Homework No.5, 553.794, Due April 26, 2023.

Problem 1. This problem discusses the heat-flow reqularization of quantities in the
upper half-space R? = {(z,y,2) : y > 0}.

(a) Show for any locally integrable function f defined on R? that
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solve the heat flow equation %75 = % A f, with, respectively, the Dirichlet b.c

?f(x, 0,2) =0.

and the Neumann b.c

@yﬁv(x, 0,2) =0.

(b) Use part (a) to show that
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where the third result for case N also requires f(z,0,z) = 0 and we have made the
definition TZV = 72\/ — ED so that
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Show that TZV(SC, y, z) is negligible for y > /.
(c) Use part (b) to derive the coarse-grained Navier-Stokes equations in the half-space
ol + v-[(uu)f +pPll=vAul -, val =07

with
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Explain why
/ of dvdydz = 0.
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Problem 2. This problem discusses the elliptic regularization of Germano (1986)
and Bose & Moin (2014) defined by the solution f, of the equation
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(a) When ©Q = R? and £2 is constant, then f, = Gy x f for G,(r) = (~3G(r/f) and
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Show that G(p) = e */4mp. Hint: Evaluate the above Fourier integral in spherical
coordinates using calculus of residues.

(b) If £%(x) is a smooth function vanishing at 92, then show that
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for any f which is integrable and spatially differentiable.

(c) If £%(x) is a smooth function vanishing at 92, then show that
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For a velocity field satisfying u = 0 on 0f2, show that
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(d) Show that the derivative-commutator for this filter is given in closed form by
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(e) Use part (d) to show that V.U, = o, with
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Problem 3. This problem discusses the regularization using filtering & windowing
of Bardos & Titi (2018), defined by

Fae(X) = 0o (dx)Fo(x), x€Q h>(>0,

for 6, the smoothed step-function discussed in the course notes and d(x) = dist(x, 012).
(a) Derive the coarse-grained Navier-Stokes equations

—_~— P

deape + V-[(uu)h! + Phd — V(Vu)h,g] = —fhe, Veup=ony
with

fi.0 := —0, o(d(x))n(x)-[(aw), + A — vV, one 1= 0 ,(d(x))n(x)-Tp.
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(b) Explain why

and derive the Poisson equation

to determine the coarse-grained pressure with zero Dirichlet boundary conditions.

(c) Explain carefully why the equations in (a) with v = 0 for all h > ¢ > 0 are
equivalent to the standard weak formulation of the incompressible Euler equations in
the flow domain (2.

Problem 4. (a) If (u”,p”) is a smooth solution of incompressible Navier-Stokes
equations with viscosity v and if ¢ € D((0,T) x Q,R?), then derive the relation

/ dt/ dA[— )T p| = / dt/dV (O—vA)p-u"+Vp:u'u’+(V-p)p”].
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If one assumes strong convergence
u’ = win L*((0,7), Li,o(Q), 9" = pin L'((0,T), Li,e(2))

as v — 0, then prove that
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(b) If (u,p) is a solution of the coarse-grained Euler equations in the sense of the
equations in Problem 3(a) with v =0 for all h > ¢ > 0 and if ¢ € D((0,T) x Q,R3?),
then derive the relation
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for . ¢(x) := Ope(d(x)) and T := uu. Ifu € L2((0,7), L2 (Q)), p € L*((0,T), L, .(2)),
then prove that
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as h, ¢ — 0.

Problem 5. In this problem we derive the boundary vorticity flux relation for a
smooth solution of incompressible Euler equation, in the form

—nxVp =Dy —n((y-V)u)n

which is invoked in the force field method of Prandtl (1918). Here v = nXu is the
strength of the boundary vorticity sheet; we assume that the Euler solution satisfies
the no-penetration condition u-n = 0 so that u is tangent to the boundary 0€2. Our
starting point is the alternative vorticity flux relation

—nXVp =Dy — (u-V)nxu

derived in the course notes.

(a) Show that the Weingarten matrix Vn is symmetric and use this result to derive
(u-V)nxu=—(uxVg)n-u= (uxVg)un

where Vg is the surface gradient operator, i.e. the component of the gradient tangent
to the boundary surface 0f2.

(b) Show that
uxV =n(y:V) —~v(n-V)

and use this relation in the result of part (a) to show that
(u-V)nxu =n((y-V)u)-n,

completing the derivation.



