
Homework No.5, 553.794, Due April 26, 2023.

Problem 1. This problem discusses the heat-flow regularization of quantities in the
upper half-space R3

+ = {(x, y, z) : y > 0}.
(a) Show for any locally integrable function f defined on R3

+ that

f
D/N

` (x, y, z) :=
1

(2π`2)3/2

∫
R3
+

[e−
(y−y′)2

2`2 ∓ e−
(y+y′)2

2`2 ]e−
(x−x′)2+(z−z′)2

2`2 f(x′, y′, z′) dx′dy′dz′

solve the heat flow equation ∂
∂`2
f ` = 1

2
4 f ` with, respectively, the Dirichlet b.c

f
D

` (x, 0, z) = 0.

and the Neumann b.c
∂yf

N

` (x, 0, z) = 0.

(b) Use part (a) to show that

(i) (∂yf)
D

` = ∂yf
N

`

(ii) (∂yf)
N

` = ∂yf
D

` if f(x, 0, z) = 0

(iii) [∂yf ]
D/N
` := (∂yf)

D/N

` − ∂yf
D/N

` = ±∂yf
W

`

where the third result for case N also requires f(x, 0, z) = 0 and we have made the

definition f
W

` := f
N

` − f
D

` so that

f
W

` (x, y, z) =
2

(2π`2)3/2

∫
R3
+

e−
(y+y′)2

2`2 e−
(x−x′)2+(z−z′)2

2`2 f(x′, y′, z′) dx′dy′dz′.

Show that f
W

` (x, y, z) is negligible for y � `.

(c) Use part (b) to derive the coarse-grained Navier-Stokes equations in the half-space

∂tu
D
` +∇·[(uu)

D

` + pD` I] = ν 4 uD` − fD` , ∇·uD` = σD`

with
fD` := ∂y[(vu)

W

` + pW` ŷ], σD` := −∂yvW` .

Explain why ∫
R3
+

σD` dx dy dz = 0.
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Problem 2. This problem discusses the elliptic regularization of Germano (1986)
and Bose & Moin (2014) defined by the solution f ` of the equation

f ` −
∂

∂xk

(
`2(x)

∂f `
∂xk

)
= f, x ∈ Ω.

(a) When Ω = R3 and `2 is constant, then f ` = G` ∗ f for G`(r) = `−3G(r/`) and

G(ρ) =
1

(2π)3

∫
R3

e−iκ·ρ

1 + κ2
d3κ.

Show that G(ρ) = e−ρ/4πρ. Hint: Evaluate the above Fourier integral in spherical
coordinates using calculus of residues.

(b) If `2(x) is a smooth function vanishing at ∂Ω, then show that∫
Ω

f ` dV =

∫
Ω

f dV.

for any f which is integrable and spatially differentiable.

(c) If `2(x) is a smooth function vanishing at ∂Ω, then show that

f ` −
∂`2

∂n

∂f `
∂n

= f, x ∈ ∂Ω.

For a velocity field satisfying u = 0 on ∂Ω, show that

u` = 0 on ∂Ω, if ∂`2

∂n

∣∣∣
∂Ω

=0,

u` = ∆w
∂u`
∂n

on ∂Ω, if ∆w = ∂`2

∂n

∣∣∣
∂Ω
> 0.

(d) Show that the derivative-commutator for this filter is given in closed form by[
∂f

∂xi

]
`

= −
(

∂

∂xk

(
∂`2

∂xi

∂f `
∂xk

))
`

(e) Use part (d) to show that ∇·u` = σ` with

σ` =

(
∂

∂xk

(
∇`2·∂u`

∂xk

))
`

and therefore when ∇`2 = ∆wn on ∂Ω∫
Ω

σ` dV =

∫
∂Ω

∆w
∂u`,n
∂n

dA.
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Problem 3. This problem discusses the regularization using filtering & windowing
of Bardos & Titi (2018), defined by

f̃h,`(x) = θh,`(d(x))f `(x), x ∈ Ω, h > ` > 0,

for θh,` the smoothed step-function discussed in the course notes and d(x) = dist(x, ∂Ω).

(a) Derive the coarse-grained Navier-Stokes equations

∂tũh,` +∇·[(̃uu)h,` + p̃h,`I− ν (̃∇u)h,`] = −fh,`, ∇·ũh,` = σh,`

with

fh,` := −θ′h,`(d(x))n(x)·[(uu)` + p`I− ν∇u`], σh,` := θ′h,`(d(x))n(x)·u`.

(b) Explain why ∫
Ω

σh,` dV = 0

and derive the Poisson equation

−4 p̃h,` = ∂tσh,` +∇∇:[(̃uu)h,` − ν (̃∇u)h,`] +∇·fh,`

to determine the coarse-grained pressure with zero Dirichlet boundary conditions.

(c) Explain carefully why the equations in (a) with ν = 0 for all h > ` > 0 are
equivalent to the standard weak formulation of the incompressible Euler equations in
the flow domain Ω.

Problem 4. (a) If (uν , pν) is a smooth solution of incompressible Navier-Stokes
equations with viscosity ν and if ϕ ∈ D((0, T )× Ω̄,R3), then derive the relation∫ T

0

dt

∫
∂Ω

dA [−pν(n·ϕ)+τ νw·ϕ] =

∫ T

0

dt

∫
Ω

dV [(∂t−ν4)ϕ·uν+∇ϕ:uνuν+(∇·ϕ)pν ].

If one assumes strong convergence

uν → u in L2((0, T ), L2
loc(Ω)), pν → p in L1((0, T ), L1

loc(Ω))

as ν → 0, then prove that∫ T

0

dt

∫
Ω

dV [(∂t−ν4)ϕ·uν+∇ϕ:uνuν+(∇·ϕ)pν ]→
∫ T

0

dt

∫
Ω

dV [∂tϕ·u+∇ϕ:uu+(∇·ϕ)p]
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(b) If (u, p) is a solution of the coarse-grained Euler equations in the sense of the
equations in Problem 3(a) with ν = 0 for all h > ` > 0 and if ϕ ∈ D((0, T )× Ω̄,R3),
then derive the relation

−
∫ T

0

dt

∫
Ω

dV ∇ηh,`·(T` + p`I)·ϕ =

∫ T

0

dt

∫
Ω

dV ηh,`[(∂tϕ·u` +∇ϕ:T` + (∇·ϕ)p`].

for ηh,`(x) := θh,`(d(x)) and T := uu. If u ∈ L2((0, T ), L2
loc(Ω)), p ∈ L1((0, T ), L1

loc(Ω)),
then prove that∫ T

0

dt

∫
Ω

dV ηh,`[(∂tϕ·u`+∇ϕ:T`+(∇·ϕ)p`]→
∫ T

0

dt

∫
Ω

dV [(∂tϕ·u+∇ϕ:uu+(∇·ϕ)p]

as h, `→ 0.

Problem 5. In this problem we derive the boundary vorticity flux relation for a
smooth solution of incompressible Euler equation, in the form

−n×∇p = Dtγ − n((γ·∇)u)·n

which is invoked in the force field method of Prandtl (1918). Here γ = n×u is the
strength of the boundary vorticity sheet; we assume that the Euler solution satisfies
the no-penetration condition u·n = 0 so that u is tangent to the boundary ∂Ω. Our
starting point is the alternative vorticity flux relation

−n×∇p = Dtγ − (u·∇)n×u

derived in the course notes.

(a) Show that the Weingarten matrix ∇n is symmetric and use this result to derive

(u·∇)n×u = −(u×∇S)n·u = (u×∇S)u·n

where∇S is the surface gradient operator, i.e. the component of the gradient tangent
to the boundary surface ∂Ω.

(b) Show that
u×∇ = n(γ·∇)− γ(n·∇)

and use this relation in the result of part (a) to show that

(u·∇)n×u = n((γ·∇)u)·n,

completing the derivation.
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