.
The representation (25) is independent of �, and the partic-
ular extension of� away from the boundary, and we ask that
�̂ = (�,�) ∈ V̂ .

We compute an approximation of the drag N (σ (û)) from
a cG(1)cG(1) solution Û , using the formula

N h(σ (Û )) = 1

|I |
∫

I

(U̇ + U · ∇U − f,�)− (P,∇ ·�)

+(2νε(U ), ε(�))+ (∇ · U,�)

+SDδ(U, P;�,�) dt, (26)

where now � and � are finite element functions, and where
U̇ = (U n − U n−1)/kn on In . We note the presence of the
stabilizing term SDδ in (26) compared to Eq. (25), which is
added in order to obtain the independence of N h(σ (Û )) from
the choice of (�,�), given by Eq. (17).

Approximating ϕ̂ = (ϕ, θ), the exact solution to the dual
problem (7), by a computed approximation ϕ̂h = (ϕh, θh),
with the linearized convection velocity u ≈ U , we are led
to the following a posteriori error estimate [5] for the time
average over I of the drag force on a body in a fluid, with
respect to û ∈ Wε :

|N (σ (û))− N h(σ (Û ))| ≈ εSε(ψ̂)+
∑

K∈Tn

EK ,h, (27)

where ψ̂ = (�, 0) is the data to the dual problem defining
the output N (σ (·)), k and h are the time step and the local
mesh size, respectively, and EK ,h = eK

D,h + eK
M,h , with

eK
D,h = 1

|I |
∫

I

(
(|R1(Û )|K + |R2(Û )|K )

·(Chh2|D2ϕh |K + Ckk|ϕ̇h |K )+ ‖R3(Û )‖K

·(Chh2‖D2θh‖K + Ckk‖θ̇h‖K )
)

dt,

eK
M,h = 1

|I |
∫

I

SDδ(Û ; ϕ̂h)K dt,

where we may view eK
D,h as the error contribution from the

Galerkin discretization in cG(1)cG(1), and eK
M,h as the con-

tribution from the stabilization in cG(1)cG(1), on element K .
The lower bound on the tolerance, defining computability of

the output N (σ (·)), is given by εSε(ψ̂). Here we think of
ε as being small, corresponding to a maximal computational
cost, so that εSε(ψ̂) <<

∑
K∈Tn

EK ,h .
We now present an algorithm for adaptive mesh refine-

ment based on the a posteriori output error estimate (27).
For simplicity, we here use the same space mesh for all time
steps.

Algorithm 1 (Adaptive mesh refinement) Given an initial
coarse computational space mesh T 0, start at k = 0, then do

(a) Compute approximation of the primal problem using T k .
(b) Compute approximation of the dual problem using T k .
(c) If |

∑

K∈Tk

Ek
K ,h | < TOL then STOP, else:

(d) Based on the size of the local error indicator Ek
K ,h, mark a

fixed fraction of the elements in T k for refinement. Obtain
a new refined mesh T k+1, using a standard algorithm for
local mesh refinement.

(e) Set k = k + 1, then goto (a).

9 Drag crisis

The drag of a bluff body may be divided into pressure drag,
coupling to the pressure drop over the body, and skin friction.
Separation of the flow influence the relation between pressure
drag and skin friction, with typically an earlier separation
leading to higher pressure drag and lower skin friction.

For square geometries the separation is given by the geom-
etry, see e.g. [5, 14, 20], whereas for the flow past a circular
geometry, the separation is not given by the geometry, but
depend on the Reynolds number, see e.g. [1, 6, 7, 15, 17, 22,
23].

For a circular geometry, such as a circular cylinder or a
sphere, the flow does not separate at all for very low Reynolds
numbers, where the skin friction dominates the contribution
to the total drag, and then for increasing Reynolds numbers
the wake increases and the separation points (lines) move
upstream until reaching θ ≈ 90◦, with θ an angle in the cir-
cular section counted from zero at the upstream stagnation
point. In this configuration pressure drag is dominating skin
friction, and the total drag is more or less constant (cD ≈ 1.0
for a circular cylinder and cD ≈ 0.4 for a sphere) for a wide
range of Reynolds numbers (Re ≈ 103 − 105).

In [6, 7], the drag of a circular cylinder and a sphere is
computed using G2, with accurate approximation of drag
using no slip boundary conditions and very coarse meshes
(of the order 105 mesh points).

At very high Reynolds numbers (Re ≈ 105 − 106) the
boundary layer for a circular cylinder and a sphere undergoes
transition to turbulence, making the separation points (lines)
move downstream as the Reynolds number increases, result-
ing in a smaller wake and lower drag, so called drag crisis.
Simulation of drag crisis is a major challenge of turbulence
simulation.



396 J. Hoffman

Simulation of drag crisis

To resolve the very thin boundary layer of a high Reynolds
number flow is too expensive, and thus many different wall-
models have been proposed to capture the effect of the bound-
ary layer without resolving it to its physical scale, see [21]
for an overview. In [2] a Detached-eddy simulation is used
to simulate drag crisis for a sphere. A Detached-eddy simu-
lation is a hybrid approach that has the behaviour of a RANS
model near the boundary and becomes a LES in the regions
away from solid surfaces, see [21].

In this paper we propose a simple approach to model the
effect of the boundary layer, based on a slip with friction
boundary condition, which may be viewed as a very simple
wall-model. The idea is that the main effect of the bound-
ary layer on the flow is skin friction. The problem is then to
choose a suitable friction coefficient β.

In [10–13], similar boundary conditions are used to study
reattachement of a low Reynolds number flow past a sur-
face mounted cube in 2d and 3d as a function of the friction
parameter β, and it is found that reattachement is delayed
with decreasig friction, as expected.

For very high Reynolds numbers the viscous ν-term in the
computational method (17) is neglible if we do not resolve
the finest scales of the flow, and may be dropped from the
equation, corresponding to a cG(1)cG(1) method for the Eul-
er equations. The energy dissipation in the flow is then only
due to the boundary conditions and the stabilizing term in
(17), which is expressed in the energy balance (15) with (24)
(setting α = 0):

1
2‖U (T )‖2 + ((δR(Û ), R(Û )))

+
T∫

0

2∑

k=1

‖β1/2u · τk‖	sl f r dt = 1

2
‖u0‖2, (28)

recalling that ((·, ·)) implies integration in space-time.
The dissipation is a characteristic feature of the turbulent

flow, and in [5] we find that for the flow past a square cylinder
and a surface mounted cube the dissipation in the turbulent
wake is independent of h after some refinement of the mesh.
This indicates that to capture the correct mean dissipation
of the wake we do not have to further resolve the flow in the
wake once we have reached a certain h, which also couples to
the basic empirical Law of finite energy dissipation [3]. The
results in [4–7, 9] indicate that the correct mean dissipation
of the wake is captured on rather coarse meshes, and that the
degree of resolution needed is determined automatically by
the adaptive algorithm.

A main computational challenge is to capture the cor-
rect separation of the flow and the correct dissipation in
the boundary layer. Flow separation is determined by the
momentum equation, where an adverse pressure gradient in
the flow direction corresponds to a force in the opposite direc-
tion which reduces the momentum. When this retarding force
has reduced the momentum to zero near the boundary the flow
separates. High skin friction corresponds to a low Reynolds
number and a laminar boundary layer with low momentum

near the boundary, whereas low skin friction corresponds to
a high Reynolds number and a turbulent boundary layer with
high momentum near the boundary. Thus high skin friction
corresponds to an earlier separation, and conversely when the
skin friction decreases with the Reynolds number, the sep-
aration is delayed since the momentum near the boundary
increases.

The idea underlying the boundary layer model in this pa-
per is that for flow separation, the important characteristic
of the boundary layer is the momentum near the boundary,
which in turn depends of the skin friction at the boundary.
Thus we should be able to capture the correct separation of a
boundary layer as long as we have correct skin friction. We
expect that β → 0 for Re → ∞, and we also expect β to
depend on the mesh resolution h, with β → ∞ as h → 0.

For the problems in [4–7, 9] the flow separates from a
laminar boundary layer, corresponding to a relatively low
Reynolds number, where it is possible to capture the sepa-
ration using no slip boundary conditions (corresponding to
β = ∞).

The criterion for choosing β should be that the skin fric-
tion in the computation should be the same as in the physical
problem. Experimental results [22] indicate that skin fric-
tion has a very weak dependence on the Reynolds number,
proportional to Re−0.2 in the case of a flat plate, and thus a
certain value for β should be characteristic for a rather wide
range of Reynolds numbers. Experimental results [22] also
indicate that once we have drag crisis the separation is again
rather stable for a range of Reynolds numbers. The exact Rey-
nolds number for when the separation point starts to move
downstream seems to be hard to determine, which is prob-
ably due to its relation to the transition to turbulence in the
laminar boundary layers, which in turn depends on the level
of perturbations in the boundary layer, which is very hard
to determine in a realistic problem. Thus, there is a range of
Reynolds numbers, close to where transition in the boundary
layers occur, for which the separation of the flow is very hard
to determine. From an engineering point of view it is then
important to take both the sub-critical and the super-critical
scenario into account.

Drag crisis for a circular cylinder

We now turn to the issue of modeling drag crisis for a circu-
lar cylinder of diameter D and length 4D, with the cylinder
in the direction of the x3-axis, subject to a unit streamwise
velocity inflow condition (in the x1-direction) in a channel of
length 21D, width 4D, and height 14D. We use slip bound-
ary conditions on the lateral walls of the channel, and at the
end of the channel we use a so called transparant outflow
boundary condition, approximately corresponding to setting
the stress to zero at the outflow boundary, see [8].

The drag coefficient cD is defined as a global average of
a normalized drag force on an object from the fluid. We seek
to approximate the drag coefficient cD by c̄D, a normalized
drag force averaged over a finite time interval I = [0, T ], at
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Fig. 1 Drag crisis: magnitude of the velocity for G2 solutions for ν = 0; β = 2 × 10−2 with cD ≈ 0.7 (upper left), β = 1 × 10−2 with cD ≈ 0.5
(upper right), β = 5 × 10−3 with cD ≈ 0.45 (lower left), and the mesh with 80, 000 mesh points (lower right), in the x1x2-plane for x3 = 0.2

fully developed flow, defined by

c̄D ≡ 1

(1/2)U 2∞ A
× N (σ (û)), (29)

where U∞ = 1 is a reference velocity, A is the projected
area of the object facing the flow, and N (σ (û)) is defined by
Eq. (25) with� in the direction of the mean flow. In compu-
tations we approximate c̄D by c̄h

D, defined by

c̄h
D = 1

(1/2)U 2∞ A
× N h(σ (Û )), (30)

with N h(σ (Û )) defined by Eq. (26). Thus we can use a scaled
version of the a posteriori error estimate Eq. (27) to estimate
the error |c̄D − c̄h

D|, upon which we base the adaptive algo-
rithm.

Our model is here a cG(1)cG(1) method for the Euler
equations together with a slip with friction boundary condi-
tion. Letting the friction parameter β go from large to small
values, we find that the separation point is moving down-
stream. For β ≈ 10−2 we find that we are able to capture the
delayed separation of drag crisis with cD ≈ 0.4 − 0.5, see
Fig. 1. This value of β is found by adjusting β to match the
experimental results.

10 Turbulent Euler solutions

In a reasonable theory there are no dimensionless numbers
whose values are only empirically determinable. (Einstein)

We now turn to the question of what happens as β → 0,
corresponding to the Reynolds number Re → ∞. Our com-
putational model then reduces to G2 for the Euler equations
with slip boundary conditions, which we here refer to as an
Euler/G2 model, or an EG2 model. We note that in this model
the only parameter is the discretization parameter h.

The dual problem for EG2

We recall that in computing the drag for a body, the mesh is
refined using the a posteriori error estimate Eq. (27) based
on a discrete approximation of the continuous dual problem
Eq. (7), with unit boundary data for the dual velocity in the
streamwise direction on the surface of the body.

The underlying error representation is based on the con-
tinuous dual problem, and thus we have to be careful so that
the discrete (G2) approximation of the dual problem is a
good enough approximation of the continuous dual prob-
lem. In [4–7, 9] we use no slip boundary conditions for the
primal problem, and we find that after some mesh refine-
ment the approximate dual weight in (27) is (approximately)
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Fig. 2 Magnitude of the dual velocity for β = 0.1 (upper left), β = 0.01 (upper right), and β = 0 (lower left), using velocity boundary data, and
for β = 0 (lower right) using pressure data, in the x1x2-plane for x3 = 0.2 (with 50, 000 nodes)

independent of the mesh refinement, which is taken as an
indication of the validity of (27).

Since the normal component of the convection velocity
field (the primal velocity) on the boundary in the dual problem
is zero, the boundary data in the dual problem is only trans-
ported into the interior of the domain by diffusion. Although,
with EG2 we have that ν = 0, and thus it is not obvious how
the boundary data is to be transported into the interior of the
domain. In irregular parts of the flow, the stabilization will
act as a numerical diffusion that will spread the data, but with
the slip boundary condition in the primal problem the flow
near the boundary will be smooth since there is no bound-
ary layer, and thus the diffusion at the boundary will be very
small.

With ν = 0, the skin friction is zero and the mean drag
FD of a body with surface 	0 is solely due to the pressure:

FD = 1

|I |
∫

I

∫

	0

pn1 ds dt, (31)

with n1 the x1-component of the normal.
For EG2, we propose to study instead the following quan-

tity:

F̃D = 1

|I |
|	0|
|	̃0|

∫

I

∫

	̃0

pñ1 dx dt, (32)

with ñ1 a piecewise linear function in the finite element space
W n which is equal to n1 at all nodes on	0 and zero at all other
nodes. We define 	̃0 ⊂ � as the union of all cells in the mesh
with at least one vertex on the surface 	0. The quantity F̃D is
then defined in (32) as a weighted average of the pressure p,
which is of the same order of magnitude as FD. For example,
for	0 a straight line segment in 2d which is normal to the x1-
axis, piecewise linear approximation on uniform triangles, or
bilinear approximation on uniform quadrilaterals, gives that
F̃D = 1/2 FD.

Formulating an adaptive method for the computation of
F̃D instead of FD leads to the same a posteriori error estimate
(27), but now with a different set of data for the dual problem.

Instead of the boundary data for the dual velocity leading to
an error representation for FD, we are now led to choose
the data in the dual problem as a force in the dual continu-
ity equation; that is we use homogeneous velocity boundary
data, and the source term ψ̂ in (7) we choose to be

ψ̂ =
(

0,
|	0|
|	̃0|

ñ1

)
. (33)

With this data the issue of the missing boundary layer for
ν = 0 is avoided. Instead the data (33) establishes a pressure
difference over the body in the dual problem, resulting (as
expected) in a similar dual flow field as for the dual problems
at lower Reynolds number with a boundary layer, see Fig. 2.
Here we find that the dual solution with pressure data (33) to
a large extent resembles the dual solutions for β = 0.1, 0.01
(modulo the different sizes of the turbulent wake), whereas
the dual solution with velocity boundary data is not able to
transport the boundary data into the interior of the domain,
but only transports the data at the downstream separation
point upstream.

We believe that for the approximation of pressure drag,
the data (33) for the dual problem may be more appropriate
also at lower Reynolds numbers, when the boundary layer is
not fully resolved.

EG2 for a circular cylinder

Experimental results for the circular cylinder are avaliable
up to Re≈107 [22, 23], for which drag is small, correspond-
ing to drag crisis. In wind tunnels there is an upper limit on
the size of the cylinder, and increasing the velocity eventu-
ally will make the incompressible flow model invalid, due
to effects of compressibility and cavitation. To find much
higher Reynolds numbers we have to consider flow prob-
lems with very large dimensions, such as geophysical flows.
In the recent book [23], the case of Re → ∞ is referred to
as the ultimate regime or the T2 regime, which is descibed as
the least known and understood state of flow, with the main
reason being the lack of experimental data.
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Fig. 3 Magnitude of the velocity (left) and the pressure (right) for an EG2 solution at time t = 0.5, with cD ≈ 0.1, in the x1x2-plane for x3 = 0.2

Fig. 4 EG2: Isosurfaces for vorticity: x1-component (left), x2-component (middle), and x3-component (right), at three different times (upper,
middle, lower), in the x1x2-plane

We now consider the case of β = 0 for the cylinder. As
we refine the mesh with respect to the error in drag, we find
that the Euler/G2 solution (or EG2 solution) approaches the
potential solution, with separation in one point (line) only,
and with zero drag, see Fig. 3. But as the mesh is further
refined we find that the potential solution is unstable, with
the separation point generating vorticity and starting to oscil-
late. The oscillations are not simultaneous along the cylin-
der, instead there is a significant variation in the spanwise
direction. The oscillating separation line generates streaks
of vorticity in the streamwise direction that undergo transi-
tion to turbulence downstream the cylinder, which is shown
in Figs. 4, 5 and 6, where an EG2 solution is plotted for a
mesh with 75, 000 mesh points. We note that as soon as the
potential solution looses stability, the drag increases and is
sometimes even higher than for the case of laminar separa-
tion at θ ≈ 90◦, see Fig. 7, where the time series of the drag
for a EG2 solution on a mesh with 150, 000 nodes is shown.

The separation points generate vorticity, and sometimes
structures similar to a regular von Karman vortex street, with
the fundamental difference that for the EG2 solution there
is separation in one point only. Indeed, studying geophys-
ical bluff body problems, such as the flow of air past the

Guadalupe Island or the Canary Islands in Fig. 9, we find
that these flows appear to share the feature of separation in
one point only, which is consistent with the EG2 solution,
see Fig. 8, rather than in two points with a wake in between,
which is the case of a standard von Karman vortex street at
low Reynolds numbers [18]. A circular cylinder is of course
not a realistic model of the geophysical flows in Fig. 9, which
are no perfect cylinders but rather irregular 3d shapes closer
to a half sphere or a surface mounted cube. Although, we
believe that the computations indicate that for shapes of large
dimensions, the separation may be well predicted using an
EG2 model.

We note that this model is cheap since we do not have
to resolve any boundary layers. The only parameter in the
EG2 model is the discretization parameter h, and after some
mesh refinement we expect the EG2 solution to be indepen-
dent of h with respect to certain mean value output, such as
drag for example. In particular, this means that we would be
able to determine the dimensionless number cD (up to a tol-
erance) using a computational model without any empirical
constants.

The importance of a reliable model for computing incom-
pressible flow as Re → ∞ will increase as this regime is
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Fig. 5 EG2: Isosurfaces for vorticity: x1-component (le f t), x2-component (middle), and x3-component (right), at three different times (upper ,
middle, lower ), in the x1x3-plane

Fig. 6 EG2: Isosurfaces for vorticity: x1-component (left), x2-component (middle), and x3-component (right), at three different times (upper ,
middle, lower ), in the x2x3-plane

nowadays frequently reached in civil-, offshore and wind
engineering as the size of the structures increase.

11 Summary

We have considered the problem of computing turbulent flow
past a bluff body, including the case when the boundary lay-
ers are turbulent. We have extended the G2 method to this
class of problems by using a very simple wall-model in the
form of a friction boundary condition, with associated friction
parameterβ. The idea in this paper is that for computing accu-
rate separation, resolving the boundary layer is not crucial as

long as we are able to approximate the momentum near the
boundary, coupling to the skin friction of the unresolved
boundary layer, which we model by the friction boundary
condition.

In [4–7, 9] we find that in the case of laminar boundary
layer separation we are able to capture the correct separa-
tion point (line) using G2 together with a no slip boundary
condition, corresponding to β → ∞.

Although, as the Reynolds number increases, the skin
friction decreases, and the no slip boundary condition is no
longer able to predict the correct flow separation. Using a no
slip boundary condition, it is impossible to capture the de-
layed separation due to a turbulent boundary layer without a
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Fig. 7 Time series of cD for an EG2 solution on a mesh with 150, 000 nodes

Fig. 8 EG2: x3-vorticity at two different times, in two different sections parallel to the x1x2-plane

Fig. 9 Clouds over the Guadalupe Islands (left) and the Canary Islands (right)
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very high resolution of the boundary layer, which is extremely
expensive. Using the friction boundary condition we can
model the decreasing skin friction in a turbulent boundary
layer simply by choosing a lower β.

In this paper we use G2 with a friction boundary condi-
tion to model drag crisis for a circular cylinder, where we are
able to capture the delayed separation on a coarse mesh, by
adjusting β to match experimental results. From an engineer-
ing point of view it is important to take both the sub-critical
and the super-critical scenario into account, and thus compu-
tations using different β may be necessary.

We also consider the case of Re → ∞ and β → 0,
corresponding to G2 for the Euler equations with slip bound-
ary conditions, which we refer to as an EG2 method. We
find that as β → 0 for the circular cylinder the separation
points (lines) move downstream until they collapse into only
one single separation point (line), resembling the potential
solution with zero drag. The potential solution is not stable
and the single separation point (line) generates vorticity and
turbulence downstream, and starts to oscillate.

That is, we have the following scenario as β → 0 (cor-
responding to Re → ∞) for the cylinder: (a) the laminar
separation is stable for a range of Reynolds numbers (Re ≈
103 − 105) with drag cD ≈ 1.0, (b) we then for a range
of Reynolds numbers have drag crisis with a reduced wake
and cD ≈ 0.4 when the separation points have moved down-
stream, and then (c) the separation points collapse into one
separation point which starts to oscillate, and generate vortic-
ity and turbulence downstream, corresponding to high drag.

The EG2 solution corresponds to a physical flow with a
very high Reynolds number, and we find flows with similar
characteristics of separation in one point generating vorticity
and turbulence, studying geophysical bluff body problems,
such as the flow of air past the Guadalupe Island or the Canary
Islands.

We note that the need of a reliable computational model
for the case Re → ∞ will increase, due to the large dimen-
sions of civil-, offshore and wind engineering structures of
today. EG2 is very cheap since we have no boundary layer,
and we note that the EG2 model is free of any empirical
parameters. For EG2 we also introduce an alternative formu-
lation of the dual problem based on forcing data to the dual
continuity equation, with the motivation of avoiding the issue
of not resolving the boundary layer in the dual problem.

In future work we will extend the study of the EG2 model,
and the formulation of the corresponding dual problem. We
will also further investigate the friction boundary condition
as a model for a turbulent boundary layer.
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