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Generalizing the prior work of P. W. Anderson and E. R. Huggins, we show that a “detailed Josephson-
Anderson relation” holds for drag on a finite body held at rest in a classical incompressible fluid flowing
with velocityV. The relation asserts an exact equality between the instantaneous power consumption by the
drag −F · V and the vorticity flux across the potential mass current −ð1=2Þ R dJ

R
ϵijkΣijdlk. Here, Σij is

the flux in the ith coordinate direction of the conserved jth component of vorticity, and the line integrals
over l are taken along streamlines of the potential-flow solution uϕ ¼ ∇ϕ of the ideal Euler equation,
carrying mass flux dJ ¼ ρuϕ · dA. Drag and dissipation are thus associated with the motion of vorticity
relative to this background ideal potential flow solving Euler’s equation. The results generalize the theories
of M. J. Lighthill for flow past a body and, in particular, the steady-state relation ð1=2ÞϵijkhΣjki ¼ ∂ihhi,
where h ¼ pþ ð1=2Þjuj2 is the generalized enthalpy or total pressure, extends Lighthill’s theory of
vorticity generation at solid walls into the interior of the flow. We use these results to explain drag on the
body in terms of vortex dynamics, unifying the theories for classical fluids and for quantum superfluids.
The results offer a new solution to the “d’Alembert paradox” at infinite Reynolds numbers, provide an
explanation for a long-standing puzzle about the experimental conditions required for anomalous turbulent
energy dissipation, and imply the necessary and sufficient conditions for turbulent drag reduction.
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I. INTRODUCTION

The origin of the Josephson-Anderson relation lies in the
work of Josephson on the tunneling of Cooper pairs
through normal-superconductor-metal junctions and, in
particular, his ac effect [1]. However, the relation assumed
its most elegant and powerful statement in the seminal
paper of Anderson on flow in superfluid 4He [2]. The
relation has had sufficient sustained importance that it
garnered two extensive reviews, 30 years [3] and 50 years
[4] after Anderson’s original work. In its most basic form, it
relates the time derivative of the phase θ of the superfluid
macroscopic wave function and the chemical potential
μ as

ℏ
dθ
dt

¼ −
�
μþ 1

2
mjuj2

�
; ð1:1Þ

where u ¼ ℏ∇θ=m is the superfluid velocity. A special
significance holds for this relation because topological
phase defects exist in superfluids as discrete vortex lines
with circulation quantized in units of κ ¼ h=m [5,6]. The
importance of the Josephson-Anderson relation arises from
the intimate connection it reveals between force balance
and vortex motion. This connection can already be under-
stood by applying a space gradient to Eq. (1.1) which,
because u arises from a multivalued potential, yields the
equation of motion

du
dt

¼ ∂tuþ ðu · ∇Þu ¼ −ð1=mÞ∇μþ
X
V

vV × ωV; ð1:2Þ

where the last term on the right is a sum over quantized
vortex lines with vorticity ωVðx; tÞ ¼ κt̂δ2(r − rVðtÞ), in
which t̂ is a unit vector in the direction of the vorticity, and
r is a two-dimensional coordinate in the transverse plane,
with the vortex V located at position rVðtÞ and moving with
transverse velocity vVðtÞ ¼ drVðtÞ=dt [7]. A superfluid
would be expected to flow without any applied chemical
potential gradient (or pressure gradient, for the incom-
pressible isothermal limit), but Anderson showed that a
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drop in chemical potential would occur if there were
a time-average flux of quantized vortices [2]. See also
Josephson [9] for the corresponding effect of voltage drop
in superconductors.
A significant extension of these ideas was obtained

subsequently by Huggins [10] whose “detailed Josephson
equation” was further able to relate energy dissipation to
vortex motion across streamlines of the potential flow uϕ

associated with the superfluid ground state. See also
Refs. [4,11,12] for alternative derivations of Huggins’s result
and Fig. 1 for a concise description. Such vortex motion by
“2π phase slips” has been for many years the standard
paradigm for energy dissipation in low-temperature super-
fluids and superconductors [13,14]. Furthermore, because
Huggins’s detailed relation was derived without any sort of
averaging, it could be applied to individual flow realizations,
and it was found to yield deep insight into otherwise very
complicated vortex dynamics.Wemayquote from the review
of Packard, who wrote that

“the equation provides an elegant short cut to certain
predictions ... that involve the complex motion of quan-
tized vortices. These same predictions by other methods
require a detailed knowledge of vortex motion and
involve considerable computational effort” [3].

The reviews [3,4] both analyzed a large number of concrete
examples to justify the remarkable efficacy of the detailed
Josephson-Anderson relation to understand and predict
complex superfluid vortex dynamics.
That classical fluids should satisfy a similar relation was

already understood by Anderson, who devoted the
Appendix B of his 1966 article to deriving an analogous

result for classical hydrodynamics [2]. He stated that he had
been unable to find the same result written anywhere in the
literature and conjectured that “it was understood by the
‘classics’ but is of no value in classical hydrodynamics so
was never stated” [15]. Most superfluid physicists have
followed Anderson in discounting any significance of the
Josephson-Anderson relation for classical fluids. As a
typical statement, we may quote from the recent review
article of Varoquaux:

“This result is of no special importance in classical
hydrodynamics because the velocity circulation carried
by each vortex, albeit constant, can take any value,
while in the superfluid it is directly related to the phase
of the macroscopic wave function and quantized” [4].

A notable exception to this trend was Huggins, whose
original paper [10] already demonstrated the validity of his
“detailed relation” for classical viscous Navier-Stokes
solutions and who later wrote a paper applying his results
to classical turbulent channel flow [16,17].
Unrecognized by Anderson and the rest of the superfluid

community, however, there were already important appli-
cations of closely related ideas in classical hydrodynamics.
A very early foreshadowing was work on turbulent pipe
flow by Taylor [18], who realized that pressure-drop down
the pipe implies transverse vortex motion but who did not
pursue the connection further. More important was a
seminal work of Lighthill [19], who presented a very
broad vision of classical fluid mechanics from the per-
spective of vortex dynamics, encompassing laminar, transi-
tional, and fully turbulent flow. Just three years before
Anderson’s work on superfluids, Lighthill argued that
vorticity flux from solid walls is fundamentally due to
tangential pressure gradients at the wall, and he presented
many important applications of this principle to classical
incompressible fluid dynamics. In fact, his ideas are closely
related to those of Huggins [10,16,20,21], which naturally
extend Lighthill’s concept of vorticity flux at solid walls
into the interior of the flow. These connections were
previously discussed by us in a paper on turbulent channel
flow [22], which further developed Huggins’s ideas on that
problem and put them in the context of contemporary work
on the “attached-eddy hypothesis.”
In this paper, we present a new application of the

classical Josephson-Anderson relation to flow past a finite
solid body and to the problem of the origin of drag. This is
in some ways a much more illuminating application of the
relation, although it requires some significant modification
of the analysis both of Huggins and of Lighthill. In fact,
Lighthill in his paper [19] had discussed this same problem
in the rest frame of the fluid, appealing there to Kelvin’s
minimum-energy theorem [23]. We see that this theorem
does not hold in the body frame, and this fact crucially
enters into the analysis. Kelvin’s theorem involves the

FIG. 1. Dissipative vortex motions in superfluid channel flow
according to the Josephson-Anderson relation. Solid black dots
denote quantized vortices pointing into the plane and moving
across flow lines of the background superfluid velocity uϕ with a
transverse vortex velocity vV, which may arise either from vortex-
induced motions or from nonideal effects. When a single vortex
crosses the entire channel width, the superfluid phase difference
Δθ between outflow and inflow points changes by 2π, a so-called
2π phase-slip event.
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unique potential-flow solution of the inviscid Euler
equation satisfying the no-flow-through condition at the
body surface, which, according to the famous result of
d’Alembert predicts zero drag around a moving body [24–
26]. In superfluids, this is no “paradox” but is instead a
physically observable phenomenon when the body moves
at low speeds below a critical velocity. The origin of
superfluid drag above this critical velocity was the subject
of a study by Frisch et al. [27], which spawned substantial
following literature up to the present time, e.g., Refs. [28–
39]. Our analysis demonstrates a deep similarity between
the origin of drag in classical and quantum fluids, with the
Josephson-Anderson relation providing the key unifying
concept. In both cases, this relation shows that drag and
dissipation are associated with motion of vorticity relative
to the background ideal potential flow solving Euler’s
equation. Although we focus mainly on the classical case,
we make various remarks as we proceed concerning the
differences and similarities to the quantum case.
Our approach applies to classical flows at any Reynolds

number but in particular extends to the infinite Reynolds
turbulent regime, making a connection of the d’Alembert
paradox with the Onsager theory of dissipative Euler
solutions [40–42]. That paradox in its original form arose
from the demonstration by d’Alembert [24–26] that smooth
solutions of ideal Euler equations predict no drag around an
obstacle, in apparent contradiction to experience. This
puzzle was resolved, in our view, by Saint-Venant’s
realization of the importance of even a very small viscosity
[43], as further elaborated by Prandtl [44] and others [45].
However, this paradox has recently arisen in a new guise,
because of two apparently conflicting facts, one empirical
and the other mathematical. The empirical fact from
laboratory observations is that the dimensionless drag
coefficient CDðReÞ for flow around a finite object such
as a sphere apparently tends to a nonzero constant value as
Re → ∞ [46]. The mathematical fact is that, under very
modest assumptions, the viscous Navier-Stokes solution
must tend in the limit Re → ∞ to a weak solution of the
incompressible Euler equations [47]. The new form of the
“paradox” is then how the limiting weak Euler solution can
produce a nonvanishing drag. This puzzle is obviously
connected with the Onsager theory of turbulence [40–42],
which postulates dissipative weak solutions of the Euler
equations in order to explain the related empirical obser-
vation of “anomalous dissipation,” i.e., viscous energy
dissipation nonvanishing in the Reynolds-number limit.
We argue that the Josephson-Anderson relation and the
Onsager theory of the dissipative anomaly complement and
mutually illuminate each other.
Our new result can, in fact, resolve a long-standing

experimental puzzle [48] regarding the conditions required
for an energy-dissipation anomaly in closed-wall-bounded
flows versus those required in open flows past obstacles. It
is well known from laboratory experiments on closed

geometries such as pipe flow [49–52], Taylor-Couette
[48], Rayleigh-Bénard [53–55], and the von Kármán flow,
or “French washing machine” with rotating disks [48], that
energy dissipation, in fact, vanishes slowly with Reynolds
number, and there is no strict dissipative anomaly when the
bounding walls are hydraulically smooth. To obtain anoma-
lous dissipation in such internal flows, one must instead
have rough walls with grains, ridges, or other small features
standing perpendicular to the wall, as observed for pipe
flow [56–58], Taylor-Couette and von Kármán flows [48],
and Rayleigh-Bénard (at least in numerical simulation)
[59]. In stark contrast, external flows past obstacles have
provided the best experimental evidence for a dissipative
anomaly, in flow past grids in wind tunnels [60,61], in jets
through orifices in plates [62], and in wakes behind bluff
bodies such as cylinders [63] and spheres [46], and in these
flows surface roughness is not a requisite for the existence
of a dissipative anomaly. Roughness alters the asymptotic
value of the dissipative drag in such flows and can even
reduce it, e.g., by causing boundary-layer reattachment as
in the well-known case of dimples on a golf ball [64], but
anomalous dissipation is observed then also with smooth
surfaces. As we see, the Josephson-Anderson relation
offers an explanation for these diverse experimental obser-
vations. See Sec. VA.
In addition, our analysis raises fundamental new ques-

tions in the theory of quantum superfluids and, perhaps
most importantly, opens up entirely new avenues in the
empirical investigation of drag generation and drag reduc-
tion for classical incompressible fluids. As we explain, the
flow quantities entering in the Josephson-Anderson relation
are not only calculable in numerical simulations of the
incompressible Navier-Stokes equation but are also meas-
urable in the laboratory by cutting-edge experimental
techniques which can, for example, permit observation
of the full 3D velocity and vorticity fields with a spatial
resolution of 10–60 μm [65] and which can finely resolve
flow around individual 1-mm-high roughness elements in a
turbulent inner layer [66,67]. Because our analytical results
provide for the first time an exact relation between the
drag force and the vortex motion, they can be exploited in
conjunction with such modern computational and exper-
imental methods to identify quantitatively the fundamental
mechanisms of drag in terms of the fluid vorticity
dynamics.
A brief summary of the contents of the paper is as

follows: Section II concisely reviews the essential ideas of
Huggins [10,16,20,21] and Lighthill [19] in order to
define some of the basic concepts involved in their theories
and to explain the close relationships between them. The
longest section of the paper, Sec. III, derives our main
result, the detailed Josephson-Anderson relation for flow
around a finite body. After a brief explanation of the key
differences from the prior work of Lighthill and Huggins
and an outline of the important ideas underlying the new
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result, the mathematical details are given in six subsections
(Secs. III A–III F). However, a reader who is most inter-
ested in concrete applications can skip the derivations and
go directly to Sec. IV where flow around a sphere is
considered as an illustrative example. The detailed
Josephson-Anderson relation is first written in concrete
form for the case of a sphere (Sec. IVA), then specific
predictions are obtained for the vortex dynamics that must
underlie observed drag (Sec. IV B), and finally, compar-
isons are made with related work on quantum superfluids
(Sec. IV C). The concluding section (Sec. V) of the paper
discusses general implications and ramifications of the
detailed Josephson-Anderson relation, on the d’Alembert
paradox and the Onsager theory of turbulence (Sec. VA),
on novel empirical investigations made possible into drag
mechanisms (Sec. V B), and new theoretical questions
raised for both classical and quantum fluid flows
(Sec. V C). Finally, two Appendixes present supplemental
results, a self-contained derivation of Huggin’s detailed
relation for channel flow (Appendix A) and a short proof of
a relation between vortex momentum and impulse that we
require in our derivations (Appendix B).

II. CONCISE REVIEW OF THEORIES OF
HUGGINS AND LIGHTHILL

Although we are principally concerned with simple
fluids described by the incompressible Navier-Stokes
equation at constant density ρ, the ideas of Huggins apply
to an extended system of equations with additional accel-
erations due to forces both conservative −∇U for a
potential U and nonconservative g with ∇ × g ≠ 0 written
in the form

∂tu¼u×ω−ν∇×ω−g−∇
�
pþUþ1

2
juj2

�
; ð2:1Þ

where p ¼ P=ρ is kinematic pressure and ν ¼ η=ρ is
kinematic viscosity. For example, U could be a gravita-
tional or electrostatic potential, and g could arise from the
stress of a polymer additive. Huggins [16,21] observed that
equations of the above class can be rewritten component-
wise (with the Einstein summation convention for repeated
indices hereafter) as

∂tui ¼
1

2
ϵijkΣjk − ∂ih ð2:2Þ

in terms of an antisymmetric tensor

Σij ¼ uiωj − ujωi þ ν

�∂ωi

∂xj −
∂ωj

∂xi
�
− ϵijkgk; ð2:3Þ

and a generalized enthalpy or total pressure (static pressure
plus dynamic pressure)

h ¼ pþ U þ 1

2
juj2: ð2:4Þ

The meaning of the tensor Σ is discovered by taking the
curl of Eq. (2.1) to obtain the analog of the Helmholtz
equation for conservation of vorticity

∂tωþ ∇ · Σ ¼ 0 ð2:5Þ

with Σij representing the flux of the jth component of
vorticity in the ith coordinate direction. For this reason, we
refer to Σ as the Huggins vorticity-flux tensor.
The various terms in Eq. (2.3) have transparent physical

meanings, with the first representing advective transport,
the second transport by vortex stretching or tilting, the third
term in parentheses viscous transport, and the final term a
flux by the Magnus effect transverse to the applied force.
The rewriting of the momentum-conservation equation in
the form of Eq. (2.2) is the classical Josephson-Anderson
relation in its simplest version, which may be compared
directly with quantum relation (1.2). It implies, for exam-
ple, that for a steady solution or for a suitable time average
h·i (average over a period for an oscillatory solution or
long-time ergodic average for a chaotic solution), the mean
gradients of h and the mean vorticity fluxes are exactly
related by

1

2
ϵijkhΣjki ¼ ∂ihhi: ð2:6Þ

Thus, a mean gradient of h must always be associated with
a transverse vorticity flux, and vice versa.
Furthermore, Huggins [10,20] see also Ref. [22],

Appendix B) derived a less obvious result, the detailed
Josephson relation, in the case of a generalized channel
flow, as pictured in Fig. 2. Here the fluid velocity is
assumed to be specified on the inflow surface Sin, outflow
surface Sout, and at the channel wall Sw as

ujSin ¼ uin; ujSout ¼ uout; ujSw ¼ 0: ð2:7Þ

As in the proof of the Kelvin minimum-energy theorem
(Ref. [23], Ref. [68] Article 45, Ref. [69] Sec. VI. 2, and
Ref. [70] Sec. II. 4. 4), Huggins then introduced the unique
incompressible potential flow uϕ ¼ ∇ϕ satisfying the
Neumann boundary conditions

n ·uϕjSin ¼n ·uin; n ·uϕjSout ¼n ·uout; n ·uϕjSw ¼0; ð2:8Þ

and the complementary field uω ¼ u − uϕ which repre-
sents the velocity due to vorticity. It then easily follows that
uϕ and uω are orthogonal
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Z
Ω
uϕ · uωdV ¼

Z
Ω
∇ · ðϕuωÞdV ¼

Z
∂Ω

ϕðuω · n̂ÞdA ¼ 0;

ð2:9Þ

which is the essence of Kelvin’s theorem. Using this
orthogonality, Huggins was able to derive equations for
energies in the potential flow Eϕ ¼ ðρ=2Þ RΩ juϕj2dV and
in the rotational flow Eω ¼ ðρ=2Þ RΩ juωj2dV as

dEϕ

dt
¼

Z
dJðhin − houtÞ − T ð2:10Þ

and

dEω

dt
¼ T −

Z
Ω
½ηjωj2 þ ρu · g�dV ð2:11Þ

with

T ¼ −ρ
Z

uϕ · ðu × ω − ν∇ × ω − gÞdV

¼ −
Z

dJ
Z

ðu × ω − ν∇ × ω − gÞ · dl

¼ −
1

2

Z
dJ

Z
ϵijkΣijdlk: ð2:12Þ

Here the line integrals are along streamlines of the potential
flow, and dJ ¼ ρuϕ · dA is the element of mass flux along
each streamline, with T representing transfer of energy
from potential to rotational flow by flux of vorticity across
mass current. As a consequence of Eq. (2.10), Huggins then
obtained the detailed Josephson relation

T ¼
Z

dJðh0in − h0outÞ ð2:13Þ

with h0 ¼ hþ _ϕ, which implies an instantaneous equality
between the energy-transfer rate and work done by the total
pressure field h0. Note that energy dissipation due to
viscosity and other nonpotential forces removes energy
only from the rotational motions. See Appendix A for a
brief self-contained derivation of Huggins’s result.
The velocity decomposition introduced by Huggins is

very natural for superfluids, where uϕ represents the
ground-state superfluid velocity and uω the (incompress-
ible) vortical excitations such as vortex rings. As already
noted by Landau [71], a quantum superfluid in its zero-
temperature ground state may exhibit nontrivial dissipa-
tionless superflow, whose velocity uϕ is the solution of the
ideal Euler equation with the appropriate mechanical
boundary conditions (applied pressure, moving walls,
etc.) The total superfluid velocity u in Eq. (1.2), on the
other hand, contains contributions also from quantized
vorticity. It may thus be written in Huggins’s form as
u ¼ uϕ þ uω, at least in flows where the contribution from
the compressible modes (phonons) is negligible. Note,
similarly, that vV in Eq. (1.2) is the total velocity of the
vortex V, and in general this has contributions both from
the background flow uϕ and also from vortex-induced
velocity. One can thus write vV ¼ uϕ þ ΔvV , but with only
ΔvV contributing to effective energy dissipation according
to Huggins’s detailed relation. Importantly, ΔvV may differ
as well from uω if there are additional nonideal effects
acting on quantized vortices such as mutual friction, which
would be roughly analogous in the classical case to viscous
diffusion of vorticity. For further discussions of the detailed
Josephson-Anderson relation in quantum supefluids, see
Refs. [4,11,12].
As we see in Sec. III B, Lighthill [19] introduced the

identical decomposition u ¼ uϕ þ uω in his discussion of
flow around a solid body, using quite different arguments.
Furthermore, Lighthill recognized that there would be a
creation of vorticity at solid walls with a normal flux σ
related exactly to Huggins’s vorticity-flux tensor as

σ ¼ n̂ · Σ ¼ n̂ × νð∇ × ωÞ þ n̂ × g; ð2:14Þ

which is now called the Lighthill vorticity source. In fact,
Lighthill wrote his source explicitly for a flat wall only, and
the general formula above for a curved wall was first
proposed by Lyman [72]. There is more than one possible
generalization of Lighthill’s flat-wall expression to curved
walls (e.g., see Refs. [73–76]), but Lyman’s proposal is
uniquely the one that corresponds to the creation of
circulation at the boundary (Ref. [22] Appendix A).
Lighthill [19] further realized that vorticity generation at
the wall could be related to tangential pressure gradients, as
can be seen by substituting the equation of motion (2.1)
into Eq. (2.14), to obtain

σ ¼ −n̂ × ð∇hþ ∂tuÞ: ð2:15Þ

FIG. 2. Flow through a channel Ω with inflow surface Sin,
outflow surface Sout, and channel walls Sw.
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Here we include the term ∂tu, which is nonzero if the wall
is accelerating tangential to itself, that was first introduced
by Morton [77], who also emphasized the inviscid nature of
vorticity generation according to formula (2.15). In
common with Josephson and Anderson, Lighthill [19] thus
realized also that pressure gradients and transverse vorticity
fluxes are inextricably linked.

III. THE CLASSICAL JOSEPHSON-ANDERSON
RELATION FOR A FINITE MOVING BODY

In this section, we present the derivation of the new
Josephson-Anderson relation for flow around a body. A key
point unobserved by Lighthill in his discussion of this
problem [19] is that the Kelvin minimum-energy theorem
holds only in the rest frame of the fluid and not in the body
frame. Thus, there is here a nonvanishing “interaction
energy” Eint between potential and rotational flow in the
body frame, whereas this energy is strictly zero in channel
flow according to the result (2.9) exploited by Huggins.
Conversely, the energy Eϕ of the background potential
flow, which in Huggins’s relations (2.10) and (2.11) was
the source of energy transferred to the rotational motions,
instead for flow around a body is conserved (but infinite) by
d’Alembert’s theorem. As we see below, it is now the
interaction energy Eint which is the source for energy
transferred to rotational motions, and this transfer T is
described by a formula identical to Huggins’s Eq. (2.12) for
channel flow. Remarkably, the interaction energy between
potential and rotational flow can be directly related by a far-
field asymptotic analysis to the total momentum of the
rotational wake. Momentum balance then yields the
detailed relation between drag on the body and energy
transfer to rotational motions, generalizing Huggins’s
relation (2.13) for channel flow. The far-field analysis is
based on a multipole expansion and a careful application of
the Lighthill-Morton theory of vorticity generation, which
requires extended mathematical discussion.

A. Setup of the problem

We consider the flow around a finite solid body B with
smooth boundary ∂B held at rest in an incompressible fluid
that is filling the region Ω ¼ R3nB and moving at constant
velocity V ¼ Vx̂ upstream of the body and at far distances
from it. See Fig. 3. By Galilean invariance, we can
equivalently consider the body to be in translational motion
with velocity −Vx̂ through a fluid at rest and that point of
view is sometimes more convenient. In this flow setup, we
consider the solution u of the viscous incompressible
Navier-Stokes equation

∂tuþ ∇ · ðuuþ pI − 2νSÞ ¼ 0; ∇ · u ¼ 0 ð3:1Þ

with the boundary conditions

uj∂B ¼ 0; u ∼
jxj→∞

V: ð3:2Þ

Note that in Eq. (3.1) we write the Navier-Stokes equation
as a local conservation law for linear momentum, with the
total stress tensor (in dyadic notation)

T ¼ uuþ pI − 2νS; ð3:3Þ

where S ¼ 1
2
½ð∇uÞ þ ð∇uÞ⊤� is the strain-rate tensor. We

assume here that the Navier-Stokes solutions are smooth
for all times.
For comparison, we also consider the potential-flow

solution of the incompressible Euler equation

∂tuϕ þ ∇ · ðuϕuϕ þ pϕIÞ ¼ 0; ∇ · uϕ ¼ 0 ð3:4Þ

with uϕ ¼ ∇ϕ given by a velocity potential ϕ which
satisfies the boundary conditions

∂ϕ
∂n

����∂B ¼ 0; ϕ ∼
jxj→∞

Vx: ð3:5Þ

Standard theory of potential flow implies that there is a
unique smooth solution with potential ϕ satisfying the
Laplace equation △ϕ ¼ 0 for boundary condition (B.C.)
(3.5) and with kinematic pressure given by the Bernoulli
equation

∂tϕþ 1

2
juϕj2 þ pϕ ¼ 0: ð3:6Þ

Here the pressure pϕ is assumed for convenience to equal
the constant value − 1

2
V2 at infinity. This potential flow is,

of course, the subject of the famous d’Alembert paradox
[24,26] according to which the force exerted by the fluid on
the body

Fϕ ¼ −
Z
∂B

Pϕn̂dA ð3:7Þ

FIG. 3. Flow around a finite body B in an unbounded region Ω
filled with fluid moving at a velocity V at far distances.
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has vanishing drag, or V · Fϕ ¼ 0. Note that in Eq. (3.7)
and hereafter, n̂ denotes the normal at the surface ∂B
pointing from the solid body into the fluid.

B. Potential and vortical representation
of Navier-Stokes

Following the approach of Huggins [10] to derive the
Josephson-Anderson relation, we introduce the correspond-
ing rotational contributions by the definitions

uω ≔ u − uϕ; pω ≔ p − pϕ: ð3:8Þ

Although the Navier-Stokes velocity field is thereby
decomposed as u ¼ ∇ϕþ ∇ × ψω into gradient and curl
parts, this is not the familiar Helmholtz decomposition.
Recall that the Helmholtz decomposition for a piecewise
smooth vector field v which is zero inside B and smooth in
the external flow domain Ω takes the form

vðxÞ ¼ −∇
�Z

Ω

ð∇ · vÞðx0Þ
4πjx− x0j dV

0 þ
Z
∂B

n̂ · vðx0Þ
4πjx− x0jdA

0
�

þ∇×

�Z
Ω

ð∇× vÞðx0Þ
4πjx− x0j dV

0 þ
Z
∂B

n̂× vðx0Þ
4πjx− x0jdA

0
�
:

ð3:9Þ

See Ref. [78] for an engaging discussion of the history of
the Helmholtz decomposition and a useful survey of the
mathematical literature, and see also Ref. [79] for appli-
cation to Navier-Stokes solutions outside a solid body. It is
important to emphasize that the Helmholtz decomposition
cannot be used to obtain uniquely the solenoidal velocity
field u corresponding to a given vorticity field ω in Ω
without specifying appropriate boundary conditions at ∂B
and, furthermore, that arbitrary boundary conditions cannot
be imposed. Applied to a Navier-Stokes solution u with
B.C. (3.2), the Helmholtz decomposition yields

uðx; tÞ ¼ ∇ ×

�Z
Ω

ωðx0; tÞ
4πjx − x0j dV

0
�
: ð3:10Þ

As already noted by Lighthill, “there is only a restricted
class of vorticity distributions that correspond to real flows
satisfying also the no-slip condition” [19].
The velocity field (3.10) is not, however, the only one

that yields the vorticity distribution ω ¼ ∇ × u. As also
noted by Lighthill, “for any given solenoidal distribution of
vorticity ω outside the body (whose motion is again
prescribed), one and only one solenoidal velocity field
exists, tending to zero at infinity and with zero normal
velocity relative to the surface” [19]. In fact, this unique
velocity field mentioned by Lighthill for the Navier-Stokes
solution u is exactly the field uω defined in Eq. (3.8), which
by its definition satisfies the boundary conditions

n̂ ·uωj∂B ¼ 0; n̂×uωj∂B ¼ −n̂×uϕj∂B; uω ∼
jxj→∞

0;

ð3:11Þ

as a consequence of Eqs. (3.2) and (3.5). The Helmholtz
decomposition for this velocity field uω yields the repre-
sentation

uωðx; tÞ ¼ ∇ ×

�Z
Ω

ωðx0; tÞ
4πjx − x0jdV

0

þ
Z
∂B

n̂ × uωðx0; tÞ
4πjx − x0j dA0

�
; ð3:12Þ

and likewise the Euler solution uϕ is given by

uϕðx; tÞ ¼ ∇ ×

�Z
∂B

n̂ × uϕðx0; tÞ
4πjx − x0j dA0

�
; ð3:13Þ

which is an alternative representation of the potential flow
as uϕ ¼ ∇ × ψϕ in terms of a vector potential.
The quantities n̂ × uω, n̂ × uϕ in the integral represen-

tations (3.12) and (3.13) have a simple physical interpre-
tation as singular vorticity sheets on the surface ∂B, equal
and opposite to each other. This observation allows us to
identify the fields uω, uϕ introduced by Huggins [10] with
corresponding fields that appear in Lagrangian vortex
methods for solving the Navier-Stokes equation, which
were pioneered by Payne [80,81] and advocated by
Lighthill [19]. These methods have since been substantially
developed with many alternative schemes proposed. See
Ref. [82] for a clear discussion of the application to flow
around a solid body, and see Ref. [83] for a recent general
review. In the version explained by Lighthill [19], given a
vorticity distribution ω in Ω at each instant (obtained by
advecting, stretching, and diffusing the prior distribution),
one uses the Biot-Savart formula to construct the unique
solenoidal velocity field which is vanishing at infinity and
satisfying no-flow-through conditions at ∂B, which is the
field uω. However, this velocity field does not satisfy the
stick B.C. at ∂B on its tangential components and, also, it is
not a constant velocity V at infinity in the body frame. To
remedy these defects, one must add a tangential vortex
sheet n̂ × uϕ at the body surface ∂B, so that the resultant
velocity field u ¼ uω þ uϕ satisfies both conditions. More
physically, n̂ × uϕ is considered as the newly generated
vorticity at the surface, which, as pointed out by Lighthill,
corresponds to vorticity oriented along equipotential lines
of the Euler flow.
We take here, however, a very different point of view.

Since the Euler flow uϕ satisfying the B.C. (3.5) is unique
and easily computed, either analytically or numerically, we
instead use the definitions (3.8) to introduce a new
formulation of incompressible Navier-Stokes which we
call the potential-vortical formulation. This formulation can
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be easily obtained by taking the difference of the Navier-
Stokes and Euler equations to obtain an equation of motion
for uω of the form

∂tuω þ ∇ · ðuωuω þ uϕuω þ uωuϕ þ pωI − 2νSÞ ¼ 0:

ð3:14Þ

This equation must be solved with the B.C.

uωj∂B ¼ −uϕj∂B; uω ∼
jxj→∞

0; ð3:15Þ

and also the pressure pω chosen to enforce the incompress-
ibility condition ∇ · uω ¼ 0. From the obtained uω, the
Navier-Stokes solution can then be reconstructed as
u ¼ uϕ þ uω. Equation (3.14) can be regarded as expressing
the local conservation of the integral Pω ¼ ρ

R
Ω uωdV,

which we call the vortex momentum. Of course, other
equivalent forms of Eq. (3.14) can be derived. For example,
substituting ∂tuϕ ¼ ∇ _ϕ and using vector calculus identities
yields

∂tuω ¼ u × ω − ν∇ × ωþ ∇
�
pþ 1

2
juj2 þ _ϕ

�

¼ u × ω − ν∇ × ωþ ∇
�
pω þ 1

2
juωj2 þ uω · uϕ

�
;

ð3:16Þ
where in the second line the Bernoulli equation (3.6) is
invoked. This version of the potential-vortical formulation is
more physically intuitive in termsof vortex dynamics and it is
our main tool in this work. However, this version contains
expressions such as u × ω which are hard to give rigorous
meaning when Re → ∞, and thus the conservation form
(3.14) is preferred in considering the infinite-Reynolds-
number limit.
As should be clear from the review in Sec. II, the detailed

Josephson-Anderson relation involves as well the conser-
vation of vorticity and kinetic energy. The equation
expressing local conservation of vorticity can be obtained

in the potential-vortical formulation by taking the curl of
Eq. (3.16). It has the same form as Eq. (2.5) with the
vorticity-flux tensor Σ as given in Eq. (2.3) with g≡ 0.
This is, of course, just the usual Helmholtz equation.
The equation for the local conservation of the kinetic

energy of the rotational flow can be obtained by dotting uω

into Eq. (3.16), which yields

∂t

�
1

2
juωj2

�
þ∇ ·

��
pωþ

1

2
juωj2þuω ·uϕ

�
uω−νu×ω

�
¼−uϕ · ðu×ω−ν∇×ωÞ−νjωj2: ð3:17Þ

Note that the uϕ · ðν∇ × ωÞ term is needed on the right-
hand side of Eq. (3.17) so that νu × ω appears in the square
bracket on the left-hand side. Otherwise, the term inside the
square bracket would be νuω × ω, whose normal compo-
nent does not vanish on the surface ∂B of the object. Since
the expression in the square bracket is a spatial energy flux,
it should imply a vanishing flux through the surface. A
corresponding equation can be obtained also for the
interaction energy of potential and vortical flow by dotting
uϕ into Eq. (3.16):

∂tðuϕ · uωÞ þ ∇ ·
��

pω þ 1

2
juωj2 þ uω · uϕ

�
uϕ

þ
�
pϕ þ

1

2
juϕj2

�
uω

�
¼ þuϕ · ðu × ω − ν∇ × ωÞ:

ð3:18Þ

The equal and opposite terms on the right-hand sides of
Eqs. (3.17) and (3.18) clearly represent energy transfer
between rotational and potential flow. Note that the triple
product uϕ · ðu × ωÞ can be rewritten as uϕ · ðuω × ωÞ
using u ¼ uω þ uϕ, so that only self-advection of vorticity
by the rotational motions themselves contributes to transfer.
Because of the cancellation of these two terms, the sum

of the rotational and interaction energies satisfies the
equation

∂t

�
1

2
juωj2 þ uϕ · uω

�
þ ∇ ·

��
pω þ 1

2
juωj2 þ uω · uϕ

�
uþ

�
pϕ þ

1

2
juϕj2

�
uω − νu × ω

�
¼ −νjωj2: ð3:19Þ

Importantly, this combination of energies is conserved for
ν → 0, as long as solutions remain smooth in the limit. We
refer to the space integral ERðtÞ ¼ ρ

R
Ω ½1

2
juωj2 þ uω · uϕ�

as relative kinetic energy, because it corresponds to the total
kinetic energy EðtÞ ¼ ρ

R
Ω

1
2
juj2 of Navier-Stokes solution

u measured relative to the (conserved) kinetic energy
Eϕ ¼ ρ

R
Ω

1
2
juϕj2 of Euler solution uϕ. Of course, this

correspondence is purely formal, since in the body frame
EðtÞ ¼ þ∞ andEϕ ¼ þ∞ separately. It is worth emphasiz-

ing that the relative kinetic energyERðtÞ is sign indefinite and
may take on negative values.
The detailed Josephson-Anderson relation for confined

channel flow that is considered in Sec. II involves the
global balances of kinetic energy, not the local ones. Before
we can derive the analog of that relation for our problem,
we must consider vorticity generation at the body surface
and the precise far-field asymptotics of the rotational
velocity field.
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C. Generation of vorticity at the boundary

In order to make certain that our problem is physically
meaningful, we must consider an issue neglected until now,
namely, the acceleration of the body from rest to constant
velocity. Here it is more natural to consider the body as
moving and the fluid as at rest at infinity. This relative
motion can be accomplished by a translational acceleration
protocol aðtÞ which over some time interval 0 ≤ t ≤ T
takes the body from zero velocity to velocity V, including
the possibility of an impulsive acceleration aðtÞ ¼ VδðtÞ
with T ¼ 0. The Lighthill vorticity source for this situation
is of the form [77]

σ ¼ −n̂ × ½aðtÞ þ ∇p�; ð3:20Þ

where it is assumed that aðtÞ≡ 0 for t > T. It follows that
vorticity is created only tangential to the body surface and,
after the time T, is generated along the surface isobars or
pressure isolines [19]. Here it is appropriate to note that,
because of the stick boundary conditions on the velocity,
n̂ · ω ¼ 0 everywhere on the surface of any nonrotating
body B. Thus, vortex lines on solid surfaces in classical
Newtonian fluids lie, in general, parallel to the surface ∂B.
Vortex lines can terminate only on a solid (nonrotating)
wall at some exceptional points where ω ¼ 0, which are
possible points of boundary-layer separation [19]. This
behavior at walls is an important difference from super-
fluids, where quantized vortex lines can often terminate at a
solid surface and, when they do so, intersect it almost
normally so as to satisfy the no-flow-through condition
[84]. Vortex half rings can in fact be observed standing at
the surface of a body moving through a superfluid (e.g., see
Fig. 2 in Ref. [31]). On the contrary, vorticity is generated
principally parallel to the surface in the classical case, as
closed vortex loops encircling the body.
If the fluid is initially at rest or, more generally, has zero

net vorticity, then this condition is preserved in time:

Z
Ω
ωdV ¼ 0: ð3:21Þ

This result is known as Föppl’s theorem [85], but the
standard proof (e.g., see Ref. [70], p. 74) assumes some
sufficient decay of the vorticity at infinity, which is a priori
unknown in our problem. It is therefore important and
illuminating to give a direct proof based upon Lighthill’s
theory by showing that

d
dt

Z
Ω
ωdV ¼ −

Z
∂B

n̂ × ½aðtÞ þ ∇p�dA ¼ 0: ð3:22Þ

The first term involving the spatially uniform acceleration
aðtÞ easily vanishes due to the elementary result [70]

Z
∂B

n̂dA ¼ 0: ð3:23Þ

The term involving the pressure gradient can be rewritten asZ
∂B

n̂ × ∇pdA ¼
Z
∂B

t̂j∇pjdA; ð3:24Þ

where

t̂ ¼ n̂ ×
∇p
j∇pj ¼

dx
ds

ðp; sÞ

is the unit tangent vector to surface isobars, and xðp; sÞ is a
smooth parametrization of the isobar with pressure value p,
in terms of arc length s along the isobar. Here we appeal to
the Sard theorem of differential topology which implies for
a smooth pressure field pðx; tÞ that, for almost every p, the
connected components of the surface isobar with that p
value are simple closed smooth curves on ∂B [86]. Then,
using the standard resultZ
∂B

δ(pðx; tÞ − p)dA ¼
Z
fx∶pðx;tÞ¼pg

ds
j∇p(xðp; sÞ; t)j

ð3:25Þ

known in mathematics as the coarea formula [87], it follows
thatZ

∂B
n̂ × ∇pdA ¼

Z
∂B

t̂ðp; sÞdpds ¼
Z

dp
Z

ds
dx
ds

¼ 0

since the isobars are closed curves for almost every p value.

D. Far-field velocities and vortex impulse

With the previous results in hand, we now develop
asymptotic formulas for the velocities uωðx; tÞ and uϕðx; tÞ
in the far field or for large r ¼ jxj.
We begin with the rotational velocity field uω. Here we

follow closely an argument of Cantwell for a different
problem of forced jets [88] by considering the vector
potential that appears in the Helmholtz formula (3.12)

ψωðx; tÞ ¼
Z
Ω

ωðx0; tÞ
4πjx − x0j dV

0 þ
Z
∂B

n̂ × uωðx0; tÞ
4πjx − x0j dA0;

ð3:26Þ

so that uω ¼ ∇ × ψω. As in Ref. [88], we make a multipole
expansion using ð1=jx − x0jÞ ¼ ð1=rÞ þ ðx · x0=r3Þ þ � � �
obtaining

ψωðx; tÞ ¼
qωðtÞ
4πr

þ IωðtÞ × x
4πr3

þO

�
1

r3

�
� � � ; ð3:27Þ

JOSEPHSON-ANDERSON RELATION AND THE CLASSICAL … PHYS. REV. X 11, 031054 (2021)

031054-9



where we introduce the total vorticity

qωðtÞ ¼
Z
Ω
ωðx; tÞdV þ

Z
∂B

n̂ × uωðx; tÞdA; ð3:28Þ

including the contribution from the surface vortex sheet and
also the corresponding vortex impulse [21,79]

IωðtÞ ¼
1

2

�Z
Ω
x×ωðx; tÞdV þ

Z
∂B

x× ½n̂× uωðx; tÞ�dA
�
:

ð3:29Þ

We first note thatqωðtÞ≡ 0 so that the “monopole” term in
Eq. (3.27) is zero. Thevolume integral in the definition (3.28)
of qω vanishes by the results of the previous Sec. III C.
Furthermore, by the boundary condition for uω on ∂B,Z
∂B

n̂ × uωðx; tÞdA ¼ −
Z
∂B

n̂ × ∇ϕðx; tÞdA ¼ 0 ð3:30Þ

by precisely the same argument as in Sec. III C.
We thus obtain by a curl of Eq. (3.27) the final result

uωðx; tÞ ∼
jxj→∞

−IωðtÞr2 þ 3½IωðtÞ · x�x
4πr5

; ð3:31Þ

which is a dipole field. Quite intuitively, the vortical wake
behind the body appears at very large distances like a
vortex ring with impulse IωðtÞ. The formula (3.31) can be
simply rewritten in spherical coordinates for polar angle θ
measured from the positive x axis as

uωðx; tÞ ∼
jxj→∞

Iω
4πr3

x̂ −
3Iω cos θ
4πr3

r̂ ð3:32Þ

with Iω ¼ −Iωx̂. The sign here can be simply understood
because the vortical wake behind the body must reduce the
velocity of the potential flow. Alternatively, in the fluid rest
frame, the vortical impulse must be in the direction of
motion of the body.
Asymptotics of the potential-flow velocity can be sim-

ilarly obtained from uϕ ¼ ∇ × ψϕ where

ψϕðx; tÞ ¼
Z
∂B

n̂ × uϕðx0; tÞ
4πjx − x0j dA0: ð3:33Þ

This velocity to leading order is the constant Vx̂ plus a
dipole term similar to Eq. (3.31) but involving the vortex
impulse IϕðtÞ associated with the surface discontinuity.
However, in what follows we need only the leading term, so
that

uϕðx; tÞ ∼
jxj→∞

Vx̂þO

�
1

r3

�
; ð3:34Þ

or equivalently, in terms of the scalar potential

ϕðx; tÞ ∼
jxj→∞

Vr cos θ þO

�
1

r2

�
: ð3:35Þ

E. Global momentum and energy integrals

Using the asymptotic formulas of the preceding section,
we can now study the global integrals of momentum and
kinetic energy for our flow.
The total vortex momentum is defined by

PωðtÞ ¼ ρ

Z
uωðx; tÞdV: ð3:36Þ

With the dipole asymptotics (3.31) for the integrand, this
integral is convergent but only conditionally so. Note that
the vortex momentum is not equal to density times vortex
impulse. In fact, it is well known that

PωðtÞ ¼
2

3
ρIωðtÞ: ð3:37Þ

This result can be shown by an argument of Cantwell [88]
using the representation uω ¼ ∇ × ψω and the identityR
SR
ðx=4πjx − x0jÞdΩ ¼ 1

3
ðx0=RÞ for a sphere SR of radius

R > r0. In Appendix B we give another proof.
Total kinetic energy of the vortical wake is clearly well

defined by the integral

EωðtÞ ¼
1

2
ρ

Z
Ω
juωðx; tÞj2dV; ð3:38Þ

because the square of the dipole field decays asymptotically
as 1=r6. However, the total interaction energy

EintðtÞ ¼ ρ

Z
Ω
uωðx; tÞ · uϕðx; tÞdV ð3:39Þ

is again at most conditionally convergent and, if conver-
gent, might be expected to vanish. As we recall, the Kelvin
minimum-energy theorem is exactly the statement that the
potential and vortical velocity fields are orthogonal and, in
his discussion of a moving body, Lighthill appealed to this
result (see Ref. [19], p. 56). However, he worked in the rest
frame of the fluid, where the Kelvin minimum-energy
theorem indeed holds, but we work in the rest frame of the
body where it does not.
We find instead that

EintðtÞ ¼ PωðtÞ · V: ð3:40Þ

The proof is simple: Using uω · uϕ ¼ ∇ · ðϕuωÞ, we obtain
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EintðtÞ ¼ lim
R→∞

ρ

Z
BRnB

∇ · ðϕuωÞdV

¼ lim
R→∞

ρ

Z
SR

ϕðr̂ · uωÞdA; ð3:41Þ

where BR is the ball of radius R centered at the origin so
that ∂BR ¼ SR. Note that the contribution from the body
surface ∂B vanishes because n̂ · uω ¼ 0 there. Using the
asymptotics Eqs. (3.32) and (3.35) for uω and ϕ give the
integral over solid angle dΩ ¼ sin θdθdφ:

EintðtÞ ¼ lim
R→∞

ρ

Z
SR

VR cos θ

�
−
Iω cos θ
2πR3

�
R2dΩ

¼ −
2

3
ρIωV ¼ 2

3
ρIω · V ¼ Pω · V: ð3:42Þ

We conclude finally that the relative kinetic energy in the
body frame is given by

ERðtÞ ¼ EωðtÞ þ PωðtÞ · V; ð3:43Þ

a result that should be expected by Galilean invariance.
This conclusion will appear very familiar to superfluid
physicists, since a similar result holds for a vortex ring
moving in unbounded space [4,89]. However, in that case
Eint ¼ ρIω · V in our notations [90]; i.e., it is a vortex
impulse which appears rather than a vortex momentum.

F. Global balances of momentum and energy

We can now derive the balance equations for the global
integrals in Sec. III E by integrating the local balance
equations over Ω. Integrating Eq. (3.14) gives the global
momentum balance as

dPω

dt
¼ F; ð3:44Þ

where

F ¼
Z
∂B
ðPωn̂ − 2ηSn̂ÞdA ð3:45Þ

is the total force applied to the fluid by the body. Note that
all contributions from infinity are vanishing because of the
asymptotic decay of the momentum flux as r−3 from (3.32)
and (3.34). This force can be rewritten also as

F ¼
Z
∂B
ðPωn̂þ ηn̂ × ωÞdA ð3:46Þ

since the viscous Newtonian stress vector at the wall τw ¼
−2ηSn̂ is related to the wall vorticity ωw by τw ¼ ηωw × n̂
[19,70]. An important consequence of Eq. (3.44) is that the
total momentum of the vortical wake increases

monotonically in time. In particular, there can be no global
statistical steady state for this flow.
Integrating Eq. (3.18) gives the global balance of the

interaction energy as

dEint

dt
¼ þρ

Z
Ω
uϕ · ðu × ω − ν∇ × ωÞdV; ð3:47Þ

where the decay of the energy flux asymptotically as r−3

implies no contribution from infinity, and the no-flow-
through condition implies no contribution from the body
surface. On the other hand, directly differentiating expres-
sion (3.42) for interaction energy and using the global
momentum balance (3.44) gives [91]

dEint

dt
¼ F · V: ð3:48Þ

Although F must fluctuate in time, the dot product above
will generally be negative, as the force applied by the body
opposes the fluid flow. Thus, drag appears as loss of energy
of the potential flow due to negative work by the body on
the fluid. Note that EintðtÞ is monotonically decreasing, but
the energy EintðtÞ þ Eϕ does not decrease, of course,
because there is an infinite reservoir of kinetic energy in
the potential flow. The energy is transferred to the vortical
flow, as can be seen by integrating Eq. (3.17) in like fashion
over Ω to give

dEω

dt
¼ −ρ

Z
Ω
uϕ · ðu × ω − ν∇ × ωÞdV −

Z
Ω
ηjωj2dV:

ð3:49Þ

The energy transferred to the rotational fluid motions is
ultimately dissipated by viscosity.
The combination of Eqs. (3.47) and (3.48) yields the

most fundamental result of our paper, the classical version
of the detailed Josephson-Anderson relation for flow past a
solid body written in various equivalent forms as

−F · V ¼ −ρ
Z
Ω
uϕ · ðu × ω − ν∇ × ωÞdV

¼ −
Z

dJ
Z

ðu × ω − ν∇ × ωÞ · dl

¼ −
1

2

Z
dJ

Z
ϵijkΣijdlk; ð3:50Þ

where the second two expressions follow the notations in
Sec. II. The relation (3.50) expresses an instantaneous
balance between power injected by the drag force F acting
back on the fluid and the vorticity flux crossing the mass
current along potential-flow lines. This result should be
compared with the detailed Josephson-Anderson relation
(2.13) derived by Huggins, which expresses an instanta-
neous equality between the rate of work done on the ideal
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potential flow by the total pressure h0 and the vorticity flux
across the mass current, which thereby transfers that energy
to vortical motions, exactly as here.
Although the momentum of the vortical motions is

constantly increasing, Eq. (3.49) makes it plausible that
the rotational flow energy should have a long-time steady-
state limit, sufficiently long after the initial acceleration of
the body when the potential-flow solution uϕ becomes time
independent. In fact, it is generally expected that the entire
flow within any fixed distance of the body, after a
sufficiently long time that depends upon the distance, shall
reach a steady state whose character depends upon the
Reynolds number, with a deterministic stationary flow at
low Reynolds numbers, then periodic flow, and finally a
chaotic flow with a long-time ergodic behavior at suffi-
ciently high Reynolds number. Of course, there may be
multiple distinct stable regimes, each attracting some
domain of initial conditions. We refer to these hypothesized
quasisteady regimes in some vicinity of the body as the
local steady states. At any finite time, however, one can
observe at some far distance downstream a time-dependent
flow with increasing momentum.
Denoting the suitable time average for such a local

steady regime as h·i and assuming that total vortical energy
does in fact achieve a long-time mean value, we can then
average Eqs. (3.49) and (3.50) to obtain a steady-state
version of the Josephson-Anderson relation as

−hFi · V ≐ −ρ
Z
Ω0
huϕ · ðu × ω − ν∇ × ωÞidV

≐ η

Z
Ω0
hjωj2idV; ð3:51Þ

where Ω0 ⊂ Ω has here been chosen large enough so that
the space integrals over Ω0 and Ω agree to any desired
precision [92] denoted by “≐,” and then time averages are
taken over a long enough interval to obtain a steady state
within the region Ω0. The relation (3.51) expresses equality
in the mean of three distinct quantities: the power input by
the drag force, the energy transfer from potential to rota-
tional motions by vortex motion, and the viscous energy
dissipation. The third expression is clearly non-negative,
expressing the time irreversibility of the viscous Navier-
Stokes dynamics. It follows that the drag force must
generally oppose the free-stream velocity, just as expected.
The middle expression in Eq. (3.51) involves the vector
quantity

fv ¼ ρðu × ω − ν∇ × ωÞ; ð3:52Þ

which is sometimes called the vortex force, and, intuitively,
drag is associated with the vortex force opposing the
potential flow. An even more useful expression is

−hFi · V ¼ −
1

2

Z
dJ

Z
ϵijkhΣijidlk; ð3:53Þ

which represents mean drag in terms of vorticity flux
crossing the potential mass current. In a local steady state,
mean vorticity flux further satisfies the relation dual to
Eq. (2.6)

hΣiji ¼ ϵijk∂khhi; ð3:54Þ

implying also that ∂jhΣiji ¼ 0. Together, the two relations
(3.53) and (3.54) very strongly constrain the vortex
dynamics and statistics that contribute to the mean drag.
The detailed relation (3.50) holds, of course, even before

a local steady regime is achieved (but after the period of
initial acceleration). One simple general deduction can be
made from this principle by substituting the equation of
motion (3.16) into the energy-transfer term to obtain [93]

−F · V ¼ −ρ
Z
Ω
uϕ · ðu × ω − ν∇ × ωÞdV

¼ −ρ
Z
Ω
uϕ · ð _uω þ ∇h0ÞdV ð3:55Þ

with h0 ¼ pþ 1
2
juj2 þ _ϕ as in Eq. (2.13). By applying the

same arguments as those used to evaluate
R
Ω uϕ · uωdV in

Sec. III E,

−ρ
Z
Ω
uϕ · _uωdV ¼ − _PωðtÞ · V ¼ −F · V; ð3:56Þ

the consequence is that

ρ

Z
Ω
uϕ · ∇h0dV ¼

Z
dJðΔh0Þ ¼ 0 ð3:57Þ

with the quantity

Δh0 ¼
Z

∇h0 · dl¼ h0ðl¼þ∞Þ− h0ðl¼ −∞Þ ð3:58Þ

given as an integral along each streamline and representing
the drop in the total pressure along this entire line. It seems
certain that Δh0 ≤ 0, since the presence of the body should
cause a pressure drop and a reduced streamwisevelocity in its
wake. The conclusion from Eq. (3.57) is that Δh0 ¼ 0 along
all of these lines, so that the total pressure recovers com-
pletely fromwhatever drop it experienced by the presence of
the body. This result underlines the great difference from
channel flow, where the detailed Josephson-Anderson rela-
tion (2.13) ofHuggins involves only the total pressure head in
the channel.
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IV. FLOW PAST A SPHERE

To make the preceding discussion more concrete, we
consider in this section the special case of flow past a
sphere. The rich phenomenology of this flow has been the
subject of a recent review [94], which classifies the flow
into eight regimes as a function of increasing Reynolds
number: (i) the axisymmetric wake regime, (ii) the planar
symmetric wake regime with a counterrotating pair of
trailing streamwise vortices, (iii) the shedding regime with
alternating hairpin vortices, (iv) a regime with separating
vortex tubes due to Kelvin-Helmholtz instability of the
separated boundary layer, (v) the subcritical regime where
the point of instability moves upstream closer to the sphere,
(vi) the critical regime of “drag crisis” with reattachment of
the boundary layer and formation of a laminar separation
bubble, (vii) the supercritical regime in which the bubble
shrinks or disappears, and finally (viii) the transcritical
regime, which is an apparently asymptotic state with
constant mean drag. The detailed Josephson-Anderson
relation (3.50) holds in all of these regimes and reveals
that, despite the very substantial differences in flow physics
between the different regimes, the mechanism of drag in
terms of vortex dynamics is intrinsically the same for all
of them.

A. Josephson-Anderson relation for a sphere

We give here the general relation (3.50) a concrete form
for flow around a sphere of radius a. The first important
ingredient of that relation is the inviscid flow solution uϕ.
This is well known ([69], Sec. VI. 8) to be given in
spherical coordinates ðr; θ;φÞ by the scalar potential

ϕ ¼ V
�
rþ a3

2r2

�
cos θ; ð4:1Þ

where, once again, the zenith for measurement of the polar
angle θ is the positive streamwise direction. This formula
implies the potential-flow velocity

uϕr ¼ V

�
1 −

a3

r3

�
cos θ; uϕθ ¼ −V

�
1þ a3

2r3

�
sin θ;

ð4:2Þ

whose streamlines are plotted in Fig. 4 for an axial plane at
fixed azimuthal angle φ ¼ 0. It is even more useful to
represent this flow by the Stokes stream function ([69],
Sec. II. 2) given both in spherical coordinates and in
cylindrical coordinates ðσ;φ; xÞ as

ψ ¼ 1

2
Vr2sin2θ

�
1 −

a3

r3

�

¼ 1

2
Vσ2

�
1 −

a3

ðσ2 þ x2Þ3=2
�

ð4:3Þ

([69], Sec. VI. 8) so that

uϕx ¼
1

σ

∂ψ
∂σ ; uϕσ ¼ −

1

σ

∂ψ
∂x : ð4:4Þ

Here we follow the fluid mechanics literature in denoting
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
to avoid confusion with mass density ρ.

Note that streamlines are uniquely identified by the values
of stream function ψ and azimuthal angle φ.
Although not needed for the Josephson-Anderson

relation, it is worth recalling that the pressure pϕ for the
ideal Euler solution uϕ follows from the Bernoulli equa-
tion (3.6) as

pϕ¼p∞þ1

4
V2

�
1−

5a3

4r3

�
a3

r3
þ3

4
V2

�
1−

a3

4r3

�
a3

r3
cosð2θÞ;

ð4:5Þ

and, in particular, on the surface of the sphere:

pϕða; θÞ ¼ p∞ −
1

6
V2 þ 9

16
V2 cosð2θÞ: ð4:6Þ

This ideal pressure distribution is perfectly symmetrical,with
maximum value equal top∞ þ 1

2
V2, the stagnation pressure,

at θ ¼ 0; π and minimum p∞ − 1
16
V2 at θ ¼ π=2. This

symmetry of pϕ around θ ¼ π=2 explains, of course, the
vanishing drag for ideal flow past a sphere.
We can now use the above results to develop a more

concrete expression for the Josephson-Anderson relation
(3.50) in the flow around a sphere. First, it is useful to recall
that the Stokes stream function is defined for any

FIG. 4. Streamlines of the ideal flow around a sphere.
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axisymmetric flow u so that dψdφ ¼ u · dA along the
streamline labeled by ψ, φ, (see Ref. [69], Sec. II. 2). Thus,
the element of mass flux appearing in Eq. (3.50) is

dJ ¼ ρuϕ · dA ¼ ρdψdφ: ð4:7Þ

It is also straightforward to obtain from Eq. (4.3) an explicit
parametrization of the streamlines with fixed ψ in the form
x ¼ �xðσ;ψÞ for σminðψÞ < σ < σmaxðψÞ and with azimu-
thal angle φ constant independent of σ. However, for the
qualitative arguments that we make in the next section, the
plots of the streamlines in Fig. 4 are more useful than these
analytical expressions.
We shall furthermore require in the next section a

projected version of the vorticity conservation equa-
tion (2.5) for the azimuthal vorticity ωφ, which we see is
the most crucial component of vorticity for origin of drag.
Here we follow a general idea of Huggins [16], who
observed that one can obtain a balance in any plane for
the out-of-plane vorticity ωn by dotting Eq. (2.5) on the
right with the unit vector N̂ normal to the plane. The
application of this idea to ωφ involves one subtlety,
however: The sets of constant φ are half planes terminating
on the x axis, not full planes. Thus, dotting Eq. (2.5) with
the unit vector N̂ ¼ bφ for one such half plane at constant φ
yields a planar conservation law

∂tωn þ ∇ · jn ¼ 0 ð4:8Þ

in the entire plane normal to N̂, with

ωn ¼ ω · N̂; jn ¼ Σ · N̂: ð4:9Þ

Note that jnk ¼ ϵknlðu × ω − ν∇ × ωÞl lies in the plane.
However, only the upper part of this plane corresponds to
azimuthal angle φ, whereas the lower part corresponds
instead to the half plane with azimuthal angle φþ π and
whose normal vector is bφ ¼ −N̂. Thus, only in the upper
half plane does ωn ¼ ωφ, whereas in the lower half plane
ωn ¼ −ωφ. We see that the conservation laws (4.8), which
hold separately for each plane through the x axis, are very
useful for elucidating the physics.

B. Physical consequences

We now exploit the Josephson-Anderson relation (3.50)
and its time-averaged form Eq. (3.53) in order to develop an
exact but qualitative picture of the origin of drag in terms of
vortex dynamics. Although our picture has the nature of a
“cartoon” which ignores many complex details of the flow
in its different regimes (i)–(viii), we argue that it describes
the essence of the phenomenon. The concrete predictions
that we make should be verifiable empirically in each
regime, realized somewhat differently by the specific flow

features that are characteristic of that regime which deter-
mine the drag quantitatively.
An important general deduction from Eq. (3.50) is that

vorticity ωkuϕ does not contribute directly to drag, and,
furthermore, that vorticity flux in the directions of uϕ or ω
do not contribute. As can be seen from Fig. 4, uϕ ∝ x̂ to a
good approximation already at distances about one radius
away from the sphere. Thus, we see that, throughout most
of the flow, streamwise vorticity ωx makes no direct
contribution to the drag. Although streamwise vorticity
appears in the wake, e.g., in the pair of trailing vortices in
regime (ii), these features do not contribute anything to
Eq. (3.50). On the other hand, at the surface of the sphere
where all flow vorticity is generated and in its close vicinity,
uϕ ∝ θ̂ so that it is the polar vorticity ωθ which does not
contribute to drag in that region. Since all of the vorticity on
the sphere is parallel to its surface, it follows that the
azimuthal vorticity ωφ plays the crucial role and, in
particular, its viscous flux Σrφ radially outward. This
assertion is our first essential conclusion about the origin
of drag in the flow past a sphere.
The next implication of Eq. (3.50) is that outward flux of

negative azimuthal vorticity ωφ < 0 increases drag,
whereas flux of positive azimuthal vorticity ωφ > 0 in fact

FIG. 5. Schematic of azimuthal vorticity generation on the
surface of the sphere. Following the convention of Huggins [16],
we use white circles to denote vorticity out of the plane (ωn > 0)
and black circles to denote vorticity into the plane (ωn < 0). The
mean normal (azimuthal) vorticity in the upper half plane U is
negative and the mean normal (antiazimuthal) vorticity in the
lower half plane L is positive, implying a pole-to-pole asymmetry
in the pressure distribution on the surface S of the sphere. The
pressure drop along the surface of the sphere from F to B is
exactly compensated by the pressure rise from B to infinity along
the direction of the positive streamwise axis X.
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decreases drag. Since the mean power consumption by
drag can only be positive [see Eq. (3.51)], it follows that
outward flux of negative azimuthal vorticity must be larger
in magnitude. In other words, there must be an asymmetry
in sign of the azimuthal vorticity on the sphere, with more
area and/or stronger magnitudes where ωφ < 0 and less
areas or magnitudes for ωφ > 0. This situation is illustrated
in Fig. 5. According to Lighthill’s theory [19], the rate of
generation of ωφ is exactly σφ ¼ ð1=aÞð∂p=∂θÞ, so that
negative azimuthal vorticity is generated by negative or
“favorable” pressure gradient, and positive vorticity by
positive or “adverse” pressure gradient. We thus conclude
that there must be greater area or greater magnitudes of
favorable pressure gradient near the front of the sphere than
the area or magnitudes of adverse pressure gradient toward
the back. This results in a pressure asymmetry unlike that
for ideal flow, with the base pressure pB behind the sphere
not fully recovering from its drop in the front, thus
remaining lower than the stagnation pressure pF ¼ p∞ þ
1
2
V2 in the front. Along the sphere surface S,

pB − pF ¼ pða; 0Þ − pða; πÞ ¼
Z

0

π

∂p
∂θ dθ < 0: ð4:10Þ

Of course, these conclusions are all in agreement with
common observations, but it is now seen how they are
required for the generation of drag by vortex dynamics.
The picture in Fig. 5 for an axial plane corresponds in

three dimensions to generation of azimuthal vortex loops or
rings on the surface of the sphere. Those in the front of the
sphere have ωφ < 0, while those toward the rear have
mostly ωφ > 0. As these rings flow radially outward from
the surface, they encircle greater amounts of the potential
mass flux J, with the negative-ωφ rings removing propor-
tionate energy from the potential flow and positive-ωφ rings
returning that energy. Since ωφ < 0 predominates, the net
effect is a transfer of kinetic energy from potential to
vortical motions, where it is ultimately dissipated by
viscosity. In the axisymmetric wake regime (i), this picture
is exact, because all vorticity is azimuthal. In higher-Re
regimes there will also be some polar vorticity ωθ generated
on the sphere by azimuthal pressure gradients as
σθ ¼ −ð1=aÞð∂p=∂φÞ, but these components and their
radial flux from the sphere do not contribute to the drag.
See Fig. 6 for a rough illustration of the mechanism. It
should be noted that this entire picture developed on the
basis of the relation (3.50) is consistent with the direct
formula (3.46) for the drag force F, since the asymmetry in
pressure P and the negative azimuthal vorticity ω on the
surface of the sphere result in pressure and viscous forces
both opposing the fluid velocity V.
As the vortex loops grow, they enter the region where

uϕ ∝ x̂ and then azimuthal vorticity ωφ is no longer the
only relevant component. Indeed, referring now to the

cylindrical coordinate system, axial vorticity ωσ appears in
this region through the tilting of azimuthal vorticity by the
shear in the wake, e.g., as alternating hairpin vortices
observed in the shedding regime (iii). It is easy to check that
the flux Σφσ due to opposite azimuthal motion of the two
legs of growing hairpin vortices, one with ωσ > 0 and the
other with ωσ < 0, contributes also to drag through the
relation (3.50) in this spatial region, in addition to the flux
Σσφ of negative azimuthal vorticity axially outward. In fact,
these two effects are basically the same because of the
antisymmetry Σφσ ¼ −Σσφ and both correspond to growth
of the tilted vortex rings, which encompass an increasing
amount of mass flux J and gain a proportionate amount of
energy from the potential flow. This process is the essential
mechanism of drag in terms of vortex dynamics for the flow
around a sphere as already illustrated in Fig. 6.
Conservation of azimuthal vorticity has one very impor-

tant additional implication for this process. We show at the
end of Sec. III F that Δh0 ¼ 0 along each streamline of the
potential flow. Since now _ϕ ¼ 0, h0 ¼ h and hðl ¼
�∞Þ ¼ h∞ ¼ p∞ þ 1

2
V2 at each limit of the streamline.

Notice that this value is the same as the stagnation pressure
at the front of the sphere hF ¼ pF ¼ p∞ þ 1

2
V2 and also

that hB ¼ pB at the base point behind the sphere, since the
fluid velocity vanishes everywhere on the surface. We thus
see that the decrease of h on the surface S of the sphere

Z
0

π

∂h
∂θ ða; θÞdθ ¼ hB − hF < 0 ð4:11Þ

is exactly equal and opposite to the increase of h along the
streamwise axis X from the base of the sphere to infinity:

Z
∞

a

∂h
∂x ð0; xÞdx ¼ h∞ − hB > 0: ð4:12Þ

FIG. 6. Rough illustration of the drag mechanism by generation
and outward flux of vortex loops with negative azimuthal
vorticity. The rings are generated by pressure drop along the
surface. As the rings expand outward, they enclose greater mass
flux J and subtract proportionate energy from the potential flow.
Although the rings initially loop around the streamwise axis X,
they drift across in time. This implies a flux of azimuthal vorticity
across X and allows the pressure to recover far downstream from
its drop around the sphere.
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See Fig. 5. Since hΣrφi ¼ ð1=aÞð∂hhi=∂θÞ on S and
hΣσφi ¼ ð∂hhi=∂xÞ on X, it follows that, on average, the
net negative azimuthal vorticity generated on the surface of
the sphere is exactly canceled by flux of opposite-signed
vorticity across the x axis. This fact was previously noted
by Brown and Roshko [95] for flow around a cylinder and
by Terrington et al. [96] for flow around a sphere. This
exact balance is what permits a steady state to exist with a
mean negative value hωφi < 0 in the axial half planes for
each fixed value of φ. The precise origin of the flux across
the x axis is still debated, but it is most likely due to lateral
motion of shed vortex rings, which initially loop around the
x axis but drift across the x axis to become unlinked from it
as they advect downstream. See Fig. 6. Although this is a
“cartoon picture” assuming simple closed vortex rings, it
presumably has an exact counterpart in the actual vortex
motions, because solenoidality requires a pairing of the
points with ωφ < 0 on opposite sides of the x axis and both
viscous and turbulent diffusion will tend to mix those
points from one side to the other.
In this section, we attempt to give a clear and intuitive

description of the origin of drag in terms of a schematic
picture of the vortex motions. Although qualitative, this
picture makes specific predictions in terms of the signs of
the vorticity components ωj and their fluxes Σij, which can
be checked empirically by measuring these quantities in
numerical simulation or experiment and evaluating their
contribution to the drag through the relation (3.50). We note
that the numerical study [96] has already used Huggins’s
vorticity flux (2.3) to illuminate other aspects of the vortex
dynamics in the wake behind a sphere, such as tilting of the
azimuthal vorticity in the streamwise direction [97].

C. Superfluid comparisons

The illustration that we present in the previous section in
order to interpret the exact Josphson-Anderson relation
(3.50) should be more literally correct for a superfluid,
where vorticity is quantized and vortex lines are discrete
objects whose motion is objectively defined. In fact, the
most fundamental differences between our theoretical
results and those for superfluids arise not from the
differences between classical and quantum fluids, but
instead from the differences between incompressible and
compressible. In superfluids, there are generally substantial
compressibility effects due to emission of phonons that
propagate at the finite speed of sound. Of course, the
Josephson-Anderson relation arose in the study of super-
fluids, and its application there to understanding drag and
critical velocities is well established. It is therefore worth
reviewing briefly the existing literature in order to point out
both the similarities and the differences from classical
incompressible fluids.
The pioneer work concerning drag acting on bodies

moving through a superfluid is that of Frisch et al. [27],
who adopted the zero-temperature Gross-Pitaevskii model

to study numerically the motion of a disk at velocity V
through a 2D superfluid. We remark that it is straightfor-
ward to extend our own analysis for incompressible
classical fluids to 2D. Already showing the important
effects of compressibility, the authors of Ref. [27] identified
the critical velocity Vc for appearance of drag to be that for
which the local velocity u on the surface of the disk
exceeds the sound speed cs. At this velocity Vc ≐ 0.44cs,
quantized vortices are nucleated and emitted as a wake
behind the disk. Although compressibility plays a crucial
role in their generation, the vortices themselves are incom-
pressible excitations in the superfluid. The picture proposed
in Ref. [27] has been further developed in many subsequent
works on this same problem [28–30,32–36]. In particular,
we note that the generation of the vortices has been verified
to occur by the 2π phase-slip mechanism [28] and their
shedding occurs with the Josephson frequency correspond-
ing to the difference in the generalized chemical potential
μT ¼ gnþ 1

2
mu2 that develops between the exterior flow

and the wake behind the disk with low density n and low
speed u [29]. Thus, at least for V < cs, there is great
similarity to the theory that we develop for classical
incompressible fluids. Of course, for supersonic motions
with V > cs, new compressible effects can be observed in
superfluids, such as drag by phonon radiation and standing
bow waves in front of the disk [30,32], which have no
parallel in the incompressible theory developed here.
Studies of superfluid drag have since been extended to

3D, with the superfluid modeled again by Gross-Pitaevskii
and the moving object by a suitable time-dependent
potential [31,37]. The object was taken in Ref. [31] to
be spherical and subject to constant force F, whereas
Ref. [37] considered more general ellipsoidal bodies and
moving at constant velocity V. The picture emerging from
these 3D simulation studies is even more strikingly similar
to the one that we derive for classical fluids. In both studies,
quantized vortex rings are excited at the surface of the
object when it reaches the critical speed Vc, with the
vorticity oriented in the negative azimuthal direction
(according to our coordinate conventions). In the case of
the body moving at constant speed studied in Ref. [37], the
ring vortices are shed into the wake where they grow,
extracting energy from the potential flow, and also drift
cross-stream so that the asymmetry in the vortex polarity is
relaxed far downstream. The observed simulation results
are very close to our sketch in Fig. 6. The case with constant
applied force F studied in Ref. [31] shows a bit more
complex behavior, because the body decelerates when the
vortex ring is emitted. At lower forcing, the quantized
vortex ring reattaches to the spherical body and remains
pinned there as an arch, legs perpendicular to the surface,
even as it continues to grow and expand outward. This
regime has no strict classical analog, although it distantly
resembles the reattachment of the separating laminar
boundary layer observed in the drag crisis of the classical

GREGORY L. EYINK PHYS. REV. X 11, 031054 (2021)

031054-16



regime (vi). At higher forcing, however, the vortex rings
completely detach and are shed in the wake, again very
similar to our Fig. 6.
Somewhat ironically, the detailed Josephson-Anderson

relation was derived by Huggins [10] assuming flow
incompressibility, and we are aware of no full extension
to the Gross-Pitaevskii model of a superfluid. The original
Josephson-Anderson phase relation (1.1) is, of course,
directly embodied in the Gross-Pitaevskii equation (with
an additional “quantum pressure” term), but this implies no
direct connection of vortex motion with energy dissipation.
Thus, based on our results in the present paper, we currently
have a better understanding of how energy dissipation is
associated with vorticity flux for a classical incompressible
fluid than we do for quantum superfluids, where the
Josephson-Anderson relation originated.

V. WHY IS IT IMPORTANT?

To briefly summarize our results in this paper, we derive
the detailed Josephson-Anderson relation (3.50) for incom-
pressible fluid flow around a finite solid body, relating drag
and energy dissipation to vorticity flux and implying a
time-averaged version of Eq. (3.51) valid for the local
steady states of the fluid wake. We furthermore discuss in
detail the origins of drag in terms of vortex motion for the
concrete example of flow past a sphere, obtaining numer-
ous predictions that can be checked empirically. But why
are these results important?
We believe first of all that the Josephson-Anderson

relation is important because of the theoretical unity that
it brings to our understanding of drag for both quantum and
classical fluid systems, across all Reynolds-number ranges
of the latter case. The relation clearly identifies what is
essential for drag in the vortex dynamics and statistics,
bypassing all details of secondary importance. In the
classical case, these “details” include fascinating phenom-
ena such as boundary-layer separation, formation of
streamwise vortices by tilting, transition to turbulence first
in the wake and then in the boundary layer, etc. All such
details are, of course, crucial in order to determine the drag
quantitatively, but only insofar as they modify the primary
process: flux of vorticity across the potential mass flux. The
precise vortex dynamics and statistics which contribute to
the Josephson-Anderson relation must be explained in any
quantitative theory of drag.
In addition to the conceptual unification provided by the

theory, it also opens up several important new directions of
research, which we discuss now in turn.

A. D’Alembert paradox and Onsager anomaly

The relation (3.50) in particular sheds new light on the
d’Alembert paradox [24,26] and opens up the possibility of
a novel analysis that relates it directly with Onsager’s
theory. One crucial observation is that the new potential-

vortical formulation (3.14) of incompressible Navier-
Stokes is a local conservation equation for ρuω, the density
of “vortex momentum,” and it thus has a weak interpre-
tation. We may therefore apply in this formulation the
recent techniques to derive Onsager’s theory for wall-
bounded flows [98–102], obtaining necessary conditions
for nonvanishing drag and dissipation in the infinite-
Reynolds-number limit. The relevant limiting Euler solu-
tions must obviously describe rotational flow very distinct
from the smooth potential-flow solution. The local energy
balances (3.17) and (3.18) make sense also in a weak
interpretation and, in the infinite-Re limit, the viscous
dissipation appearing in Eq. (3.17) will yield a “dissipative
anomaly” like that appearing in the work of Duchon and
Robert for periodic domains [103].
The energy-transfer term in Eqs. (3.17) and (3.18) may,

however, have a priori no limit because the pointwise
product uω × ω has no clear meaning when uω and ω for
the limiting Euler solution are merely distributions.
Fortunately, this term can be rewritten as a space gradient
using the familiar vector calculus identity

uω × ω ¼ −∇ ·

�
uωuω −

1

2
juωj2I

�
; ð5:1Þ

and this is a well-defined distribution even if uω is only
square integrable. Because the potential-flow solution uϕ is
smooth, this observation allows us to rewrite the transfer
term T in the Josephson-Anderson relation (3.50) as

T ¼ −ρ
Z
Ω
uϕ · ðu × ω − ν∇ × ωÞdV

¼ −ρ
Z
Ω
∇uϕ∶uωuωdV þ

Z
∂Ω

uϕ · τwdA; ð5:2Þ

and, in this form, the relation can be valid even for the
limiting weak solutions of Euler equations. See Ref. [104],
where it is shown also that the surface contribution from the
viscous wall stress τw becomes negligible under specific
assumptions in the high-Re limit. It is very natural that drag
for the limiting Euler solution should be connected with
vorticity flux since, as emphasized by Morton [77], gen-
eration of vorticity at the wall by tangential pressure
gradients is a purely inviscid process.
The connection between the Josephson-Anderson rela-

tion (3.50) and the Onsager anomaly for incompressible
fluid turbulence [40–42] can, in turn, illuminate the differ-
ent wall conditions that are experimentally required for
observing anomalous energy dissipation in open exterior
flows versus those in closed interior flows [48]. In
particular, the requirement for wall roughness in the latter
class of flows (pipe flows, Taylor-Couette, etc.) needs to be
explained. The original Onsager theorem does not shed any
light on this puzzle, but simply implies that anomalous
dissipation (when it occurs) requires a Hölder singularity of
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velocity with exponent ≤ 1=3. An important clue, however,
arises from the empirical observation in simulations [105]
and experiments [66,67] that the flow around individual
roughness elements exhibits the same characteristic fea-
tures seen in flow around bluff bodies such as spheres or
cylinders, in particular, form drag and separating boundary
layers. The term “form drag” in fluid mechanics describes
the contribution to the drag force, or force component in the
direction of the flow V ¼ Vx̂, which arises in Eq. (3.46)
due to the asymmetric pressure distribution P [106] on the
body

Fform
x ¼

Z
∂B

Pn̂xdA: ð5:3Þ

In the limit of high Reynolds number, the drag from viscous
wall stress slowly vanishes, and the form drag on the
roughness elements becomes dominant [105,107]. Of
course, it is well known that the drag in wake flows past
bluff bodies arises also in the high-Re limit mainly from
form drag [19,46,95]. On the contrary, the flows that we
describe as “closed, interior” could be characterized more
accurately as those whose wall geometry does not permit
form drag due to the fact that pressure forces act only
perpendicular to the wall. In support of this view, we note
that developing boundary layers over flat plates are only
half-confined, but they permit as well no form drag when
the wall is smooth and they are well known to exhibit the
same dichotomy as do “internal flows” between vanishing
dissipation for smooth walls and anomalous dissipation for
rough walls [108].
To reiterate, the only laboratory turbulent flows which

exhibit a clear signature of a dissipative anomaly are those
with nonvanishing form drag [Eq. (5.3)] and for which the
dissipative anomaly is described by the Josephson-
Anderson relation (3.50) with vorticity flux from the
boundary due to tangential pressure gradients. We know
of no counterexample to this general rule [109]. It is
therefore consistent with available experimental data to
hypothesize that solid walls with form drag and vorticity
flux are required to obtain anomalous energy dissipation for
3D incompressible fluids. A possible explanation is that the
Hölder singularities required for anomalous dissipation by
Onsager’s theorem occur for incompressible fluids only in
the presence of solid walls. For example, it might be that
finite-time incompressible Euler singularities occur only in
the presence of walls. However, the best evidence for such
Euler singularities is found in simulations in a circular
cylindrical domain with smooth walls [110,111], so that
this idea does not explain the observed difference between
hydraulically smooth and rough walls. A more plausible
explanation is that the required singularities do not arise
from inviscid Euler dynamics at all, but instead originate by
viscous dynamics from thin vortex sheets that are shed into
the flow by separating boundary layers which become

singular only in the limit Re → ∞. In fact, such separating
boundary layers are well known to occur in wake flows
behind solid bodies [19,95] and are also observed in the
wakes behind small roughness elements in a turbulent
boundary layer, both by simulation [105] and by experi-
ment [66,67].
The obvious objection to our argument is the strong

evidence for anomalous energy dissipation arising from
numerical simulations of forced three-dimensional incom-
pressible fluid turbulence in periodic domains [112,113],
where there are no walls at all. However, it is a standard
practice in such numerical studies to initialize the simu-
lation at high Re in a Re-dependent manner, as uReð; 0Þ ¼
uRe0 ð; T 0Þ by using the final state at time T 0 of a smaller
Reynolds-number Re0 < Re simulation performed at
lower resolution interpolated onto the finer grid of the
Re simulation. See Ref. [113], p. L21. This practice of
“nested” initialization means that initial conditions uReð; 0Þ
have Kolmogorov-type spectra over increasing ranges of
scales as Re increases and thus do not correspond to
uniformly smooth initial data. Essentially, the numerical
simulations are begun from initial conditions that have
built-in quasisingularities of the type that would need to be
injected by the walls in real-world incompressible turbulent
flows. Therefore, current numerical simulations [112,113]
do not resolve the issue. To provide definitive evidence one
way or the other, numerical simulations must be carried out
with smooth initial data fixed independent of Re and then
evolved over a fixed time interval at a sequence of
Reynolds numbers.

B. New avenues of empirical investigation

Of more immediate importance for practical applications
is the new insight that the Josephson-Anderson relation
(3.50) provides on techniques for drag reduction. As
discussed previously [16,22], a drag problem occurs not
only in turbulent flow at high Reynolds number but also in
high-temperature superconductors because, above a critical
electric current, quantized magnetic flux lines are nucleated
which migrate cross-current and create a voltage drop and
effective resistance [9,13]. The technological solution that
has been found is to introduce some sort of bulk disorder to
pin the quantized lines so that they are not free to cross the
current, permitting resistanceless conduction up to higher
values of electric current [13,14]. It might be thought that
vortices cannot be so easily “pinned” in a classical fluid
with smoothly distributed vorticity, but, in fact, the
Josephson-Anderson relation (3.50) tells us that any
mechanism which reduces drag must somehow decrease
vorticity flux across the potential mass current. This
includes mechanisms such as drag reduction by polymer
additives or the Toms effect [114,115], whose efficacy is
well documented but whose detailed physical explanation
is still debated. Likewise, anything that enhances drag, such
as surface roughness, must increase vorticity flux across the
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potential flow. The best analogy is not with superconduc-
tors but instead with neutral superfluids, where surface
roughness may likewise increase vortex shedding [116] and
interactions of quantized vortices with solid surfaces have
long been recognized to play a crucial role in determining
critical velocities [117–120].
We argue that empirical investigation of the vorticity flux

will provide new clues into the underlying mechanisms of
reduced and enhanced drag. Although it has long been
supposed that drag must be somehow related to boundary-
layer vorticity dynamics, such as separating boundary layers,
a precise quantitative connection has been lacking. The
Josephson-Anderson formula (3.50) provides an exact rela-
tion, which allows the vorticity dynamics underlying drag to
be fully explored empirically. The two components of the
relation (3.50) are nowboth available. The inviscid potential-
flow solutions can be obtained either analytically by poten-
tial-flow theory or by long-established numerical methods
[121,122]. The other ingredient, Huggins’s vorticity-flux
tensor (2.3), can be calculated as well in numerical simu-
lations [95,96] but, furthermore, can be measured even in
laboratory experiments of complex turbulent flows. Modern
particle imaging velocimetry techniques allow recon-
struction of the full 3D flow field, including the vorticity
field and its gradients [123]. As discussed already in the
Introduction, a version of these methods has recently been
applied to resolve the detailed flow features around individ-
ual roughness elements of scale 1 mm in a turbulent inner
layer [65–67]. In conjunction with such experimental data,
our formula (3.50) can fully elucidate the origin of the
increased drag. Likewise in drag-reduced flows, e.g., with
polymer additives, the changes in the vorticity dynamics that
lead to smaller drag can be identified. Understanding the
detailed physicalmechanismwill allow such techniques to be
optimized and adapted to new circumstances.

C. New theoretical questions

Granted that the detailed Josephson-Anderson relation
(3.50) has important implications, it then becomes inter-
esting to explore the full range of its validity. Although
bodies of finite extent are most realistic, it should be
illuminating to generalize the relation to more idealized
geometries such as flow past cylinders and semi-infinite
plates. Validity of the relation for compressible flow would
greatly widen the range of applications, and we believe that
this could be possible, especially for barotropic models
where smooth Euler solutions satisfy a Kelvin circulation
theorem and potential-flow conditions are preserved in
time. Because of the simplicity of its derivation [16,21,22],
the connection between vorticity flux and force balance
must be quite general. It is possible that detailed relations of
the form of Eqs. (2.13) and (3.50) which relate vorticity
flux to energy dissipation have also greater generality than
just simple fluids. For example, there are some intriguing

parallels with forces on bodies in active fluids [124]. The
key question here is what would play the role of the inviscid
potential Euler solution.
Some of the most urgent theoretical questions raised by

the present work are for quantum superfluids. The version
of the detailed Josephson-Anderson relation (3.50) that we
derive for classical viscous fluids is more comprehensive
and exact than existing versions for superfluids. It therefore
becomes a pressing issue whether a detailed Josephson-
Anderson relation of similar generality to ours can be
derived for a mathematical model of a superfluid, such as
the Gross-Pitaevskii model. We note that Onsager’s “ideal
turbulence” theory has recently been extended to superfluid
turbulence described by the Gross-Pitaevskii equation
[125,126], which leads to the prediction that the inertial
range of superfluid turbulence at scales between the forcing
scale L and the mean intervortex length lint is described by
a dissipative weak solution of the compressible Euler
equations. If this Onsager theory for superfluids can be
generalized to wall-bounded flow along the lines of recent
work [98–102] for classical fluids, then the dissipative
anomaly should be related by a Josephson-Anderson
relation to vorticity flux from the boundary. We note that
forced flows of superfluid 4He in the two-fluid regime
through smooth wall pipes and channels at high Reynolds
numbers suffer a pressure drop in reasonable agreement
with classical friction laws [127,128], and velocity profiles
determined from particle imaging velocimetry exhibit a
near-wall turbulent boundary layer [129]. The close cor-
respondence with classical wall-bounded turbulence
remains to be understood and calls for further under-
standing of the processes generating quantized vortices
at the walls in superfluids ([4], Secs. IVand V) and the role
of surface roughness [116–120].
Finally, there should be a connection of the Josephson-

Anderson relation with stochastic Lagrangian representa-
tion of the vorticity dynamics [130–133], which gives a
more precise meaning to the “motion” of vortex lines in a
classical fluid. This approach has recently been generalized
to solve the Helmholtz equation with the Lighthill vorticity
source as Neumann boundary conditions [134,135], but it is
not yet clear how to relate the stochastic Lagrangian
trajectories to the Huggins vorticity-flux tensor in the flow
interior. These stochastic representations are an exact
mathematical approach to realize Huggins’s suggestion
[21] of a probability interpretation of the vorticity field.
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APPENDIX A: DERIVATION OF HUGGINS’S
RELATION

For completeness, we reproduce here the derivation of
the detailed Josephson-Anderson relation for the channel-
flow geometry originally obtained by Huggins. The starting
point is the Bernoulli equation for the scalar potential of the
ideal flow:

_ϕþ 1

2
juϕj2 þ pϕ þ U ¼ 0: ðA1Þ

Its space gradient is the Euler equation for uϕ ¼ ∇ϕ,
which, subtracted from the Navier-Stokes equation (2.1),
yields the equation of motion for uω ≔ u − uϕ:

∂tuω¼u×ω−ν∇×ω−g−∇
�
pωþ

1

2
juωj2þuω ·uϕ

�
;

ðA2Þ

with the boundary conditions

n ·uωjSin ¼ 0; n ·uωjSout ¼ 0; n ·uωjSw ¼ 0: ðA3Þ

Dotting Eq. (A2) with uω and integrating over the channel
domain Ω immediately yields

dEω

dt
¼ T −

Z
Ω
½ηjωj2 þ ρu · g�dV; ðA4Þ

which is Eq. (2.11) in the main text. On the other hand, the
total kinetic energy EðtÞ ¼ ð1=2Þ R ρjuj2dV satisfies

dE
dt

¼
Z

dJðhin − houtÞ −
Z
Ω
½ηjωj2 þ ρu · g�dV; ðA5Þ

and since E ¼ Eϕ þ Eω by the Kelvin minimum-energy
theorem, we obtain

dEϕ

dt
¼

Z
dJðhin − houtÞ − T ; ðA6Þ

which is Eq. (2.10) in the main text. Finally,

dEϕ

dt
¼

Z
Ω
ρuϕ · _uϕdV

¼
Z
Ω
ρ∇ · ð _ϕuϕÞdV ¼

Z
dJð _ϕout − _ϕinÞ ðA7Þ

by using the divergence theorem and dJ ¼ ρuϕ · dA.
Combining Eqs. (A6) and (A7) yields

T ¼
Z

dJðh0in − h0outÞ; ðA8Þ

which is the detailed Josephson relation (2.13) first derived
by Huggins.

APPENDIX B: VORTEX MOMENTUM AND
IMPULSE

We give here another derivation of Eq. (3.37) different
from that of Ref. [88]. Using the identity

x × ω ¼ xi∇uωi − ðx · ∇Þuω; ðB1Þ

we find after integration by parts thatZ
Ω
x × ωdV ¼

Z
Ω
ð−1þ 3ÞuωdV

−
Z
∂B

x × ðn̂ × uωÞdA

þ lim
R→∞

Z
SR

x × ðr̂ × uωÞdA; ðB2Þ

or from the definition of Iω,

2Iω ¼ 2

Z
Ω
uωdV þ lim

R→∞

Z
SR

x × ðr̂ × uωÞdA: ðB3Þ

Using the asymptotic far-field expansion of uω,

lim
R→∞

Z
SR

x × ðr̂ × uωÞdA

¼ lim
R→∞

Z
SR

Rr̂ ×
r̂ × ð−IωÞ
4πR3

R2dΩ

¼ 1

4π

Z
½Iω − ðIω · r̂Þr̂�dΩ ¼ 2

3
Iω: ðB4Þ

Thus, we finally obtainZ
Ω
uωdV ¼ 2

3
Iω: ðB5Þ
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